RESUMO
The Marburg and Ebola filoviruses cause a severe, often fatal, disease in humans and nonhuman primates but have only subclinical effects in bats, including Egyptian rousettes, which are a natural reservoir of Marburg virus. A fundamental question is why these viruses are highly pathogenic in humans but fail to cause disease in bats. To address this question, we infected one cohort of Egyptian rousette bats with Marburg virus and another cohort with Ebola virus and harvested multiple tissues for mRNA expression analysis. While virus transcripts were found primarily in the liver, principal component analysis (PCA) revealed coordinated changes across multiple tissues. Gene signatures in kidney and liver pointed at induction of vasodilation, reduction in coagulation, and changes in the regulation of iron metabolism. Signatures of immune response detected in spleen and liver indicated a robust anti-inflammatory state signified by macrophages in the M2 state and an active T cell response. The evolutionary divergence between bats and humans of many responsive genes might provide a framework for understanding the differing outcomes upon infection by filoviruses. In this study, we outline multiple interconnected pathways that respond to infection by MARV and EBOV, providing insights into the complexity of the mechanisms that enable bats to resist the disease caused by filoviral infections. The results have the potential to aid in the development of new strategies to effectively mitigate and treat the disease caused by these viruses in humans.
Assuntos
Quirópteros , Ebolavirus , Infecções por Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Animais , Doença pelo Vírus Ebola/veterinária , Ebolavirus/genética , Fígado , Marburgvirus/genéticaRESUMO
Ebola virus (EBOV) is a member of the filoviridae family, which are comprised of negative sense, enveloped RNA hemorrhagic fever viruses that can cause severe disease and high lethality rates. These viruses require BSL-4 containment laboratories for study. Early studies of EBOV pathogenesis relied heavily on the use of nonhuman primates, which are expensive and cumbersome to handle in large numbers. Guinea pig models were also developed, but even to this day limited reagents are available in this model. In 1998, Mike Bray and colleagues developed a mouse-adapted EBOV (maEBOV) that caused lethality in adult immunocompetent mice. This model had significant advantages, including being inexpensive, allowing for higher animal numbers for statistical analysis, availability of reagents for studying pathogenesis, and availability of a vast array of genetically modified strains. The model has been used to test vaccines, therapeutic drugs, EBOV mutants, and pathogenesis, and its importance is demonstrated by the hundreds of citations referencing the original publication. This review will cover the history of the maEBOV model and its use in filovirus research.
Assuntos
Ebolavirus , Infecções por Filoviridae , Doença pelo Vírus Ebola , Animais , Camundongos , Cobaias , Ebolavirus/genética , Modelos Animais de DoençasRESUMO
Some filoviruses such as ebolaviruses and marburgviruses, cause hemorrhagic fever in humans and nonhuman primates. Pigs are suggested to play a potential role in the filovirus ecology. We investigated the seroprevalence of filovirus infection in pigs in Ghana. Using a viral glycoprotein (GP)-based enzyme-linked immunosorbent assay, we detected filovirus-specific immunoglobulin G antibodies in 5 of 139 samples. These positive sera showed specificities to four different filovirus species. Particularly, two of the positive sera reacted to GPs of two African ebolaviruses (i.e., Ebola virus and Taï Forest virus) in Western blotting. Our results suggest that these Ghanaian pigs were exposed to multiple filoviruses and emphasize the importance of continuous monitoring of filovirus infection in pig populations in West African countries.
Assuntos
Ebolavirus , Infecções por Filoviridae , Doença pelo Vírus Ebola , Doenças dos Suínos , Suínos , Humanos , Animais , Gana/epidemiologia , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/veterinária , Estudos Soroepidemiológicos , Anticorpos Antivirais , Infecções por Filoviridae/veterinária , Doenças dos Suínos/epidemiologiaRESUMO
Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness.
Assuntos
Ebolavirus/genética , Infecções por Filoviridae/virologia , Filoviridae/genética , Replicação Viral , Animais , Linhagem Celular , Chlorocebus aethiops , Teste de Complementação Genética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Corpos de Inclusão/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Macrófagos/virologia , RNA Viral , Genética Reversa , Células Vero , Vírion/genéticaRESUMO
The domestic ferret (Mustela putorius furo) has long been a popular animal model for evaluating viral pathogenesis and transmission as well as the efficacy of candidate countermeasures. Without question, the ferret has been most widely implemented for modeling respiratory viruses, particularly influenza viruses; however, in recent years, it has gained attention as a novel animal model for characterizing filovirus infections. Although ferrets appear resistant to infection and disease caused by Marburg and Ravn viruses, they are highly susceptible to lethal disease caused by Ebola, Sudan, Bundibugyo, and Reston viruses. Notably, unlike the immunocompetent rodent models of filovirus infection, ferrets are susceptible to lethal disease caused by wild-type viruses, and they recapitulate many aspects of human filovirus disease, including systemic virus replication, coagulation abnormalities, and a dysregulated immune response. Along with the stringency with which they reproduce Ebola disease, their relatively small size and availability make ferrets an attractive choice for countermeasure evaluation and pathogenesis modeling. Indeed, they are so far the only small animal model available for Bundibugyo virus. Nevertheless, ferrets do have their limitations, including the lack of commercially available reagents to dissect host responses and their unproven predictive value in therapeutic evaluation. Although the use of the ferret model in ebolavirus research has been consistent over the last few years, its widespread use and utility remains to be fully proven. This review provides a comprehensive overview of the ferret models of filovirus infection and perspective on their ongoing use in pathogenesis modeling and countermeasure evaluation.
Assuntos
Ebolavirus , Infecções por Filoviridae , Doença pelo Vírus Ebola , Animais , Modelos Animais de Doenças , Furões , Infecções por Filoviridae/patologiaRESUMO
Ebolaviruses and marburgviruses are filoviruses that are known to cause severe hemorrhagic fever in humans and nonhuman primates (NHPs). While some bat species are suspected to be natural reservoirs of these filoviruses, wild NHPs often act as intermediate hosts for viral transmission to humans. Using an enzyme-linked immunosorbent assay, we screened two NHP species, wild baboons and vervet monkeys captured in Zambia, for their serum IgG antibodies specific to the envelope glycoproteins of filoviruses. From 243 samples tested, 39 NHPs (16%) were found to be seropositive either for ebolaviruses or marburgviruses with endpoint antibody titers ranging from 100 to 25,600. Interestingly, antibodies reactive to Reston virus, which is found only in Asia, were detected in both NHP species. There was a significant difference in the seropositivity for the marburgvirus antigen between the two NHP species, with baboons having a higher positive rate. These results suggest that wild NHPs in Zambia might be nonlethally exposed to these filoviruses, and this emphasizes the need for continuous monitoring of filovirus infection in wild animals to better understand the ecology of filoviruses and to assess potential risks of outbreaks in humans in previously nonendemic countries.
Assuntos
Anticorpos Antivirais/sangue , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/veterinária , Filoviridae/imunologia , Primatas/virologia , Animais , Animais Selvagens/virologia , Chlorocebus aethiops/virologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Filoviridae/classificação , Filoviridae/isolamento & purificação , Infecções por Filoviridae/epidemiologia , Humanos , Imunoglobulina G/sangue , Masculino , Marburgvirus/imunologia , Papio/virologia , Estudos Soroepidemiológicos , Zâmbia/epidemiologiaRESUMO
Filoviruses, mainly consisting of Ebola viruses (EBOV) and Marburg viruses (MARV), are enveloped negative-strand RNA viruses which can infect humans to cause severe hemorrhagic fevers and outbreaks with high mortality rates. The filovirus infection is mediated by the interaction of viral envelope glycoprotein (GP) and the human endosomal receptor Niemann-Pick C1 (NPC1). Blocking this interaction will prevent the infection. Therefore, we utilized an In silico screening approach to conduct virtual compound screening against the NPC1 receptor-binding site (RBS). Twenty-six top-hit compounds were purchased and evaluated by in vitro cell based inhibition assays against pseudotyped or replication-competent filoviruses. Two classes (A and U) of compounds were identified to have potent inhibitory activity against both Ebola and Marburg viruses. The IC50 values are in the lower level of micromolar concentrations. One compound (compd-A) was found to have a sub-micromolar IC50 value (0.86 µM) against pseudotyped Marburg virus. The cytotoxicity assay (MTT) indicates that compd-A has a moderate cytotoxicity level but the compd-U has much less toxicity and the CC50 value was about 100 µM. Structure-activity relationship (SAR) study has found some analogs of compd-A and -U have reduced the toxicity and enhanced the inhibitory activity. In conclusion, this work has identified several qualified lead-compounds for further drug development against filovirus infection.
Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Infecções por Filoviridae/virologia , Marburgvirus/efeitos dos fármacos , Proteína C1 de Niemann-Pick/metabolismo , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , Sítios de Ligação , Sobrevivência Celular , Descoberta de Drogas , Ebolavirus/fisiologia , Infecções por Filoviridae/tratamento farmacológico , Células HeLa , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Marburgvirus/fisiologia , Simulação de Acoplamento Molecular , Proteína C1 de Niemann-Pick/química , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismoRESUMO
Ebolaviruses and marburgviruses, members of the family Filoviridae, are known to cause fatal diseases often associated with hemorrhagic fever. Recent outbreaks of Ebola virus disease in West African countries and the Democratic Republic of the Congo have made clear the urgent need for the development of therapeutics and vaccines against filoviruses. Using replication-incompetent vesicular stomatitis virus (VSV) pseudotyped with the Ebola virus (EBOV) envelope glycoprotein (GP), we screened a chemical compound library to obtain new drug candidates that inhibit filoviral entry into target cells. We discovered a biaryl sulfonamide derivative that suppressed in vitro infection mediated by GPs derived from all known human-pathogenic filoviruses. To determine the inhibitory mechanism of the compound, we monitored each entry step (attachment, internalization, and membrane fusion) using lipophilic tracer-labeled ebolavirus-like particles and found that the compound efficiently blocked fusion between the viral envelope and the endosomal membrane during cellular entry. However, the compound did not block the interaction of GP with the Niemann-Pick C1 protein, which is believed to be the receptor of filoviruses. Using replication-competent VSVs pseudotyped with EBOV GP, we selected escape mutants and identified two EBOV GP amino acid residues (positions 47 and 66) important for the interaction with this compound. Interestingly, these amino acid residues were located at the base region of the GP trimer, suggesting that the compound might interfere with the GP conformational change required for membrane fusion. These results suggest that this biaryl sulfonamide derivative is a novel fusion inhibitor and a possible drug candidate for the development of a pan-filovirus therapeutic.
Assuntos
Filoviridae/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Descoberta de Drogas , Ebolavirus/efeitos dos fármacos , Filoviridae/classificação , Infecções por Filoviridae/tratamento farmacológico , Infecções por Filoviridae/virologia , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/efeitos dos fármacos , Receptores Virais/metabolismo , Células VeroRESUMO
Ebola virus (EBOV) entry requires internalization into host cells and extensive trafficking through the endolysosomal network in order to reach late endosomal/lysosomal compartments that contain triggering factors for viral membrane fusion. These triggering factors include low-pH-activated cellular cathepsin proteases, which cleave the EBOV glycoprotein (GP), exposing a domain which binds to the filoviral receptor, the cholesterol transporter Niemann-Pick C1 (NPC1). Here, we report that trafficking of EBOV to NPC1 requires expression of the homotypic fusion and protein sorting (HOPS) tethering complex as well as its regulator, UV radiation resistance-associated gene (UVRAG). Using an inducible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, we demonstrated that depletion of HOPS subunits as well as UVRAG impairs entry by all pathogenic filoviruses. UVRAG depletion resulted in reduced delivery of EBOV virions to NPC1+ cellular compartments. Furthermore, we show that deletion of a domain on UVRAG known to be required for interaction with the HOPS complex results in impaired EBOV entry. Taken together, our studies demonstrate that EBOV requires both expression of and coordination between the HOPS complex and UVRAG in order to mediate efficient viral entry.IMPORTANCE Ebola viruses (EBOV) and other filoviruses cause sporadic and unpredictable outbreaks of highly lethal diseases. The lack of FDA-approved therapeutics, particularly ones with panfiloviral specificity, highlights the need for continued research efforts to understand aspects of the viral life cycle that are common to all filoviruses. As such, viral entry is of particular interest, as all filoviruses must reach cellular compartments containing the viral receptor Niemann-Pick C1 to enter cells. Here, we present an inducible CRISPR/Cas9 method to rapidly and efficiently generate knockout cells in order to interrogate the roles of a broad range of host factors in viral entry. Using this approach, we showed that EBOV entry depends on both the homotypic fusion and protein sorting (HOPS) tethering complex in coordination with UV radiation resistance-associated gene (UVRAG). Importantly, we demonstrate that the HOPS complex and UVRAG are required by all pathogenic filoviruses, representing potential targets for panfiloviral therapeutics.
Assuntos
Ebolavirus/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Ebolavirus/genética , Ebolavirus/patogenicidade , Endossomos/metabolismo , Filoviridae/genética , Infecções por Filoviridae/genética , Infecções por Filoviridae/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno , Glicoproteínas de Membrana/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Virais/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas do Envelope Viral/genética , Internalização do Vírus/efeitos dos fármacosRESUMO
The most commonly reported symptom of post-Ebola virus disease syndrome in survivors is arthralgia, yet involvement of the joints in acute or convalescent Ebola virus infection is not well characterized in human patients or animal models. Through immunohistochemistry, we found that the lining synovial intima of the stifle (knee) is a target for acute infection by Ebola virus/Kikwit, Ebola virus/Makona-C05, and Marburg virus/Angola in the rhesus macaque model. Furthermore, histologic analysis, immunohistochemistry, RNAscope in situ hybridization, and transmission electron microscopy showed that synoviocytes of the stifle, shoulder, and hip are a target for mouse-adapted Ebola virus/Yambuku-Mayinga infection during acute disease in rhesus macaques. A time course of infection study with Ebola virus/Kikwit found that the large joint synovium became immunopositive beginning on postinfection day 6. In total, the synovium of 28 of 30 rhesus macaques with terminal filovirus disease had evidence of infection (64 of 96 joints examined). On the basis of immunofluorescence, infected cell types included CD68+ type A (macrophage-like) synoviocytes and CD44+ type B (fibroblast-like) synoviocytes. Cultured primary human fibroblast-like synoviocytes were permissive to infection with Ebola and Marburg viruses in vitro. Because synovial joints include immune privileged sites, these findings are significant for future investigations of filovirus pathogenesis and persistence as well as arthralgias in acute and convalescent filovirus disease.
Assuntos
Infecções por Filoviridae/virologia , Sinoviócitos/virologia , Animais , Células Cultivadas , Filoviridae , Humanos , Macaca mulattaRESUMO
Menglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-ß) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-ß promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-ß promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.IMPORTANCE EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.
Assuntos
Infecções por Filoviridae/fisiopatologia , Filoviridae/genética , Animais , Quirópteros/imunologia , Quirópteros/virologia , Ebolavirus , Filoviridae/metabolismo , Filoviridae/patogenicidade , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/imunologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Marburgvirus , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição STAT1 , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismoRESUMO
The family Filoviridae contains many important human viruses, including Marburg virus (MARV) and Ebola virus (EBOV). Menglà virus (MLAV), a newly discovered filovirus, is considered a potential human pathogen. The VP30 C-terminal domain (CTD) of these filoviruses plays an essential role in virion assembly. In common with other filoviruses, MLAV VP30 CTD mainly exists as a dimer in solution. In this work, we determined the crystal structure of recombinant MLAV VP30 CTD monomer, verifying that C-terminal helix-7 (H7) is critical for the dimerization process. This study provides a preliminary model for investigation of MLAV VP30 CTD as an anti-filovirus drug development target.
Assuntos
Infecções por Filoviridae/virologia , Filoviridae/química , Proteínas Virais/química , Animais , Cristalografia por Raios X , Descoberta de Drogas , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização ProteicaRESUMO
Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.
Assuntos
Quirópteros/virologia , Infecções por Filoviridae/veterinária , Filoviridae , Infecções por Henipavirus/veterinária , Henipavirus , Animais , Quirópteros/sangue , Quirópteros/classificação , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Testes Sorológicos , Trinidad e Tobago/epidemiologiaRESUMO
Southern China is a hot spot of emerging infectious diseases, in which diverse species of bats dwell, a large group of flying mammals considered natural reservoirs for zoonotic viruses. Recently, divergent filoviruses (FiVs) have been identified in bats within this region, which pose a potential risk to public health, but the true infection situation in bats remains largely unclear. Here, 689 archived bat serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA), Western blotting, and neutralization assay to investigate the seroprevalence and cross-reactivity of four divergent FiVs and two other viruses (rabies virus and Tuhoko pararubulavirus 1) of different families within the order Mononegavirales Results showed no cross-antigenicity between FiVs and other mononegaviruses but different cross-reactivity among the FiVs themselves. The total FiV seroreactive rate was 36.3% (250/689), with infection by the indigenous Chinese FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Further viral metagenomic analysis of fruit bat tissues also identified the gene sequence of a novel FiV. These results indicate the likely prevalence of other so far unidentified FiVs within the Chinese bat population, with frugivorous Rousettus leschenaultii and Eonycteris spelaea bats and insectivorous Myotis horsfieldii and Miniopterus schreibersii bats being their major reservoirs.IMPORTANCE Bats are natural hosts of many FiVs, from which diverse FiVs were serologically or virologically detected in Africa, Europe, and East Asia. Recently, very divergent FiVs were identified in the Chinese bat population, but their antigenic relationship with other known FiVs remains unknown. Here, we conducted serological characterization and investigation of Chinese indigenous FiVs and prototypes of other viruses in bats. Results indicated that Chinese indigenous FiVs are antigenically distant to other FiVs, and infection of novel or multiple FiVs occurred in Chinese bats, with FiV DH04 or an antigenically related one being the most widely and the most highly prevalent. Additionally, besides Rousettus leschenaultii and Eonycteris spelaea bats, the insectivorous Myotis horsfieldii and M. schreibersii bats are highly preferential hosts of FiVs. Seroreactive and viral metagenomic results indicated that more as yet unknown bat-borne FiVs circulate in Southern China, and to uncover them further, investigation and timely surveillance is needed.
Assuntos
Anticorpos Antivirais/sangue , Quirópteros/virologia , Infecções por Filoviridae/veterinária , Filoviridae/imunologia , Animais , China , Quirópteros/sangue , Coinfecção , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Ensaio de Imunoadsorção Enzimática , Filoviridae/classificação , Metagenômica , Testes de Neutralização , Paramyxoviridae , Infecções por Paramyxoviridae/sangue , Infecções por Paramyxoviridae/veterinária , Filogenia , Rhabdoviridae , Infecções por Rhabdoviridae/sangue , Infecções por Rhabdoviridae/veterinária , Estudos SoroepidemiológicosRESUMO
A serological survey of 2,430 archived serum samples collected between 1997 and 2012 was conducted to retrospectively determine the prevalence of Marburg virus in five African countries. Serum samples were screened for neutralizing antibodies in a pseudotype micro-neutralization assay and confirmed by enzyme-linked immunosorbent assay (ELISA). Surprisingly, a seroprevalence for Marburg virus of 7.5 and 6.3% was found in Cameroon and Ghana, respectively, suggesting the circulation of filoviruses or related viruses outside of known endemic areas that remain undetected by current surveillance efforts. However, due to the lack of validated assays and appropriate positive controls, these results must be considered preliminary.
Assuntos
Anticorpos Antivirais/sangue , Filoviridae/imunologia , Doença do Vírus de Marburg/sangue , Doença do Vírus de Marburg/epidemiologia , Marburgvirus/imunologia , Animais , Camarões/epidemiologia , Ensaio de Imunoadsorção Enzimática , Filoviridae/genética , Infecções por Filoviridae/sangue , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/virologia , Gana/epidemiologia , Humanos , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Estudos Retrospectivos , Estudos SoroepidemiológicosRESUMO
Jingmenvirus is a recently identified group of segmented RNA viruses phylogenetically linked with unsegmented Flaviviridae viruses. Primarily identified in various tick genera originating in China, Jingmenvirus geographical distribution has rapidly expanded to cover Africa, South America, Caribbean, and Europe. The identification of Jingmen-related viruses in various mammals, including febrile humans, opens the possibility that Jingmenviruses may be novel tick-borne arboviruses. In this study, we aimed at increasing knowledge of the host range, genetic diversity, and geographical distribution of Jingmenviruses by reporting for the first time the identification of Jingmenviruses associated with Rhipicephalus microplus ticks originating in the French Antilles (Guadeloupe and Martinique islands), with Amblyomma testudinarium ticks in Lao PDR, and with Ixodes ricinus ticks in metropolitan France, and from urine of Pteropus lylei bats in Cambodia. Analyses of the relationships between the different Jingmenvirus genomes resulted in the identification of three main phylogenic subclades, each of them containing both tick-borne and mammal-borne strains, reinforcing the idea that Jingmenviruses may be considered as tick-borne arboviruses. Finally, we estimated the prevalence of Jingmenvirus-like infection using luciferase immunoprecipitation assay screening (LIPS) of asymptomatic humans and cattle highly exposed to tick bites. Among 70 French human, 153 Laotian human, and 200 Caribbean cattle sera tested, only one French human serum was found (slightly) positive, suggesting that the prevalence of Jingmenvirus human and cattle infections in these areas is probably low.IMPORTANCE Several arboviruses emerging as new pathogens for humans and domestic animals have recently raised public health concern and increased interest in the study of their host range and in detection of spillover events. Recently, a new group of segmented Flaviviridae-related viruses, the Jingmenviruses, has been identified worldwide in many invertebrate and vertebrate hosts, pointing out the issue of whether they belong to the arbovirus group. The study presented here combined whole-genome sequencing of three tick-borne Jingmenviruses and one bat-borne Jingmenvirus with comprehensive phylogenetic analyses and high-throughput serological screening of human and cattle populations exposed to these viruses to contribute to the knowledge of Jingmenvirus host range, geographical distribution, and mammalian exposure.
Assuntos
Flaviviridae/classificação , Flaviviridae/isolamento & purificação , Variação Genética , Especificidade de Hospedeiro , Filogeografia , Animais , Bovinos , Quirópteros , Infecções por Filoviridae/veterinária , Infecções por Filoviridae/virologia , Flaviviridae/genética , Flaviviridae/crescimento & desenvolvimento , Saúde Global , Humanos , CarrapatosRESUMO
Bats are reservoirs for several zoonotic pathogens, including filoviruses. Recent work highlights the diversity of bat borne filoviruses in Asia. High risk activities at the bat-human interface pose the threat of zoonotic virus transmission. We present evidence for prior exposure of bat harvesters and two resident fruit bat species to filovirus surface glycoproteins by screening sera in a multiplexed serological assay. Antibodies reactive to two antigenically distinct filoviruses were detected in human sera and to three individual filoviruses in bats in remote Northeast India. Sera obtained from Eonycteris spelaea bats showed similar patterns of cross-reactivity as human samples, suggesting them as the species responsible for the spillover. In contrast, sera from Rousettus leschenaultii bats reacted to two different virus glycoproteins. Our results indicate circulation of several filoviruses in bats and the possibility for filovirus transmission from bats to humans.
Assuntos
Anticorpos Antivirais/sangue , Quirópteros/imunologia , Quirópteros/virologia , Reservatórios de Doenças/virologia , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/veterinária , Filoviridae/imunologia , Adolescente , Adulto , Animais , Quirópteros/sangue , Ebolavirus/imunologia , Filoviridae/classificação , Filoviridae/isolamento & purificação , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/virologia , Mapeamento Geográfico , Glicoproteínas/imunologia , Humanos , Índia/epidemiologia , Glicoproteínas de Membrana , Pessoa de Meia-Idade , Filogenia , Estudos Soroepidemiológicos , Adulto JovemRESUMO
Macrophages are one of the first and also a major site of filovirus replication and, in addition, are a source of multiple cytokines, presumed to play a critical role in the pathogenesis of the viral infection. Some of these cytokines are known to induce macrophage phenotypic changes in vitro, but how macrophage polarization may affect the cell susceptibility to filovirus entry remains largely unstudied. We generated different macrophage subsets using cytokine pre-treatment and subsequently tested their ability to fuse with beta-lactamase containing virus-like particles (VLP), pseudotyped with the surface glycoprotein of Ebola virus (EBOV) or the glycoproteins of other clinically relevant filovirus species. We found that pre-incubation of primary human monocyte-derived macrophages (MDM) with interleukin-10 (IL-10) significantly enhanced filovirus entry into cells obtained from multiple healthy donors, and the IL-10 effect was preserved in the presence of pro-inflammatory cytokines found to be elevated during EBOV disease. In contrast, fusion of IL-10-treated macrophages with influenza hemagglutinin/neuraminidase pseudotyped VLPs was unchanged or slightly reduced. Importantly, our in vitro data showing enhanced virus entry are consistent with the correlation established between elevated serum IL-10 and increased mortality in filovirus infected patients and also reveal a novel mechanism that may account for the IL-10-mediated increase in filovirus pathogenicity.
Assuntos
Citocinas/farmacologia , Filoviridae/fisiologia , Macrófagos/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células Cultivadas , Ebolavirus/fisiologia , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/virologia , Humanos , Interleucina-10/farmacologia , Macrófagos/virologia , Fusão de Membrana/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismoRESUMO
With the exception of Reston and Bombali viruses, the marburgviruses and ebolaviruses (family Filoviridae) cause outbreaks of viral hemorrhagic fever in sub-Saharan Africa. The Egyptian rousette bat (ERB) is a natural reservoir host for the marburgviruses and evidence suggests that bats are also natural reservoirs for the ebolaviruses. Although the search for the natural reservoirs of the ebolaviruses has largely involved serosurveillance of the bat population, there are no validated serological assays to screen bat sera for ebolavirus-specific IgG antibodies. Here, we generate filovirus-specific antisera by prime-boost immunization of groups of captive ERBs with all seven known culturable filoviruses. After validating a system of filovirus-specific indirect ELISAs utilizing infectious-based virus antigens for detection of virus-specific IgG antibodies from bat sera, we assess the level of serological cross-reactivity between the virus-specific antisera and heterologous filovirus antigens. This data is then used to generate a filovirus antibody fingerprint that can predict which of the filovirus species in the system is most antigenically similar to the species responsible for past infection. Our filovirus IgG indirect ELISA system will be a critical tool for identifying bat species with high ebolavirus seroprevalence rates to target for longitudinal studies aimed at establishing natural reservoir host-ebolavirus relationships.