RESUMO
Introducción: El síndrome opsoclono-mioclono-ataxia es un raro trastorno de inicio pediátrico; de base neuroinflamatoria y origen paraneoplásico, parainfeccioso o idiopático. Actualmente no hay biomarcadores, siendo el diagnóstico clínico. El pronóstico cognitivo parece estar relacionado con el inicio temprano de la terapia inmunomoduladora.MétodoSe describen las características epidemiológicas, clínicas, terapéuticas y pronósticas a largo plazo de una cohorte de 20 pacientes españoles.ResultadosLa edad media de debut fue de 21 meses (2-59 meses). La ataxia y el opsoclonus fueron los síntomas de inicio más frecuentes y predominantes en la evolución. El tiempo medio desde los primeros síntomas hasta el diagnóstico fue de 1,1 mes. Un tumor de extirpe neuroblástica fue detectado en el 45%, realizándose resección quirúrgica en siete y quimioterapia en dos pacientes. En el estudio de líquido cefalorraquídeo se constató pleocitosis en cuatro (25%), con negatividad de anticuerpos antineuronales y bandas oligoclonales en todos los casos estudiados. En el 100% se emplearon fármacos inmunomoduladores. En nueve pacientes el tratamiento combinado inmunomodulador se inició desde el momento del diagnóstico, y en cinco el tiempo medio de implementación fue de 2,2 meses. A largo plazo, seis de 10 pacientes con seguimiento superior a cinco años presentaban secuelas cognitivas leves o moderadas; cuatro pacientes presentaron recaídas, generalmente coincidiendo con el descenso de la corticoterapia.ConclusionesEl inicio precoz de la inmunoterapia, así como de la triple terapia en los casos que lo precisaron, se relacionó con una menor frecuencia de afectación cognitiva a los dos años del debut. (AU)
Introduction: Opsoclonus-myoclonus-ataxia syndrome is a rare neuroinflammatory disorder with onset during childhood; aetiology may be paraneoplastic, para-infectious, or idiopathic. No biomarkers have yet been identified, and diagnosis is clinical. Better cognitive prognosis appears to be related to early onset of immunomodulatory therapy.MethodsWe describe the epidemiological, clinical, therapeutic, and long-term prognostic characteristics of a cohort of 20 Spanish patients.ResultsThe mean age of onset was 21 months (range, 2-59). Ataxia and opsoclonus were the most frequent symptoms both at disease onset and throughout disease progression. The mean time from onset to diagnosis was 1.1 months. Neuroblast lineage tumours were detected in 45% of patients; these were treated with surgical resection in 7 cases and chemotherapy in 2. Cerebrospinal fluid analysis revealed pleocytosis in 4 cases (25%) and neither antineuronal antibodies nor oligoclonal bands were detected in any patient. Immunomodulatory drugs were used in all cases. Nine patients started combined immunomodulatory treatment at the time of diagnosis, and 5 patients after a mean of 2.2 months. In the long term, 6 of the 10 patients followed up for more than 5 years presented mild or moderate cognitive sequelae. Four patients presented relapses, generally coinciding with the decrease of corticosteroid doses.ConclusionsEarly initiation of immunotherapy, as well as triple combination therapy, where needed, was associated with a lower frequency of cognitive impairment 2 years after onset. (AU)
Assuntos
Humanos , Imunoterapia , 3-Iodobenzilguanidina , Neuroblastoma , Ataxia , Diagnóstico ClínicoRESUMO
Advanced renal cell carcinoma is a biologically heterogeneous disease with multiple treatment options that largely involve immunotherapy and/or anti-angiogenic therapies. The choice of initial and subsequent therapy depends on both clinical and biological considerations. Here, we describe the application of recent data to clinical practice.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , ImunoterapiaRESUMO
Fms-like tyrosine kinase 3 ligand (Flt3L) is a hematopoietic cytokine that promotes the survival and differentiation of dendritic cells (DCs). It has been used in tumor vaccines to activate innate immunity and enhance antitumor responses. This protocol demonstrates a therapeutic model using cell-based tumor vaccine consisting of Flt3L-expressing B16-F10 melanoma cells along with phenotypic and functional analysis of immune cells in the tumor microenvironment (TME). Procedures for cultured tumor cell preparation, tumor implantation, cell irradiation, tumor size measurement, intratumoral immune cell isolation, and flow cytometry analysis are described. The overall goal of this protocol is to provide a preclinical solid tumor immunotherapy model, and a research platform to study the relationship between tumor cells and infiltrating immune cells. The immunotherapy protocol described here can be combined with other therapeutic modalities, such as immune checkpoint blockade (anti-CTLA-4, anti-PD-1, anti-PD-L1 antibodies) or chemotherapy in order to improve the cancer therapeutic effect of melanoma.
Assuntos
Vacinas Anticâncer , Melanoma Experimental , Animais , Humanos , Melanoma Experimental/terapia , Células Dendríticas , Imunoterapia/métodos , Citocinas , Vacinação , Microambiente TumoralRESUMO
BACKGROUND: Muscle-invasive bladder cancer (MIBC) is characterized as bladder tumors that infiltrate into the muscle layer, along with multiple metastasis and poor prognosis. Numerous research studies have been performed to identify the underlying clinical and pathological alterations that occur. However, few studies have revealed the molecular mechanism of its progression based upon the immunotherapy response. Our present study was designed to identify biomarkers which may predict the immunotherapy response by investigating the tumor microenvironment (TME) in MIBC. METHODS: The transcriptome and clinical data of MIBC patients were obtained and analyzed with R version 4.0.3 (POSIT Software, Boston, MA, USA) ESTIMATE package. Differentially expressed immune-related genes (DEIRGs) were identified and further analyzed via the protein-protein interaction network (PPI). Meanwhile, univariate Cox analysis was utilized to screen out the prognostic DEIRGs (PDEIRGs). Then, the PPI core gene was matched with PDEIRGs to obtain the target gene-fibronectin-1 (FN1). Human MIBC and control tissues were collected and FN1 was measured with Quantitative Reverse Transcription PCR (qRT-PCR) and Western-Blot. Finally, the relationship between FN1 expression level and MIBC was validated through survival, univariate Cox, multivariate Cox, Gene Set Enrichment Analysis (GSEA) and correlation analysis of tumor infiltrating immune cells. RESULTS: TME DEIRGs were identified and the target gene FN1 was obtained. The higher expression of FN1 was confirmed in MIBC tissues via bioinformatics analysis, qRT-PCR and Western-Blot. Moreover, higher FN1 expression correlated with reduced survival time and FN1 expression was further favorably correlated with clinic-pathological features (grade, TNM stage, invasion, lymphatic and distant metastasis). Additionally, the genes in the high FN1 expression group were mainly enriched in immune-related activities and macrophage M2, T cell CD4, T cell CD8 and T cell follicular helper cells were correlated with FN1. Finally, it was observed that FN1 was closely related to key immune checkpoints. CONCLUSIONS: FN1 was identified as a novel and independent prognostic factor for MIBC. Our data also suggests FN1 can predict MIBC patients' response to immune checkpoints inhibitors.
Assuntos
Fibronectinas , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Prognóstico , Músculos/metabolismo , Músculos/patologia , Imunoterapia , Microambiente TumoralRESUMO
BACKGROUND: The COVID-19 infection played a key role in the discontinuation of patient treatment, such as allergen-specific immunotherapy, in chronic diseases. OBJECTIVES: We conducted a retrospective observational study at Verona University Hospital, Verona, Italy, to assess the level of adherence to sublingual immunotherapy (SLIT) in patients affected by allergic rhinitis and mild asthma. MATERIALS AND METHODS: We compared and analysed data related to first prescription and collection of 5-grass-pollen 300-index of reactivity (IR) SLIT and tablet lyophilisate, containing 75,000 standardized quality tablet units (SQ-T) allergen extract of grass-pollen from Phleum pratense L, for the five-year period 2017-2021.In particular we considered the group of naïve patients from 2017 who completed pre-COVID treatment (2017-2019) and the group of naïve patients from 2019 who completed treatment during the COVID period (2019-2021). The significance test used was Student's t-test, and P Ë 0.05 was considered as statistically significant. RESULTS: In the three-year period 2017-2019, 264 naïve patients began treatment in 2017, of these 181 continued in 2018, 135 continued in 2019. Instead, for the period 2017-2019, there were 226 naïve patients in 2019; of these 139 continued in 2020, and 102 in 2021. CONCLUSIONS: COVID-19 did not seem to influence adherence to SLIT, which declined independently even in during the pre-pandemic 3-year period.
Assuntos
COVID-19 , Rinite Alérgica Sazonal , Imunoterapia Sublingual , Humanos , Rinite Alérgica Sazonal/terapia , Alérgenos/efeitos adversos , COVID-19/terapia , COVID-19/etiologia , Dessensibilização Imunológica/efeitos adversos , Comprimidos , Poaceae , ImunoterapiaRESUMO
FDA-approved anti-PD-L1 monoclonal antibodies (mAbs) bear the IgG1 isotype, whose scaffolds are either wild-type (e.g., avelumab) or Fc-mutated and lacking Fcγ receptor (FcγR) engagement (e.g., atezolizumab). It is unknown whether variation in the ability of the IgG1 Fc region to engage FcγRs renders mAbs with superior therapeutic activity. In this study, we used humanized FcγR mice to study the contribution of FcγR signaling to the antitumor activity of human anti-PD-L1 mAbs and to identify an optimal human IgG scaffold for PD-L1 mAbs. We observed similar antitumor efficacy and comparable tumor immune responses in mice treated with anti-PD-L1 mAbs with wild-type and Fc-mutated IgG scaffolds. However, in vivo antitumor activity of the wild-type anti-PD-L1 mAb avelumab was enhanced by combination treatment with an FcγRIIB-blocking antibody, which was co-administered to overcome the suppressor function of FcγRIIB in the tumor microenvironment (TME). We performed Fc glycoengineering to remove the fucose subunit from the Fc-attached glycan of avelumab to enhance its binding to the activating FcγRIIIA. Treatment with the Fc-afucosylated version of avelumab also enhanced antitumor activity and induced stronger antitumor immune responses compared with the parental IgG. The enhanced effect by afucosylated PD-L1 antibody was dependent on neutrophils and associated with decreased frequencies of PD-L1+ myeloid cells and increased infiltration of T cells in the TME. Our data reveal that the current design of FDA-approved anti-PD-L1 mAbs does not optimally harness FcγR pathways and suggest two strategies to enhance FcγR engagement to optimize anti-PD-L1 immunotherapy.
Assuntos
Anticorpos Monoclonais , Receptores de IgG , Humanos , Animais , Camundongos , Imunoglobulina G , Inibidores de Checkpoint Imunológico , ImunoterapiaRESUMO
Immunotherapies based on antibody fragments have been developed and applied to human diseases, describing novel antibody formats. The vNAR domains have a potential therapeutic use related to their unique properties. This work used a non-immunized Heterodontus francisci shark library to obtain a vNAR with recognition of TGF-ß isoforms. The isolated vNAR T1 selected by phage display demonstrated binding of the vNAR T1 to TGF-ß isoforms (-ß1, -ß2, -ß3) by direct ELISA assay. These results are supported by using for the first time the Single-Cycle kinetics (SCK) method for Surface plasmon resonance (SPR) analysis for a vNAR. Also, the vNAR T1 shows an equilibrium dissociation constant (KD) of 9.61 × 10-8 M against rhTGF-ß1. Furthermore, the molecular docking analysis revealed that the vNAR T1 interacts with amino acid residues of TGF-ß1, which are essential for interaction with type I and II TGF-ß receptors. The vNAR T1 is the first pan-specific shark domain reported against the three hTGF-ß isoforms and a potential alternative to overcome the challenges related to the modulation of TGF-ß levels implicated in several human diseases such as fibrosis, cancer, and COVID-19.
Assuntos
COVID-19 , Fator de Crescimento Transformador beta , Humanos , Simulação de Acoplamento Molecular , Simulação por Computador , ImunoterapiaRESUMO
The historical lack of preclinical models reflecting the genetic heterogeneity of multiple myeloma (MM) hampers the advance of therapeutic discoveries. To circumvent this limitation, we screened mice engineered to carry eight MM lesions (NF-κB, KRAS, MYC, TP53, BCL2, cyclin D1, MMSET/NSD2 and c-MAF) combinatorially activated in B lymphocytes following T cell-driven immunization. Fifteen genetically diverse models developed bone marrow (BM) tumors fulfilling MM pathogenesis. Integrative analyses of â¼500 mice and â¼1,000 patients revealed a common MAPK-MYC genetic pathway that accelerated time to progression from precursor states across genetically heterogeneous MM. MYC-dependent time to progression conditioned immune evasion mechanisms that remodeled the BM microenvironment differently. Rapid MYC-driven progressors exhibited a high number of activated/exhausted CD8+ T cells with reduced immunosuppressive regulatory T (Treg) cells, while late MYC acquisition in slow progressors was associated with lower CD8+ T cell infiltration and more abundant Treg cells. Single-cell transcriptomics and functional assays defined a high ratio of CD8+ T cells versus Treg cells as a predictor of response to immune checkpoint blockade (ICB). In clinical series, high CD8+ T/Treg cell ratios underlie early progression in untreated smoldering MM, and correlated with early relapse in newly diagnosed patients with MM under Len/Dex therapy. In ICB-refractory MM models, increasing CD8+ T cell cytotoxicity or depleting Treg cells reversed immunotherapy resistance and yielded prolonged MM control. Our experimental models enable the correlation of MM genetic and immunological traits with preclinical therapy responses, which may inform the next-generation immunotherapy trials.
Assuntos
Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/terapia , Mieloma Múltiplo/tratamento farmacológico , Linfócitos T CD8-Positivos , Evasão da Resposta Imune , Linfócitos T Reguladores , Imunoterapia/efeitos adversos , Microambiente Tumoral/genéticaRESUMO
Background: Liver zonation is a unique phenomenon in which the liver exhibits distinct functions among hepatocytes along the radial axis of the lobule. This phenomenon can cause the sectionalized initiation of several liver diseases, including hepatocellular carcinoma (HCC). However, few studies have explored the zonation features of HCC. Methods: Four single-cell RNA sequencing datasets were used to identify hepatocyte-specific zonation markers. Integrative analysis was then performed with a training RNA-seq cohort (616 HCC samples) and an external validating microarray cohort (285 HCC samples) from the International Cancer Genome Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, and EMBL's European Bioinformatics Institute for clustering using non-negative matrix factorization consensus clustering based on zonation genes. Afterward, we evaluated the prognostic value, clinical characteristics, transcriptome and mutation features, immune infiltration, and immunotherapy response of the HCC subclasses. Results: A total of 94 human hepatocyte-specific zonation markers (39 central markers and 55 portal markers) were identified for the first time. Subsequently, three subgroups of HCC, namely Cluster1, Cluster2, and Cluster3 were identified. Cluster1 exhibited a non-zonational-like signature with the worst prognosis. Cluster2 was intensively associated with a central-like signature and exhibited low immune infiltration and sensitivity toward immune blockade therapy. Cluster3 was intensively correlated with a portal-like signature with the best prognosis. Finally, we identified candidate therapeutic targets and agents for Cluster1 HCC samples. Conclusion: The current study established a novel HCC classification based on liver zonation signature. By classifying HCC into three clusters with non-zonational-like (Cluster1), central-like (Cluster2), and portal-like (Cluster3) features, this study provided new perspectives on the heterogeneity of HCC and shed new light on delivering precision medicine for HCC patients.
Assuntos
Biomarcadores , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fígado , Fenótipo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Carcinoma Hepatocelular/classificação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Transcriptoma , Mutação , Imunoterapia , Neoplasias Hepáticas/classificação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA , Conjuntos de Dados como Assunto , Reprodutibilidade dos Testes , Estudos de Coortes , Medicina de Precisão , Prognóstico , Terapia de Alvo Molecular , Algoritmos , Humanos , Animais , CamundongosRESUMO
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Assuntos
Epigenoma , Viroses , Humanos , Linfócitos T CD8-Positivos , Diferenciação Celular/genética , ImunoterapiaRESUMO
INTRODUCTION: COVID-19 particularly impacted patients with co-morbid conditions, including cancer. Patients with melanoma have not been specifically studied in large numbers. Here, we sought to identify factors that associated with COVID-19 severity among patients with melanoma, particularly assessing outcomes of patients on active targeted or immune therapy. METHODS: Using the COVID-19 and Cancer Consortium (CCC19) registry, we identified 307 patients with melanoma diagnosed with COVID-19. We used multivariable models to assess demographic, cancer-related, and treatment-related factors associated with COVID-19 severity on a 6-level ordinal severity scale. We assessed whether treatment was associated with increased cardiac or pulmonary dysfunction among hospitalized patients and assessed mortality among patients with a history of melanoma compared with other cancer survivors. RESULTS: Of 307 patients, 52 received immunotherapy (17%), and 32 targeted therapy (10%) in the previous 3 months. Using multivariable analyses, these treatments were not associated with COVID-19 severity (immunotherapy OR 0.51, 95% CI 0.19 - 1.39; targeted therapy OR 1.89, 95% CI 0.64 - 5.55). Among hospitalized patients, no signals of increased cardiac or pulmonary organ dysfunction, as measured by troponin, brain natriuretic peptide, and oxygenation were noted. Patients with a history of melanoma had similar 90-day mortality compared with other cancer survivors (OR 1.21, 95% CI 0.62 - 2.35). CONCLUSIONS: Melanoma therapies did not appear to be associated with increased severity of COVID-19 or worsening organ dysfunction. Patients with history of melanoma had similar 90-day survival following COVID-19 compared with other cancer survivors.
Assuntos
COVID-19 , Melanoma , Humanos , COVID-19/terapia , Insuficiência de Múltiplos Órgãos , Melanoma/complicações , Melanoma/terapia , ImunoterapiaRESUMO
Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.
Assuntos
Neoplasias , Fatores de Transcrição , Animais , Humanos , Camundongos , Fator de Transcrição Ikaros , Imunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Low response rate limits the widespread application of cancer immunotherapy. To improve the response rate of immunotherapy, a CaCO3-based composite nanomaterial was developed to induce immunogenic cell death for enhancing immunotherapy against 4T1 primary and distal tumors.
Assuntos
Imunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Linhagem Celular TumoralRESUMO
Tumors use multiple mechanisms to actively exclude immune cells involved in antitumor immunity. Strategies to overcome these exclusion signals remain limited due to an inability to target therapeutics specifically to the tumor. Synthetic biology enables engineering of cells and microbes for tumor-localized delivery of therapeutic candidates previously unavailable using conventional systemic administration techniques. Here, we engineer bacteria to intratumorally release chemokines to attract adaptive immune cells into the tumor environment. Bacteria expressing an activating mutant of the human chemokine CXCL16 (hCXCL16K42A) offer therapeutic benefit in multiple mouse tumor models, an effect mediated via recruitment of CD8+ T cells. Furthermore, we target the presentation of tumor-derived antigens by dendritic cells, using a second engineered bacterial strain expressing CCL20. This led to type 1 conventional dendritic cell recruitment and synergized with hCXCL16K42A-induced T cell recruitment to provide additional therapeutic benefit. In summary, we engineer bacteria to recruit and activate innate and adaptive antitumor immune responses, offering a new cancer immunotherapy strategy.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia/métodos , Antígenos de Neoplasias , BactériasRESUMO
Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Neoplasias Hepáticas/tratamento farmacológico , ImunoterapiaRESUMO
T cell exhaustion is a main obstacle against effective cancer immunotherapy. Exhausted T cells include a subpopulation that maintains proliferative capacity, referred to as precursor exhausted T cells (TPEX). While functionally distinct and important for antitumor immunity, TPEX possess some overlapping phenotypic features with the other T-cell subsets within the heterogeneous tumor-infiltrating T-lymphocytes (TIL). Here we explore surface marker profiles unique to TPEX using the tumor models treated by chimeric antigen receptor (CAR)-engineered T cells. We find that CD83 is predominantly expressed in the CCR7+PD1+ intratumoral CAR-T cells compared with the CCR7-PD1+ (terminally differentiated) and CAR-negative (bystander) T cells. The CD83+CCR7+ CAR-T cells exhibit superior antigen-induced proliferation and IL-2 production compared with the CD83- T cells. Moreover, we confirm selective expression of CD83 in the CCR7+PD1+ T-cell population in primary TIL samples. Our findings identify CD83 as a marker to discriminate TPEX from terminally exhausted and bystander TIL.
Assuntos
Neoplasias , Subpopulações de Linfócitos T , Humanos , Receptores CCR7/metabolismo , Subpopulações de Linfócitos T/metabolismo , Imunoterapia , Linfócitos do Interstício TumoralRESUMO
In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.
Assuntos
Neoplasias , Neovascularização Patológica , Humanos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêuticoRESUMO
CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Animais , Camundongos , Linfonodos , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia/métodos , Microambiente TumoralRESUMO
Although immunotherapy can offer profound clinical benefit for patients with a variety of difficult-to-treat cancers, many tumors either do not respond to upfront treatment with immune checkpoint inhibitors (ICIs) or progressive/recurrent disease occurs after an interval of initial control. Improved response rates have been demonstrated with the addition of ICIs to cytotoxic therapies, leading to approvals from the US Food and Drug Administration and regulatory agencies in other countries for ICI-chemotherapy combinations in a number of solid tumor indications, including breast, head and neck, gastric, and lung cancer. Designing trials for patients with tumors that do not respond or stop responding to treatment with immunotherapy combinations, however, is challenging without uniform definitions of resistance. Previously, the Society for Immunotherapy of Cancer (SITC) published consensus definitions for resistance to single-agent anti-programmed cell death protein 1 (PD-1). To provide guidance for clinical trial design and to support analyses of emerging molecular and cellular data surrounding mechanisms of resistance to ICI-based combinations, SITC convened a follow-up workshop in 2021 to develop consensus definitions for resistance to multiagent ICI combinations. This manuscript reports the consensus clinical definitions for combinations of ICIs and chemotherapies. Definitions for resistance to ICIs in combination with targeted therapies and with other ICIs will be published in companion volumes to this paper.