Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.470
Filtrar
1.
PLoS One ; 18(3): e0282041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888576

RESUMO

The Tazy or Kazakh National sighthound has been officially recognized as the national heritage of Kazakhstan. Comprehensive genetic studies of genetic diversity and population structure that could be used for selection and conservation of this unique dog breed have not been conducted so far. The aim of this study was to determine the genetic structure of the Tazy using microsatellite and SNP markers and to place the breed in the context of the world sighthound breeds. Our results showed that all 19 microsatellite loci examined were polymorphic. The observed number of alleles in the Tazy population varied from 6 (INU030 locus) to 12 (AHT137, REN169D01, AHTh260, AHT121, and FH2054 loci) with a mean of 9.778 alleles per locus. The mean number of effective alleles was 4.869 and ranged from 3.349 f to 4.841. All markers were highly informative (PIC values greater than 0.5) and ranged from 0.543 (REN247M23 locus) to 0.865 (AHT121 locus). The observed and expected heterozygosities in a total population were 0.748 and 0.769 and ranged from 0.746 to 0.750 and 0.656 to 0.769, respectively. Overall, the results confirmed that the Tazy breed has a high level of genetic diversity, no significant inbreeding, and a specific genetic structure. Three gene pools underlie the genetic diversity of the Tazy breed. SNP analysis using the CanineHD SNP array, which contains more than 170,000 SNP markers, showed that the Tazy breed is distinct from other sighthound breeds and genetically related to ancient eastern sighthound breeds sharing the same branch with the Afghan Hound and the Saluki. The results, together with archeological findings, confirm the ancient origin of the breed. The findings can be used for the conservation and international registration of the Tazy dog breed.


Assuntos
Variação Genética , Endogamia , Animais , Cães , Heterozigoto , Pool Gênico , Repetições de Microssatélites/genética , Alelos
2.
Proc Biol Sci ; 290(1995): 20222111, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919433

RESUMO

Additive genetic variance, VA, is the key parameter for predicting adaptive and neutral phenotypic evolution. Changes in demography (e.g. increased close-relative inbreeding) can alter VA, but how they do so depends on the (typically unknown) gene action and allele frequencies across many loci. For example, VA increases proportionally with the inbreeding coefficient when allelic effects are additive, but smaller (or larger) increases can occur when allele frequencies are unequal at causal loci with dominance effects. Here, we describe an experimental approach to assess the potential for dominance effects to deflate VA under inbreeding. Applying a powerful paired pedigree design in Drosophila serrata, we measured 11 wing traits on half-sibling families bred via either random or sibling mating, differing only in homozygosity (not allele frequency). Despite close inbreeding and substantial power to detect small VA, we detected no deviation from the expected additive effect of inbreeding on genetic (co)variances. Our results suggest the average dominance coefficient is very small relative to the additive effect, or that allele frequencies are relatively equal at loci affecting wing traits. We outline the further opportunities for this paired pedigree approach to reveal the characteristics of VA, providing insight into historical selection and future evolutionary potential.


Assuntos
Drosophila , Frequência do Gene , Variação Genética , Endogamia , Animais , Drosophila/genética , Frequência do Gene/genética , Deriva Genética , Variação Genética/genética , Modelos Genéticos , Variação Biológica da População
3.
Theor Appl Genet ; 136(4): 74, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952013

RESUMO

KEY MESSAGE: For genomic selection in clonally propagated crops with diploid (-like) meiotic behavior to be effective, crossing parents should be selected based on genomic predicted cross-performance unless dominance is negligible. For genomic selection (GS) in clonal breeding programs to be effective, parents should be selected based on genomic predicted cross-performance unless dominance is negligible. Genomic prediction of cross-performance enables efficient exploitation of the additive and dominance value simultaneously. Here, we compared different GS strategies for clonally propagated crops with diploid (-like) meiotic behavior, using strawberry as an example. We used stochastic simulation to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs included (1) a breeding program that introduced GS in the first clonal stage, and (2) two variations of a two-part breeding program with one and three crossing cycles per year, respectively. The two parent selection methods were (1) parent selection based on genomic estimated breeding values (GEBVs) and (2) parent selection based on genomic predicted cross-performance (GPCP). Selection of parents based on GPCP produced faster genetic gain than selection of parents based on GEBVs because it reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing cycles per year using GPCP always produced the most genetic gain unless dominance was negligible. We conclude that (1) in clonal breeding programs with GS, parents should be selected based on GPCP, and (2) a two-part breeding program with parent selection based on GPCP to rapidly drive population improvement has great potential to improve breeding clonally propagated crops.


Assuntos
Melhoramento Vegetal , Seleção Genética , Melhoramento Vegetal/métodos , Genoma , Genômica/métodos , Endogamia , Produtos Agrícolas/genética , Modelos Genéticos
4.
Trop Anim Health Prod ; 55(2): 129, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952060

RESUMO

The present study aimed to explore haplotype structure, runs of homozygosity (ROH), effective population size and persistence of gametic phase among three indigenous dairy cattle breeds, viz., Sahiwal (n = 19), Tharparkar (n = 17), and Gir (n = 16) by using BovineHD single nucleotide polymorphism (SNP) genotyping assay. The filtered SNPs after quality control ranged from 44% in Sahiwal to 53% in Gir. The highest number of haplotype blocks was observed in Tharparkar (15,640) and the lowest in Sahiwal (8027) spanning 17.3% and 7.8% of genome, respectively. The average block length was found close to 26 kb which suggests that multiple recombination events fragmented the ancestral haplotypes into smaller sizes. Gir cattle had the largest number of runs of homozygosity (ROH) regions (1762) followed by Tharparkar (1528) and Sahiwal (1138). Without pedigree information, inbreeding coefficients estimated from ROH (FROH) revealed that Gir had the highest FROH (0.099) proposing more inbreeding rate in this population. Effective population size (Ne) decreased slowly over the last 60 generations and at 13 generations ago; Ne was estimated as 70 for all the three dairy breeds. The highest gametic phase correlation (r = 0.78) was observed for Sahiwal and Tharparkar breed pair suggesting formulation of multi-breed reference population for successful implementation of genomic selection among dairy breeds. The decline in effective population size among native Indian cattle breeds may help in formulating strategies for conservation and genetic improvement of native germplasm for future use.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Bovinos/genética , Animais , Haplótipos , Densidade Demográfica , Homozigoto , Índia , Genótipo
5.
BMC Genomics ; 24(1): 134, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941539

RESUMO

BACKGROUND: Autozygosity, the proportion of the genome that is homozygous by descent, has been associated with variation in multiple health-related traits impacting evolutionary fitness. Autozygosity (FROH) is typically measured from runs of homozygosity (ROHs) that arise when identical-by-descent (IBD) haplotypes are inherited from each parent. Population isolates with a small set of common founders have elevated autozygosity relative to outbred populations. METHODS: In this study, we examined whether degree of autozygosity was associated with variation in 96 cardiometabolic traits among 7221 Old Order Amish individuals residing in Lancaster County, PA. We estimated the average length of an ROH segment to be 6350 KB, with each individual having on average 17.2 segments 1.5 KB or larger. Measurements of genome-wide and regional FROH were used as the primary predictors of trait variation in association analysis. RESULTS: In genome-wide FROH analysis, we did not identify any associations that withstood Bonferroni-correction (p = 0.0005). However, on regional FROH analysis, we identified associations exceeding genome-wide thresholds for two traits: serum bilirubin levels, which were significantly associated with a region on chromosome 2 localized to a region surrounding UGT1A10 (p = 1 × 10- 43), and HbA1c levels, which were significantly associated with a region on chromosome 8 localized near CHRNB3 (p = 8 × 10- 10). CONCLUSIONS: These analyses highlight the potential value of autozygosity mapping in founder populations.


Assuntos
Amish , Herança Multifatorial , Humanos , Amish/genética , Polimorfismo de Nucleotídeo Único , Genoma , Homozigoto , Endogamia
6.
Genet Sel Evol ; 55(1): 10, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737690

RESUMO

BACKGROUND: The purpose of a selection index is that its use to select animals for breeding maximizes the profit of a breed in future generations. The profit of a breed is in general a quantity that predicts the satisfaction of future owners with their breed, and the satisfaction of the consumers with the products that are produced by the breed. Many traits, such as conformation traits and product quality traits have intermediate optima. Traditional selection index theory applies only to directional selection and cannot achieve any further improvement once the trait means have reached their optima. A well-founded theory is needed that extends the established selection index theory to cover directional as well as stabilizing selection as limiting cases, and that can be applied to maximize the profit of a breed in both situations. RESULTS: The optimum selection index shifts the trait means towards the optima and, in the case of stabilizing selection, decreases the phenotypic variance, which causes the phenotypes to be closer to the optimum. The optimum index depends not only on the breeding values, but also on the squared breeding values, the allele contents of major quantitative trait loci (QTL), the QTL heterozygosities, the inbreeding coefficient of the animal, and the kinship of the animal with the population. CONCLUSION: The optimum selection index drives the alleles of major QTL to fixation when the trait mean approaches the optimum because decreasing the phenotypic variance shifts the trait values closer to the optimum, which increases the profit of the breed. The index weight on the kinship coefficient balances the increased genetic gain that can be achieved in future generations by outcrossing, and the increased genetic gain that can be achieved under stabilizing selection by reducing the phenotypic variance. In a model with dominance variance, it can also account for the effect of inbreeding depression. The combining ability between potential mating partners, which predicts the total merit of their offspring, could become an important parameter for mate allocation that could be used to further shift the phenotypes towards their optimum values.


Assuntos
Endogamia , Locos de Características Quantitativas , Animais , Fenótipo , Heterozigoto , Alelos , Seleção Genética , Modelos Genéticos
7.
Am J Biol Anthropol ; 180(1): 207-215, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36790690

RESUMO

OBJECTIVES: Height is a complex, highly heritable polygenic trait subject to both genetic composition and environmental influences. Recent studies suggest that a large proportion of height heritability is determined by the cumulative effect of many low allele frequency variants across the genome. Previous research has also identified an inverse relationship between height and runs of homozygosity (ROH); however, this has yet to be examined within African populations. We aim to identify this association within the Himba, an endogamous Namibian population who are recently bottlenecked, resulting in elevated haplotype sharing and increased homozygosity. MATERIALS AND METHODS: Here, we calculate the fraction of the genome composed of long runs of homozygosity (FROH) in a sample of 245 adults and use mixed effects models to assess its effect on height. RESULTS: We find that Himba adults exhibit increased homozygosity. However, in contrast to previous studies in other populations, we do not find a significant effect of FROH on height within the Himba. We further estimated heritability of height, noting both an enrichment of distant relatives and greater developmental homogeneity across households; we find that h g 2 = 0.59 (SE ± 0.146), comparable to estimates reported in Europeans. DISCUSSION: Our results may be due to other environmental variables we were not able to include, measurement error, or low statistical power, but may also imply that phenotypic expression resulting from increased homozygosity may vary from population to population.


Assuntos
Genoma , Endogamia , Humanos , Genótipo , Homozigoto , Fenótipo
8.
Genome Biol ; 24(1): 10, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650598

RESUMO

Genetic kinship of ancient individuals can provide insights into their culture and social hierarchy, and is relevant for downstream genetic analyses. However, estimating relatedness from ancient DNA is difficult due to low-coverage, ascertainment bias, or contamination from various sources. Here, we present KIN, a method to estimate the relatedness of a pair of individuals from the identical-by-descent segments they share. KIN accurately classifies up to 3rd-degree relatives using at least 0.05x sequence coverage and differentiates siblings from parent-child pairs. It incorporates additional models to adjust for contamination and detect inbreeding, which improves classification accuracy.


Assuntos
DNA Antigo , Endogamia , Humanos
9.
Evolution ; 77(2): 593-607, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36632840

RESUMO

Inbreeding is generally avoided in animals due to the risk of inbreeding depression following an increase in homozygous deleterious alleles and loss of heterozygosity. Species that regularly inbreed challenge our understanding of the fitness effects of these risks. We investigated the fitness consequences of extended inbreeding in the haplodiploid date stone beetle, Coccotrypes dactyliperda. We hypothesized that continuous inbreeding could result in reduced fitness, while outbreeding would either increase fitness due to heterosis or lower fitness if co-adapted gene complexes are disrupted. We established three breeding treatments with beetles from two geographically separated populations: Sib-mating (inbreeding), and outbreeding within and between populations. Between-population outbreeding groups of both populations had lower fecundity and collapsed before the experiment ended, while sib-mated and within-population breeding groups persisted for 10 generations. Sib-mated females had higher fecundity than within- and between-population outbreeding females. Inbreeding coefficients of sib-mated groups were higher than the other treatment groups, yet sib-mated beetles remained genetically polymorphic at the population level. Thus, there was no inbreeding depression, while crossing between distant populations led to outbreeding depression. Our findings are consistent with the life history of C. dactyliperda, in which sib-mating predominates within the date seed, but occasional within-population outbreeding may occur following local dispersal.


Assuntos
Besouros , Animais , Feminino , Besouros/genética , Melhoramento Vegetal , Endogamia , Fertilidade , Reprodução/genética
10.
Res Vet Sci ; 155: 103-114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669378

RESUMO

The dog was probably the first domesticated animal. Despite extensive archaeological and genetic investigations, the origin and the evolution of the extant dogs are still being debated. Dog breeds that have over time been selected for hunting share common ancestral traits. This study represents the first comprehensive attempt to survey at the genomic and mitochondrial level eight hound-like dogs breeds indigenous to the Mediterranean Basin to determine if they share common ancient origins. Results from the microsatellite analysis indicate that all the dog populations have a low inbreeding value.The Kelb tal-Fenek has a high divergence from the current Egyptian street population, however there is not enough evidence from this study to exclude completely the potential of an ancient common relationship. Overall, the mitochondrial results indicate high frequencies of haplogroups A and B and a low representation of haplogroup C, while only one Egyptian dog could be assigned to haplogroup D. Results reveal identities and shared clades, suggesting the conservation of ancient European mitotypes in the Mediterranean hound-like breeds, especially in the Egyptian population. Although none of the dog populations/breeds participating in this study indicate to be direct descendants of the Egyptian dogs, they still have a very close morphologically resemblance to those iconic Egyptian dogs often depicted in ancient art forms and share some genetic links with the current Egyptian population. Further research is required with other markers such us complete mitogenomes and SNP panels to confirm the complex history of the Mediterranean dogs involved in this study.


Assuntos
DNA Mitocondrial , Variação Genética , Animais , Cães , Haplótipos , DNA Mitocondrial/genética , Filogeografia , Endogamia , Filogenia
11.
J Dairy Sci ; 106(2): 1110-1129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494224

RESUMO

Genomic selection increases accuracy and decreases generation interval, accelerating genetic changes in populations. Assumptions of genetic improvement must be addressed to quantify the magnitude and direction of change. Genetic trends of US dairy cattle breeds were examined to determine the genetic gain since the implementation of genomic evaluations in 2009. Inbreeding levels and generation intervals were also investigated. Breeds included Ayrshire, Brown Swiss, Guernsey, Holstein (HO), and Jersey (JE), which were characterized by the evaluation breed the animal received. Mean genomic predicted breeding values (PBV¯) were analyzed per year to calculate genetic trends for bulls and cows. The data set contained 154,008 bulls and 33,022,242 cows born since 1975. Breakpoints were estimated using linear regression, and nonlinear regression was used to fit the piecewise model for the small sample number in some years. Generation intervals and inbreeding levels were also investigated since 1975. Milk, fat, and protein yields, somatic cell score, productive life, daughter pregnancy rate, and livability PBV¯ were documented. In 2017, 100% of bulls in this data set were genotyped. The percentage of genotyped cows has increased 23 percentage points since 2010. Overall, production traits have increased steadily over time, as expected. The HO and JE breeds have benefited most from genomics, with up to 192% increase in genetic gain since 2009. Due to the low number of observations, trends for Ayrshire, Brown Swiss, and Guernsey are difficult to infer from. Trends in fertility are most substantial; particularly, most breeds are trending downwards and daughter pregnancy rate for JE has been decreasing steadily since 1975 for bulls and cows. Levels of genomic inbreeding are increasing in HO bulls and cows. In 2017, genomic inbreeding levels were 12.7% for bulls and 7.9% for cows. A suggestion to control this is to include the genomic inbreeding coefficient with a negative weight to the selection index of bulls with high future genomic inbreeding levels. For sires of bulls, the current generation intervals are 2.2 yr in HO, 3.2 in JE, 4.4 in Brown Swiss, 5.1 in Ayrshire, and 4.3 in Guernsey. The number of colored breed bulls in the United States is currently at an extremely low level, and this number will only increase with a market incentive or additional breed association involvement. Increased education and extension could be beneficial to increase knowledge about inbreeding levels, use of genomics and genetic improvement, and genetic diversity in the genomic selection era.


Assuntos
Genoma , Seleção Genética , Gravidez , Feminino , Bovinos/genética , Animais , Masculino , Estados Unidos , Genótipo , Endogamia , Genômica , Fenótipo
12.
Pac Symp Biocomput ; 28: 133-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36540971

RESUMO

In an extant population, how much information do extant individuals provide on the pedigree of their ancestors? Recent work by Kim, Mossel, Ramnarayan and Turner (2020) studied this question under a number of simplifying assumptions, including random mating, fixed length inheritance blocks and sufficiently large founding population. They showed that under these conditions if the average number of offspring is a sufficiently large constant, then it is possible to recover a large fraction of the pedigree structure and genetic content by an algorithm they named REC-GEN.We are interested in studying the performance of REC-GEN on simulated data generated according to the model. As a first step, we improve the running time of the algorithm. However, we observe that even the faster version of the algorithm does not do well in any simulations in recovering the pedigree beyond 2 generations. We claim that this is due to the inbreeding present in any setting where the algorithm can be run, even on simulated data. To support the claim we show that a main step of the algorithm, called ancestral reconstruction, performs accurately in an idealized setting with no inbreeding but performs poorly in random mating populations.To overcome the poor behavior of REC-GEN we introduce a Belief-Propagation based heuristic that accounts for the inbreeding and performs much better in our simulations.


Assuntos
Biologia Computacional , Endogamia , Humanos , Linhagem , Simulação por Computador , Modelos Genéticos
13.
Animal ; 17(1): 100690, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566708

RESUMO

Wallachian and Sumava sheep are autochthonous breeds that have undergone a significant bottleneck effect and subsequent restoration efforts. The first objective of this study was to evaluate the degree of genetic variability of both breeds and, therefore, the current management of the breeding. The second was to determine whether these two breeds still retain their genetic uniqueness in relation to each other and other breeds, despite regenerative interventions. Our data consisted of 48 individuals of Sumava and 37 individuals of Wallachian sheep. The comparison data contained 25 other breeds (primarily European) from the HapMap dataset generated by the International Sheep Genomics Consortium. When comparing all 27 breeds, the Czech breeds clustered with 15 other breeds and formed a single branch with them according to Nei's distances. At the same time, however, the clusters of both breeds were integral and easily distinguishable from the others when displayed with principal component analysis (PCA). Population substructure analysis did not show any common genetic ancestry of the Czech national breeds and breeds used for regeneration or, eventually, breeds whose ancestral population was used for regeneration. The average values of FST were higher in Wallachian sheep (FST = 0.14) than in Sumava sheep (FST = 0.08). The linkage disequilibrium (LD) extension per autosome was higher in Wallachian than in Sumava sheep. Consequently, the Ne estimates five generations ago were 68 for Sumava versus 34 for Wallachian sheep. Both native Czech breeds exhibit a wide range of inbreeding based on the excess of homozygosity (FHOM) among individuals, from -0.04 to 0.16 in Sumava and from -0.13 to 0.12 in Wallachian. Average inbreeding based on runs of homozygosity was 0.21 in Sumava and 0.27 in Wallachian. Most detected runs of homozygosity (ROH) were less than 5 Mb long for both breeds. ROH segments longer than 15 Mb were absent in Wallachian sheep. Concerning putative selection signatures, a total of 471 candidate genes in Wallachian sheep within 11 hotspots and 653 genes within 13 hotspots in Sumava sheep were identified. Czech breeds appear to be well differentiated from each other and other European breeds. Their genetic diversity is low, especially in the case of the Wallachian breed. Sumava is not so threatened by low diversity but has a larger share of the non-native gene pool.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Endogamia , Homozigoto , Genômica , Genótipo
14.
Anim Genet ; 54(2): 155-165, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36541281

RESUMO

Runs of homozygosity (ROHs) has become an effective method for analysing inbreeding in livestock populations. Moreover, ROHs is well-suited to detect signatures of selection via ROH islands. This study aimed to investigate the occurrence and distribution of ROHs, compare the genomic inbreeding coefficients and identify the genomic regions with high ROH frequencies in different Beijing-You chicken (BY) populations, including a random conservation population (BY_R), a pedigree conservation population (BY_P), and a commercial population obtained from the market (BY_C). Among them, BY_R in 2010 and 2019 were BY_R1 and BY_R2 respectively. A total of 27 916 ROHs were identified. The average number of ROHs per individual across the three BY populations ranged from 213 (BY_P) to 161 (BY_C), and the average length of ROHs ranged from 0.432 Mb (BY_R2) to 0.451 Mb (BY_P). The highest inbreeding coefficient calculated based on ROHs (FROH ) was 0.1 in BY_P, whereas the lowest FROH was 0.0743 in BY_C. In addition, the inbreeding coefficient of BY_R2 (FROH  = 0.0798) was higher than that of BY_R1 (FROH  = 0.0579). Furthermore, the highest proportion of long ROH fragments (>4 Mb) was observed in BY_P and BY_C. This study showed the top 10 ROH islands of each population, and these ROH islands harboured 53 genes, some of which were related to limb development, body size and immune response. These findings contribute to the understanding of genetic diversity and population demography, and might help improve breeding and conservation strategies for BY populations.


Assuntos
Galinhas , Endogamia , Animais , Galinhas/genética , Pequim , Polimorfismo de Nucleotídeo Único , Genômica/métodos , Homozigoto , Genótipo
15.
Sci Rep ; 12(1): 21390, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496459

RESUMO

Recently, populations of various species with very low genetic diversity have been discovered. Some of these persist in the long term, but others could face extinction due to accelerated loss of fitness. In this work, we characterize 45 individuals of one of these populations, belonging to the Iberian desman (Galemys pyrenaicus). For this, we used the ddRADseq technique, which generated 1421 SNPs. The heterozygosity values of the analyzed individuals were among the lowest recorded for mammals, ranging from 26 to 91 SNPs/Mb. Furthermore, the individuals from one of the localities, highly isolated due to strong barriers, presented extremely high inbreeding coefficients, with values above 0.7. Under this scenario of low genetic diversity and elevated inbreeding levels, some individuals appeared to be almost genetically identical. We used different methods and simulations to determine if genetic identification and parentage analysis were possible in this population. Only one of the methods, which does not assume population homogeneity, was able to identify all individuals correctly. Therefore, genetically impoverished populations pose a great methodological challenge for their genetic study. However, these populations are of primary scientific and conservation interest, so it is essential to characterize them genetically and improve genomic methodologies for their research.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Eutérios , Animais , Conservação dos Recursos Naturais/métodos , Variação Genética , Genoma , Endogamia , Polimorfismo de Nucleotídeo Único , Eutérios/genética
16.
Biol Lett ; 18(12): 20220477, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36514955

RESUMO

Whole-genome duplication is a common mutation in eukaryotes with far-reaching phenotypic effects, the resulting morphological and fitness consequences and how they affect the survival of polyploid lineages are intensively studied. Another important factor may also determine the probability of establishment and success of polyploid lineages: inbreeding depression. Inbreeding depression is expected to play an important role in the establishment of neopolyploid lineages, their capacity to colonize new environments, and in the simultaneous evolution of ploidy and other life-history traits such as self-fertilization. Both theoretically and empirically, there is no consensus on the consequences of polyploidy on inbreeding depression. In this meta-analysis, we investigated the effect of polyploidy on the evolution of inbreeding depression, by performing a meta-analysis within angiosperm species. The main results of our study are that the consequences of polyploidy on inbreeding depression are complex and depend on the time since polyploidization. We found that young polyploid lineages have a much lower amount of inbreeding depression than their diploid relatives and their established counterparts. Natural polyploid lineages are intermediate and have a higher amount of inbreeding depression than synthetic neopolyploids, and a smaller amount than diploids, suggesting that the negative effect of polyploidy on inbreeding depression decreases with time since polyploidization.


Assuntos
Depressão por Endogamia , Magnoliopsida , Poliploidia , Diploide , Endogamia , Magnoliopsida/genética
17.
Trop Anim Health Prod ; 55(1): 14, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538196

RESUMO

This study is aimed at estimating genetic parameters, effective population size, inbreeding, and inbreeding depression for birth weight, weaning weight, and average pre-weaning daily weight gain (ADG) in Piau pigs. We used information from 3841 Piau pigs, and four linear models were fitted in single-trait analyses, including or excluding maternal genetic effect, common litter effect, or a combination. The adjustments of the models were compared using the likelihood ratio test, in which the model that presented the best fit for each trait was used to estimate the (co)variance components. The inbreeding depression effect was evaluated using a linear model that included the fixed effects of sex, parity order, contemporary group, and inbreeding coefficient as a fixed covariate. The weights at birth and weaning showed low direct heritabilities (0.08 and 0.05, respectively), while the ADG showed moderate heritability (0.20). The weight at birth showed high genetic correlations with the weight at weaning (0.90) and the ADG (0.82). The weight at weaning and the ADG also showed a high genetic correlation (0.99). There was an inbreeding increase over the generations and a reduction in the effective population size. In the last generation evaluated, all the animals were inbred, the average inbreeding coefficient was 0.07, and the effective population size was 20.8. A significant inbreeding effect on ADG was observed, where an increase of 1% in the inbreeding coefficient resulted in a decrease of 0.005 g in the ADG. Thus, increasing effective population size is mandatory for controlling inbreeding and reducing the loss of variability in this Piau pig population.


Assuntos
Depressão por Endogamia , Gravidez , Feminino , Suínos/genética , Animais , Endogamia , Parto , Peso ao Nascer/genética , Paridade , Desmame , Aumento de Peso/genética
18.
Genet Sel Evol ; 54(1): 82, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575379

RESUMO

BACKGROUND: The availability of genome-wide marker data allows estimation of inbreeding coefficients (F, the probability of identity-by-descent, IBD) and, in turn, estimation of the rate of inbreeding depression (ΔID). We investigated, by computer simulations, the accuracy of the most popular estimators of inbreeding based on molecular markers when computing F and ΔID in populations under random mating, equalization of parental contributions, and artificially selected populations. We assessed estimators described by Li and Horvitz (FLH1 and FLH2), VanRaden (FVR1 and FVR2), Yang and colleagues (FYA1 and FYA2), marker homozygosity (FHOM), runs of homozygosity (FROH) and estimates based on pedigree (FPED) in comparison with estimates obtained from IBD measures (FIBD). RESULTS: If the allele frequencies of a base population taken as a reference for the computation of inbreeding are known, all estimators based on marker allele frequencies are highly correlated with FIBD and provide accurate estimates of the mean ΔID. If base population allele frequencies are unknown and current frequencies are used in the estimations, the largest correlation with FIBD is generally obtained by FLH1 and the best estimator of ΔID is FYA2. The estimators FVR2 and FLH2 have the poorest performance in most scenarios. The assumption that base population allele frequencies are equal to 0.5 results in very biased estimates of the average inbreeding coefficient but they are highly correlated with FIBD and give relatively good estimates of ΔID. Estimates obtained directly from marker homozygosity (FHOM) substantially overestimated ΔID. Estimates based on runs of homozygosity (FROH) provide accurate estimates of inbreeding and ΔID. Finally, estimates based on pedigree (FPED) show a lower correlation with FIBD than molecular estimators but provide rather accurate estimates of ΔID. An analysis of data from a pig population supports the main findings of the simulations. CONCLUSIONS: When base population allele frequencies are known, all marker-allele frequency-based estimators of inbreeding coefficients generally show a high correlation with FIBD and provide good estimates of ΔID. When base population allele frequencies are unknown, FLH1 is the marker frequency-based estimator that is most correlated with FIBD, and FYA2 provides the most accurate estimates of ΔID. Estimates from FROH are also very precise in most scenarios. The estimators FVR2 and FLH2 have the poorest performances.


Assuntos
Depressão por Endogamia , Doenças Inflamatórias Intestinais , Suínos , Animais , Endogamia , Polimorfismo de Nucleotídeo Único , Homozigoto , Linhagem , Genótipo
19.
Biol Lett ; 18(12): 20220331, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541093

RESUMO

An efficient immune system is essential to the survival of many animals. Sociality increases risk of pathogen transmission, which should select for enhanced immune function. However, two hypotheses instead predict a weakened immune function: relaxed selection caused by social immunity/protection, and reduced efficacy of selection due to inbreeding, reproductive skew and female bias in social species that reduce effective population size and accelerate genetic drift. We assessed the effect of social evolution on immune function in a comparative study of two social spider species and their closely related subsocial sister species (genus Stegodyphus). The haemolymph of social species was less efficient in inhibiting bacterial growth of the potentially pathogenic bacteria Bacillus subtilis than that of subsocial species. Reduced efficacy of selection in social species was supported by comparative genomic analysis showing substantially elevated non-synonymous substitutions in immune genes in one of the social species. We propose that impaired immune function results from reduced efficacy of selection because the evolution of sociality in spiders is accompanied by demographic processes that elevate genetic drift. Positive feedback between pathogen-induced local extinctions and the resulting elevation of genetic drift may further weaken responses to selection by pathogens, and threaten species persistence.


Assuntos
Evolução Social , Aranhas , Animais , Feminino , Aranhas/genética , Comportamento Social , Endogamia , Imunidade
20.
PLoS One ; 17(11): e0277456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36367897

RESUMO

In 1919, the European bison population became extinct in the wild. The rescue of the lowland subspecies and the whole species was achieved mainly thanks to individuals from the Bialowieza Forest (Polish-Belarusian border). There are currently two breeding lines-the lowland (purebred B. b. Bonasus) founded by 7 individuals and the lowland-Caucasian (hybrids of B. b. Bonasus and B. b. caucasicus) founded by 12 individuals. This genealogical study was conducted on 15,071 individuals recorded in the pedigree book between 1881 and 2020. Its objective was to determine the level of genetic variability and inbreeding almost 100 years after the rescue measures were initiated. The completeness of the pedigree of the reference population was 77% in the fifth generation backwards. A maximum of 23 generations can be traced back in the pedigree. The average inbreeding coefficient and the mean average relatedness of the reference population were very high, about 17% and 16% respectively. No significant amount of new inbreeding was discovered. The reference population has lost 9.11% of the total genetic diversity compared to the population of founders. A male of the Caucasian subspecies Kaukasus was discovered among the ancestors of the lowland lineage reference population. The effective population size calculated based on the increase in inbreeding was 23.93 individuals, based on complete generations equivalent it was 16.1 individuals. Wright's F-statistics showed very small differences in genotypic frequencies between individuals within the two lineages in the reference population (FIS = 0.10), between individuals and the total population (FIT = 0.04) and low differentiation between lineages (FST = 0.06). The population of the European bison from the Bialowieza Forest is generally very uniform but still shows good fitness.


Assuntos
Bison , Animais , Masculino , Bison/genética , Variação Genética , Endogamia , Linhagem , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...