Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.581
Filtrar
1.
Front Immunol ; 14: 1127470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122719

RESUMO

Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Antígenos , Imunidade Adaptativa , Especificidade de Anticorpos
2.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175964

RESUMO

Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.


Assuntos
Macrófagos , Transplante de Órgãos , Transplante Homólogo , Imunidade Adaptativa , Aloenxertos , Rejeição de Enxerto
3.
Front Immunol ; 14: 1130033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153615

RESUMO

Exosomes are nanoscale vesicles secreted by most cells and have a phospholipid bilayer structure. Exosomes contain DNA, small RNA, proteins, and other substances that can carry proteins and nucleic acids and participate in communication between cells. T cells are an indispensable part of adaptive immunity, and the functions of T cell-derived exosomes have been widely studied. In the more than three decades since the discovery of exosomes, several studies have revealed that T cell-derived exosomes play a novel role in cell-to-cell signaling, especially in the tumor immune response. In this review, we discuss the function of exosomes derived from different T cell subsets, explore applications in tumor immunotherapy, and consider the associated challenges.


Assuntos
Exossomos , Neoplasias , Humanos , Exossomos/metabolismo , Linfócitos T/patologia , Imunidade Adaptativa , Imunoterapia
5.
Science ; 380(6644): 478-484, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141353

RESUMO

Although all multicellular organisms have germ line-encoded innate receptors to sense pathogen-associated molecular patterns, vertebrates also evolved adaptive immunity based on somatically generated antigen receptors on B and T cells. Because randomly generated antigen receptors may also react with self-antigens, tolerance checkpoints operate to limit but not completely prevent autoimmunity. These two systems are intricately linked, with innate immunity playing an instrumental role in the induction of adaptive antiviral immunity. In this work, we review how inborn errors of innate immunity can instigate B cell autoimmunity. Increased nucleic acid sensing, often resulting from defects in metabolizing pathways or retroelement control, can break B cell tolerance and converge into TLR7-, cGAS-STING-, or MAVS-dominant signaling pathways. The resulting syndromes span a spectrum that ranges from chilblain and systemic lupus to severe interferonopathies.


Assuntos
Autoimunidade , Linfócitos B , Interações Hospedeiro-Patógeno , Imunidade Inata , Viroses , Vírus , Animais , Imunidade Adaptativa , Autoimunidade/genética , Linfócitos B/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Transdução de Sinais , Viroses/imunologia , Vírus/imunologia , Humanos
6.
Cancer Lett ; 564: 216219, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37146937

RESUMO

Tumor immunotherapy is a new therapeutic approach that has been evolving in the last decade and has dramatically changed the treatment options for cancer. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) with high stability, tissue-specific and cell-specific expression. There is growing evidence that circRNAs are involved in the regulation of both adaptive and innate immunity. They play important roles in tumor immunotherapy by affecting macrophage, NK and T cell function. The high stability and tissue specificity make them ideal candidate biomarkers for therapeutic effects. CircRNAs also represent one of promising targets or adjuvant for immunotherapy. Investigations in this field progress rapidly and provide essential support for the diagnosis, prognosis and treatment guidance of cancers in the future. In this review, we summarize the role of circRNAs on tumor immunity from the viewpoint of innate and adaptive immunity, and explore the role of circRNAs in tumor immunotherapy.


Assuntos
Neoplasias , RNA Circular , Humanos , RNA Circular/genética , Biomarcadores , Neoplasias/genética , Neoplasias/terapia , Imunidade Adaptativa/genética , Imunoterapia
7.
Front Immunol ; 14: 1183286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234163

RESUMO

The lymph node is a highly structured organ that mediates the body's adaptive immune response to antigens and other foreign particles. Central to its function is the distinct spatial assortment of lymphocytes and stromal cells, as well as chemokines that drive the signaling cascades which underpin immune responses. Investigations of lymph node biology were historically explored in vivo in animal models, using technologies that were breakthroughs in their time such as immunofluorescence with monoclonal antibodies, genetic reporters, in vivo two-photon imaging, and, more recently spatial biology techniques. However, new approaches are needed to enable tests of cell behavior and spatiotemporal dynamics under well controlled experimental perturbation, particularly for human immunity. This review presents a suite of technologies, comprising in vitro, ex vivo and in silico models, developed to study the lymph node or its components. We discuss the use of these tools to model cell behaviors in increasing order of complexity, from cell motility, to cell-cell interactions, to organ-level functions such as vaccination. Next, we identify current challenges regarding cell sourcing and culture, real time measurements of lymph node behavior in vivo and tool development for analysis and control of engineered cultures. Finally, we propose new research directions and offer our perspective on the future of this rapidly growing field. We anticipate that this review will be especially beneficial to immunologists looking to expand their toolkit for probing lymph node structure and function.


Assuntos
Linfonodos , Linfócitos , Animais , Humanos , Imunidade Adaptativa , Simulação por Computador , Antígenos
8.
J Neuroinflammation ; 20(1): 120, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217914

RESUMO

Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.


Assuntos
Células Th1 , Células Th2 , Camundongos , Animais , Adjuvantes Imunológicos , Córnea , Imunidade Adaptativa , Inflamação
9.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175470

RESUMO

Newborns and especially preterm infants are much more susceptible to infections than adults. Due to immature adaptive immunity, especially innate immune cells play an important role in a newborn's infection defense. Neonatal neutrophils exhibit profound differences in their functionality compared to neutrophils of adults. In particular, neonates possess a relevant population of suppressive neutrophils, which not only inhibit but also specifically modulate the function of T-cells. In this study, we investigated whether neonatal neutrophils are already involved in T-cell development in the thymus. For this purpose, we used a newly developed model of antibody-mediated immune cell depletion in which we administered a depleting antibody to pregnant and then lactating dams. Using this method, we were able to sufficiently deplete Ly6G-positive neutrophils in offspring. We demonstrated that the depletion of neutrophils in newborn mice resulted in altered peripheral T-cell homeostasis with a decreased CD4+/CD8+ T-cell ratio and decreased expression of CD62L. Neutrophil depletion even affected T-cell development in the thymus, with increased double positive thymocytes and a decreased CD4+/CD8+ single positive thymocyte ratio. Altogether, we demonstrated a previously unknown mechanism mediating neutrophils' immunomodulatory effects in newborns.


Assuntos
Recém-Nascido Prematuro , Lactação , Animais , Feminino , Humanos , Recém-Nascido , Camundongos , Gravidez , Imunidade Adaptativa , Animais Recém-Nascidos , Timo
10.
Front Immunol ; 14: 1046639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168853

RESUMO

Cellular immune responses are of pivotal importance to understand SARS-CoV-2 pathogenicity. Using an enzyme-linked immunosorbent spot (ELISpot) interferon-γ release assay with wild-type spike, membrane and nucleocapsid peptide pools, we longitudinally characterized functional SARS-CoV-2 specific T-cell responses in a cohort of patients with mild, moderate and severe COVID-19. All patients were included before emergence of the Omicron (B.1.1.529) variant. Our most important finding was an impaired development of early IFN-γ-secreting virus-specific T-cells in severe patients compared to patients with moderate disease, indicating that absence of virus-specific cellular responses in the acute phase may act as a prognostic factor for severe disease. Remarkably, in addition to reactivity against the spike protein, a substantial proportion of the SARS-CoV-2 specific T-cell response was directed against the conserved membrane protein. This may be relevant for diagnostics and vaccine design, especially considering new variants with heavily mutated spike proteins. Our data further strengthen the hypothesis that dysregulated adaptive immunity plays a central role in COVID-19 immunopathogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Linfócitos T , Imunidade Adaptativa , Proteínas Mutadas de Ataxia Telangiectasia , Interferon gama
11.
Front Immunol ; 14: 1117825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168859

RESUMO

The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αß T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.


Assuntos
Células T Invariantes Associadas à Mucosa , Células T Matadoras Naturais , Imunidade Inata , Linfócitos , Imunidade Adaptativa
12.
Front Immunol ; 14: 1159326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228604

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Imunidade Inata , Imunidade Adaptativa , Causalidade
13.
PLoS Comput Biol ; 19(4): e1010976, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083574

RESUMO

Predator-prey theory is commonly used to describe tumor growth in the presence of selective pressure from the adaptive immune system. These interactions are mediated by the tumor immunopeptidome (what the tumor "shows" the body) and the T-cell receptor (TCR) repertoire (how well the body "sees" cancer cells). The tumor immunopeptidome comprises neoantigens which can be gained and lost throughout tumorigenesis and treatment. Heterogeneity in the immunopeptidome is predictive of poor response to immunotherapy in some tumor types, suggesting that the TCR repertoire is unable to support a fully polyclonal response against every neoantigen. Importantly, while tumor and T-cell populations are known to compete with each other for intratumoral resources, whether between-lineage competition among peripheral T cells influences the TCR repertoire is unknown and difficult to interrogate experimentally. Computational models may offer a way to investigate these phenomena and deepen our understanding of the tumor-immune axis. Here, we construct a predator-prey-like model and calibrate it to preclinical and clinical data to describe tumor growth and immunopeptidome diversification. Simultaneously, we model the expansion of antigen-specific T-cell lineages and their consumption of both lineage-specific antigenic resources and lineage-agnostic, shared resources. This predator-prey-like framework accurately described clinically observed immunopeptidomes; recapitulated response-associated effects of immunotherapy, including immunoediting; and allowed exploration of treatment of tumors with varying growth and mutation rates.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Linfócitos T , Imunoterapia , Imunidade Adaptativa , Antígenos , Receptores de Antígenos de Linfócitos T/genética , Antígenos de Neoplasias
14.
Protein Expr Purif ; 207: 106270, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059371

RESUMO

Custom polyclonal antibodies raised in rabbits are routinely used in immunoblotting and other protein analysis techniques. Custom rabbit polyclonal antisera are generally purified using immunoaffinity or Protein A-affinity chromatography; however, these methods require harsh elution conditions that can compromise the antigen binding efficacy. We evaluated the utility of Melon™ Gel chromatography for purification of IgG from crude rabbit serum. We show that Melon Gel-purified rabbit IgGs are active and perform well in immunoblotting. In summary, the Melon Gel method is a rapid, one-step, negative-selection approach that can be employed in either preparative or small-scale format to purify IgG from crude rabbit serum without the need for denaturing eluent.


Assuntos
Imunidade Adaptativa , Imunoglobulina G , Animais , Coelhos , Cromatografia de Afinidade/métodos , Soros Imunes , Eletroforese em Gel de Poliacrilamida
15.
Cell Rep Med ; 4(4): 101012, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37075705

RESUMO

Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.


Assuntos
Arterite de Células Gigantes , Camundongos , Animais , Humanos , Arterite de Células Gigantes/metabolismo , Arterite de Células Gigantes/patologia , Citocinas/metabolismo , Linfócitos T , Imunidade Adaptativa , Antígenos CD/metabolismo
16.
Immunity ; 56(4): 704-722, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044061

RESUMO

Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.


Assuntos
Hipersensibilidade , Imunidade Inata , Humanos , Linfócitos , Imunidade Adaptativa , Citocinas
17.
Cell ; 186(10): 2127-2143.e22, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098344

RESUMO

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Assuntos
Citocinas , Ferimentos e Lesões , Animais , Camundongos , Imunidade Adaptativa , Quimiocinas , Epiderme , Imunidade Inata , Ferimentos e Lesões/imunologia
18.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108522

RESUMO

Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to DNA damage with IR have been known since the early 20th century, the role of the immune system in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death (ICD), which activates innate and adaptive immunity against the cancer. It has also been widely reported that an intact immune system is essential to IR efficacy. However, this response is typically transient, and wound healing processes also become upregulated, dampening early immunological efforts to overcome the disease. This immune suppression involves many complex cellular and molecular mechanisms that ultimately result in the generation of radioresistance in many cases. Understanding the mechanisms behind these responses is challenging as the effects are extensive and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with the hope of shedding light on the complex immune stimulatory and immunosuppressive responses involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide a platform for improving immunotherapy efficacy in the future.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Imunoterapia , Imunidade Adaptativa , Terapia de Imunossupressão , Sistema Imunitário
19.
J Theor Biol ; 568: 111498, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37100114

RESUMO

When an organism is challenged with a pathogen a cascade of events unfolds. The innate immune system rapidly mounts a preliminary nonspecific defense, while the acquired immune system slowly develops microbe-killing specialists. These responses cause inflammation, and along with the pathogen cause direct and indirect tissue damage, which anti-inflammatory mediators seek to temper. This interplay of systems is credited for maintaining homeostasis but may produce unexpected results such as disease tolerance. Tolerance is characterized by the persistence of pathogen and damage mitigation, where the relevant mechanisms are poorly understood. In this work we develop an ordinary differential equations model of the immune response to infection in order to identify key components in tolerance. Bifurcation analysis uncovers health, immune- and pathogen-mediated death clinical outcomes dependent on pathogen growth rate. We demonstrate that decreasing the inflammatory response to damage and increasing the strength of the immune system gives rise to a region in which limit cycles, or periodic solutions, are the only biological trajectories. We then describe areas of parameter space corresponding to disease tolerance by varying immune cell decay, pathogen removal, and lymphocyte proliferation rates.


Assuntos
Tolerância Imunológica , Imunidade Inata , Humanos , Imunidade Adaptativa , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...