Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.031
Filtrar
1.
ACS Appl Mater Interfaces ; 16(34): 44485-44492, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150764

RESUMO

This work proposed a simple and ultrasensitive nanozyme-based immunoassay on a filtration device for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP). Gold core porous platinum shell nanoparticles (Au@Pt NPs) were synthesized with high catalytic activity to oxidize 3,3',5,5'-tetramethylbenzidine, leading to an oblivious color change. The filtration device was designed based on the size difference of magnetic beads, filter membrane pore, and Au@Pt NPs. A simple, rapid, and consistent washing procedure can be performed with the help of a plastic syringe. This detection method could realize the quantitative detection of SARS-CoV-2 NP within 80 min for point-of-care needs. The limit of detection for the SARS-CoV-2 antigen was 0.01 ng/mL in buffer. The coefficients of variation of the assay were 1.78% for 10 ng/mL SARS-CoV-2 antigen, 2.03% for 1 ng/mL SARS-CoV-2 antigen, and 2.34% for the negative sample, respectively. The specificity of the detection platform was verified by the detection of various respiratory viruses. This simple and effective detection system was expected to promote substantial progress in the development and application of virus immunodetection technology.


Assuntos
COVID-19 , Ouro , Nanopartículas Metálicas , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Ouro/química , Nanopartículas Metálicas/química , Filtração/instrumentação , Platina/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Limite de Detecção , Imunoensaio/métodos , Imunoensaio/instrumentação , Seringas , Antígenos Virais/análise , Antígenos Virais/imunologia , Benzidinas/química , Imunoadsorventes/química , Fosfoproteínas
2.
Anal Chem ; 96(21): 8450-8457, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728011

RESUMO

Accurate and quantitative detection of pre-eclampsia markers is crucial in reducing pregnancy mortality rates. This study introduces a novel approach utilizing a fluorescent biosensor by the immunosorbent atom transfer radical polymerization (immuno-ATRP) assay to detect the pre-eclampsia protein marker CD81. The critical step used in this sensor is the novel signal amplification strategy of fluorescein polymerization mediated by ferritin-enhanced controlled radical polymerization, which combines with a traditional enzyme-linked immunosorbent assay (ELISA) to further reduce the detection limit of the CD81 protein concentration. The fluorescence intensity was linear versus logarithmic CD81 protein concentration from 0.1 to 10,000 pg mL-1, and the detection limit was 0.067 pg mL-1. Surprisingly, in 30% normal human serum (NHS), the sensor can also detect target protein over 0.1-10,000 pg mL-1, with 0.083 pg mL-1 for the detection limit. Moreover, the proposed biosensor is designed to be cost-effective, making it accessible, particularly in resource-limited settings where expensive detection techniques may not be available. The affordability of this method enables widespread screening and monitoring of preeclampsia, ultimately benefiting many pregnant women by improving their healthcare outcomes. In short, developing of a low-cost and susceptible direct detection method for preeclampsia protein markers, such as CD81, through the use of the immuno-ATRP assay, has significant implications for reducing pregnancy mortality. This method holds promise for early detection, precise treatment, and improved management of preeclampsia, thereby contributing to better maternal and fetal health.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Polimerização , Humanos , Feminino , Gravidez , Biomarcadores/análise , Biomarcadores/sangue , Técnicas Biossensoriais/métodos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/sangue , Tetraspanina 28/análise , Tetraspanina 28/metabolismo , Imunoadsorventes/química , Limite de Detecção , Fluorescência , Ensaio de Imunoadsorção Enzimática , Eclampsia/diagnóstico
3.
Front Public Health ; 12: 1333559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476494

RESUMO

Introduction: Among the different antigens used in the detection of anti-Chlamydia trachomatis antibodies, significant differences in sensitivity and specificity have been observed. Further evaluation of C. trachomatis antigens in antibody detection is urgently needed for the development and application of C. trachomatis serologic assays. Methods: Chlamydia trachomatis antigens Pgp3, TmeA, InaC, and HSP60 were selected and used in luciferase immunosorbent assay (LISA). The detection results obtained from well-defined C. trachomatis positive and negative samples were compared with the commercial C. trachomatis ELISA (Mikrogen) for performance evaluation. Results: Pgp3, TmeA, InaC, and HSP60-based LISA showed sensitivity of 92.8, 88.8, 90.4, and 94.4%, and specificity of 99.2, 99.2, 99.2, and 92%, respectively. ROC analysis indicated that Pgp3-based LISA showed similar performance to Mikrogen ELISA (AUC 0.986 vs. 0.993, p = 0.207). Furthermore, four C. trachomatis antigens achieved strong diagnostic efficiency, i.e., positive likelihood ratios [+LR] ≥ 10 in C. trachomatis-infected women and negative likelihood ratios [-LR] ≤ 0.1 in C. trachomatis negative low exposure risk children, but only Pgp3 and TmeA showed strong diagnostic value in general adults. In addition, Pgp3, TmeA, and InaC, but not HSP60, achieved high performance, i.e., both positive predictive value (PPV) and negative predictive value (NPV) ≥ 90.9%, and showed no significant cross-reactivity with anti-Chlamydiapneumoniae. Conclusion: Three C. trachomatis species-specific antigens Pgp3, TmeA, and InaC show superior performance in the detection of anti-C. trachomatis antibody, indicating the potential to be used in developing C. trachomatis serologic tests.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Adulto , Criança , Feminino , Humanos , Imunoadsorventes , Infecções por Chlamydia/diagnóstico , Antígenos de Bactérias , Ensaio de Imunoadsorção Enzimática/métodos
4.
Biosens Bioelectron ; 254: 116218, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518559

RESUMO

Biodetection for non-invasive diagnostics of fluids, especially urine, remains a challenge to scientists due to low target concentrations. And biological complexes of the detection target may contain contaminants that also interfere with any assay. Dengue non-structural 1 protein (Dengue NS1) is an important biomarker for dengue hemorrhagic fever and dengue shock syndrome. Here, we developed an Au-decorated nanowire platform and applied it with a sandwich fluorophore-linked immunosorbent well plate assay (FLISA) to detect Dengue NS1 in urine. For the platform, we fabricated zinc oxide (ZnO) nanowires to provide a high surface area and then coated them with gold nanoparticles (ZnO/Au nanowires) to simply modify the Dengue NS1 antibody and enhance the fluorescence intensity. Our platform employs a sandwich FLISA that exhibits high sensitivity, specifically detecting Dengue NS1 with a limit of detection (LOD) of 1.35 pg/mL. This LOD was 4500-fold lower than the LOD of a commercially available kit for Dengue NS1 enzyme-linked immunosorbent assay. We believe that our ZnO/Au nanowire platform has the potential to revolutionize the field of non-invasive diagnostics for dengue.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue , Dengue , Nanopartículas Metálicas , Nanofios , Óxido de Zinco , Humanos , Dengue/diagnóstico , Ouro , Sensibilidade e Especificidade , Proteínas não Estruturais Virais , Antígenos Virais , Ensaio de Imunoadsorção Enzimática , Imunoadsorventes , Anticorpos Antivirais
5.
J Chromatogr A ; 1717: 464701, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310704

RESUMO

Anti-aquaporin-4 autoantibodies (AQP4-IgG) are implicated in the pathogenesis of neuromyelitis optica spectrum disorders (NMOSD), and their removal from the blood circulation is considered to be an effective method for acute treatment. An ideal extracorporeal AQP4-IgG removal system should have high specificity, which means that it can selectively remove AQP4-IgG without affecting normal immunoglobulins. However, the conventional tryptophan immobilized column lacks sufficient specificity and cannot achieve this goal. In this study, we successfully prepared a fusion protein chimeric AQP4, which consists of the complete antigenic epitopes of human AQP4 and the constant region of scaffold protein DARPin. Chimeric AQP4 was expressed and purified from Escherichia coli, and then immobilized on agarose gel as a ligand for selective capture of AQP4-IgG immunosorbent. The prepared immunosorbent had a theoretical maximum adsorption capacity of 20.48 mg/g gel estimated by Langmuir isotherm. In vitro plasma perfusion tests demonstrated that the chimeric AQP4 coupled adsorbent had remarkable adsorption performance, and could eliminate more than 85 % of AQP4-IgG under the gel-to-plasma ratio of 1:50. Moreover, it exhibited high specificity because other human plasma proteins were not adsorbed in the dynamic adsorption experiment. These results suggest that the chimeric AQP4 coupled immunosorbent can provide a new approach for specific immunoadsorption (IA) treatment of NMOSD.


Assuntos
Aquaporina 4 , Neuromielite Óptica , Humanos , Aquaporina 4/genética , Imunoadsorventes , Neuromielite Óptica/terapia , Imunoglobulina G , Epitopos
6.
ACS Biomater Sci Eng ; 10(3): 1788-1795, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38364210

RESUMO

Removing the overexpressed TNF-α by hemoperfusion positively affects clinical treatments for diseases such as autoimmune disease and sepsis. However, clearance ratios of adsorbents targeting TNF-α were limited by the extremely low concentration of TNF-α (mostly <1000 ng/L in sepsis) and hydrophobic interactions. In this work, biparatopic nanobodies (NbC21) with a high affinity of 19.9 pM, which bind to two distinct sites of TNF-α, were constructed as high-affinity ligands for the immunosorbent. The theoretical maximum adsorption capacity estimated from the Langmuir isotherm was up to 18.22 mg/g gel. The prepared immunosorbent (NbC21-sorbent) had an outstanding TNF-α clearance ratio of approximately 96% during the dynamic adsorption test, with a sorbent-to-serum ratio of 1:1000. Additionally, it demonstrated favorable hemocompatibility and a prolonged storage capability. The results indicated that the biparatopic nanobody immunosorbent exhibited significant potential for clinical applications as it met the stringent criteria for both efficacy and safety.


Assuntos
Sepse , Fator de Necrose Tumoral alfa , Humanos , Imunoadsorventes , Sepse/tratamento farmacológico
7.
Nano Lett ; 24(8): 2596-2602, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38251930

RESUMO

Sepsis, a life-threatening inflammatory response, demands economical, accurate, and rapid detection of biomarkers during the critical "golden hour" to reduce the patient mortality rate. Here, we demonstrate a cost-effective waveguide-enhanced nanogold-linked immunosorbent assay (WENLISA) based on nanoplasmonic waveguide biosensors for the rapid and sensitive detection of procalcitonin (PCT), a sepsis-related inflammatory biomarker. To enhance the limit of detection (LOD), we employed sandwich assays using immobilized capture antibodies and detection antibodies conjugated to gold nanoparticles to bind the target analyte, leading to a significant evanescent wave redistribution and strong nanoplasmonic absorption near the waveguide surface. Experimentally, we detected PCT for a wide linear response range of 0.1 pg/mL to 1 ng/mL with a record-low LOD of 48.7 fg/mL (3.74 fM) in 8 min. Furthermore, WENLISA has successfully identified PCT levels in the blood plasma of patients with sepsis and healthy individuals, offering a promising technology for early sepsis diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Sepse , Humanos , Pró-Calcitonina , Imunoadsorventes , Ouro , Sepse/diagnóstico , Biomarcadores , Anticorpos Imobilizados
8.
Luminescence ; 39(1): e4620, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933617

RESUMO

Rapid and accurate identification of tumor metabolic markers is important for early tumor diagnosis and individualized treatment. Here, a stable monodisperse sub-nanometer platinum (Pt) material was developed as a highly efficient nanozyme with a specific activity of peroxidase as high as 20.86 U mg-1 through the growth of in situ domain-limited Pt quantum dots via the polymer polyvinylpyrrolidone. Further, the synthesis of large quantities of Pt-loaded SiO2 (Pt-SiO2 ) was determined by silylation reaction and used for naked eye colorimetric testing of human alpha-fetoprotein (AFP). In particular, the immunization incubation process occurred in preprepared microplates. A nanozyme-based immunomodel was constructed in the presence of the target AFP, and a chromogenic reaction occurred with exogenous hydrogen peroxide and the chromogenic substrate tetramethylbenzidine. On optimization of experimental conditions, the dynamic working response range for AFP was found to be 0.05-20 ng mL-1 , with a limit of detection of 38.7 pg mL-1 . This work provides a new strategy to design efficient nanozyme-based enzyme-linked immunochromatographic platforms to meet the practical use of replacing natural enzymes.


Assuntos
Imunoadsorventes , Neoplasias , Humanos , Platina/química , alfa-Fetoproteínas , Dióxido de Silício/química , Peroxidase , Ensaio de Imunoadsorção Enzimática , Peróxido de Hidrogênio/química , Colorimetria/métodos
9.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38100268

RESUMO

BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.


Assuntos
Interferon gama , Sepse , Humanos , Interferon gama/metabolismo , Imunoadsorventes/uso terapêutico , Estudos Prospectivos , Biomarcadores
10.
Appl Microbiol Biotechnol ; 108(1): 2, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153552

RESUMO

Staphylococcus aureus is a major pathogen that causes infections and life-threatening diseases. Although antibiotics, such as methicillin, have been used, methicillin-resistant S. aureus (MRSA) causes high morbidity and mortality rates, and conventional detection methods are difficult to be used because of time-consuming process. To control the spread of S. aureus, a development of a rapid and simple detection method is required. In this study, we generated a fluorescent anti-S. aureus antibody, and established a novel fluorescence-linked immunosorbent assay (FLISA)-based S. aureus detection method. The method showed high sensitivity and low limit of detection toward MRSA detection. The assay time for FLISA was 5 h, which was faster than that of conventional enzyme-linked immunosorbent assay (ELISA) or rapid ELISA. Moreover, the FLISA-based detection method was applied to diagnose clinically isolated MRSA samples that required only 5.3 h of preincubation. The FLISA method developed in this study can be widely applied as a useful tool for convenient S. aureus detection. KEY POINTS: • A fluorescence-linked immunosorbent assay-based S. aureus detection method • Simultaneous quantification of a maximum of 96 samples within 5 h • Application of the novel system to diagnosis clinical isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Imunoadsorventes , Staphylococcus aureus , Ensaio de Imunoadsorção Enzimática , Infecções Estafilocócicas/diagnóstico , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA