Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.080
Filtrar
1.
BMC Plant Biol ; 21(1): 598, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915841

RESUMO

BACKGROUND: Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) plays a key enzyme role in the inositol signal transduction system and has essential functions in plants in terms of growth, development, and stress responses. However, systematic studies on the wheat PIP5K gene family and its relation to male sterility have not been reported yet. RESULTS: Sixty-four TaPIP5K genes were identified. The TaPIP5K genes contained similar gene structures and conserved motifs on the same branches of the evolutionary tree, and their cis-regulatory elements were related to MeJA-responsiveness. Furthermore, 49 pairs of collinearity genes were identified and mainly subjected to purification selection during evolution. Synteny analyses showed that some PIP5K genes in wheat and the other four species shared a relatively conserved evolutionary process. The expression levels of many conservative TaPIP5K genes in HT-ms anthers were significantly lower than that in Normal anthers. In addition, HT-ms anthers have no dehiscence, and levels of OPDA and JA-ILE are significantly lower at the trinucleus stage. CONCLUSION: These results indicate that the PIP5K gene family may be associated with male sterility induced by HT, and the reduction of JA-ILE levels and the abnormal levels of these genes expression may be one reason for the HT-ms anthers having no dehiscence, ultimately leading to the abortion of the anthers.


Assuntos
Flores/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Infertilidade das Plantas/genética , Triticum/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Fertilidade , Flores/enzimologia , Flores/fisiologia , Duplicação Gênica , Perfilação da Expressão Gênica , Genes de Plantas , Temperatura Alta , Família Multigênica , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Sintenia , Triticum/enzimologia , Triticum/genética
2.
Plant Sci ; 312: 111057, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620451

RESUMO

Plant fertility and resistance to stress environments are antagonistic to each other. At booting stage, fertility is often sacrificed for survive in rice under abiotic stress. However, the relationship between fertility and resistance at molecular level remains elusive. Here, we identified a transcription factor, OsAlfin like 5, which regulates the OsTMS5 and links both the drought stress response and thermosensitive genic male sterility. The OsAL5 overexpression plants (OE-OsAL5) became sensitive to temperature owning to the OsTMS5 that the OE-OsAL5 plants were fertile under low temperature (23 °C) and sterile under high temperature (28 °C). Significantly, the survival rate of OE-OsAL5 lines was higher than that of the wide-type (WT) under drought stress. Further experiments confirmed that the OsAL5 regulated both of the OsTMS5 and the down-stream drought-related genes by binding to the 'GTGGAG' element in vivo, revealing that the OsAL5 participated both in the drought stress response and thermosensitive genic male sterility in rice. These findings open up the possibility of breeding elite TGMS lines with strong drought tolerance by manipulating the expression of OsAL5.


Assuntos
Desidratação/genética , Desidratação/fisiopatologia , Secas , Oryza/genética , Oryza/fisiologia , Infertilidade das Plantas/genética , Termotolerância/genética , Adaptação Fisiológica , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fatores de Transcrição de Choque Térmico , Infertilidade das Plantas/fisiologia , Termotolerância/fisiologia
3.
BMC Genomics ; 22(1): 654, 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511073

RESUMO

BACKGROUND: The discovery of male sterile materials is of great significance for the development of plant fertility research. Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a variety of non-heading Chinese cabbage. There are few studies on the male sterility of wucai, and the mechanism of male sterility is not clear. In this study, the male sterile mutant MS7-2 and the wild-type fertile plant MF7-2 were studied. RESULTS: Phenotypic characteristics and cytological analysis showed that MS7-2 abortion occurred at the tetrad period. The content of related sugars in the flower buds of MS7-2 was significantly lower than that of MF7-2, and a large amount of reactive oxygen species (ROS) was accumulated. Through transcriptome sequencing of MS7-2 and MF7-2 flower buds at three different developmental stages (a-c), 2865, 3847, and 4981 differentially expressed genes were identified in MS7-2 at the flower bud development stage, stage c, and stage e, respectively, compared with MF7-2. Many of these genes were enriched in carbohydrate metabolism, phenylpropanoid metabolism, and oxidative phosphorylation, and most of them were down-regulated in MS7-2. The down-regulation of genes involved in carbohydrate and secondary metabolite synthesis as well as the accumulation of ROS in MS7-2 led to pollen abortion in MS7-2. CONCLUSIONS: This study helps elucidate the mechanism of anther abortion in wucai, providing a basis for further research on the molecular regulatory mechanisms of male sterility and the screening and cloning of key genes in wucai.


Assuntos
Brassica , Brassica/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Transcriptoma
4.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502055

RESUMO

Among the natural mechanisms used for wheat hybrid breeding, the most desirable is the system combining the cytoplasmic male sterility (cms) of the female parent with the fertility-restoring genes (Rf) of the male parent. The objective of this study was to identify Rf candidate genes in the wheat genome on the basis of transcriptome sequencing (RNA-seq) and paralog analysis data. Total RNA was isolated from the anthers of two fertility-restorer (Primépi and Patras) and two non-restorer (Astoria and Grana) varieties at the tetrad and late uninucleate microspore stages. Of 36,912 differentially expressed genes (DEGs), 21 encoding domains in known fertility-restoring proteins were selected. To enrich the pool of Rf candidates, 52 paralogs (PAGs) of the 21 selected DEGs were included in the analyses. The expression profiles of most of the DEGs and PAGs determined bioinformatically were as expected (i.e., they were overexpressed in at least one fertility-restorer variety). However, these results were only partially consistent with the quantitative real-time PCR data. The DEG and PAG promoters included cis-regulatory elements common among PPR-encoding genes. On the basis of the obtained results, we designated seven genes as Rf candidate genes, six of which were identified for the first time in this study.


Assuntos
Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Poliploidia , Transcriptoma , Triticum/fisiologia
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502186

RESUMO

Efficient and stable restoration of male fertility (Rf) is a prerequisite for large-scale hybrid seed production but remains an inherent issue in the predominant fertility control system of rye (Secale cereale L.). The 'Gülzow' (G)-type cytoplasmic male sterility (CMS) system in hybrid rye breeding exhibits a superior Rf. While having received little scientific attention, one major G-type Rf gene has been identified on 4RL (Rfg1) and two minor genes on 3R (Rfg2) and 6R (Rfg3) chromosomes. Here, we report a comprehensive investigation of the genetics underlying restoration of male fertility in a large G-type CMS breeding system using recent advents in rye genomic resources. This includes: (I) genome-wide association studies (GWAS) on G-type germplasm; (II) GWAS on a biparental mapping population; and (III) an RNA sequence study to investigate the expression of genes residing in Rf-associated regions in G-type rye hybrids. Our findings provide compelling evidence of a novel major G-type non-PPR Rf gene on the 3RL chromosome belonging to the mitochondrial transcription termination factor gene family. We provisionally denote the identified novel Rf gene on 3RL RfNOS1. The discovery made in this study is distinct from known P- and C-type systems in rye as well as recognized CMS systems in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). We believe this study constitutes a stepping stone towards understanding the restoration of male fertility in the G-type CMS system and potential resources for addressing the inherent issues of the P-type system.


Assuntos
Óxido Nítrico Sintase Tipo I/fisiologia , Polimorfismo de Nucleotídeo Único , Secale/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Infertilidade das Plantas/genética , Secale/enzimologia , Análise de Sequência de RNA
6.
J Plant Physiol ; 265: 153506, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34492526

RESUMO

Plant male sterility (MS) is an important agronomic trait that provides an efficient tool for hybridization and heterosis utilization of crops. Based on phenotypic and cytological observations, our study performed a multi-comparison transcriptome analysis strategy on multiple sterile and fertile rubber tree varieties using RNA-seq. Compared with the male-fertile varieties, a total of 1590 differentially expressed genes (DEGs) were detected in male-sterile varieties, including 970 up-regulated and 620 down-regulated transcripts in sterile varieties. Key DEGs were further assessed focusing on anther development, microsporogenesis and plant hormone metabolism. Twenty DEGs were selected randomly to validate transcriptome data using quantitative real-time PCR (qRT-PCR). Eleven key genes were subjected to expression pattern analysis using qRT-PCR and fluorescence in situ hybridization. Among them, nine genes, i.e., A6, GAI1, ACA7, TKPR1, CYP704B1, XTH26, MS1, MS35 and MYB33, that regulate callose metabolism, pollen wall formation, tapetum and microspores development were identified as candidate male-sterile genes. These findings provide insights into the molecular mechanism of male sterility in rubber tree.


Assuntos
Fertilidade/genética , Flores/crescimento & desenvolvimento , Flores/genética , Perfilação da Expressão Gênica , Hevea/genética , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
7.
BMC Genomics ; 22(1): 646, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493212

RESUMO

BACKGROUND: Cytoplasmic male sterility (CMS) has been widely used for commercial F1 hybrid seeds production. CMS is primarily caused by chimeric genes in mitochondrial genomes. However, which specific stages of anther development in cabbage are affected by the chimeric genes remain unclear. RESULTS: In the present study, the complete mitochondrial genomes were sequenced and assembled for the maintainer and Ogura CMS cabbage lines. The genome size of the maintainer and Ogura CMS cabbage are 219,962 bp and 236,648 bp, respectively. There are 67 and 69 unknown function ORFs identified in the maintainer and Ogura CMS cabbage mitochondrial genomes, respectively. Four orfs, orf102a, orf122b, orf138a and orf154a were specifically identified in the Ogura CMS mitochondrial genome, which were likely generated by recombination with Ogura type radish during breeding process. Among them, ORF138a and ORF154a possessed a transmembrane structure, and orf138a was co-transcribed with the atp8 and trnfM genes. orf154a is partially homologous to the ATP synthase subunit 1 (atpA) gene. Both these genes were likely responsible for the CMS phenotype. In addition, cytological sections showed that the abnormal proliferation of tapetal cells might be the immediate cause of cytoplasmic male-sterility in Ogura CMS cabbage lines. RNA-seq results showed that orf138a and orf154a in Ogura CMS might influence transcript levels of genes in energy metabolic pathways. CONCLUSIONS: The presence of orf138a and orf154a lead to increased of ATPase activity and ATP content by affecting the transcript levels of genes in energy metabolic pathways, which could provide more energy for the abnormal proliferation of tapetal cells. Our data provides new insights into cytoplasmic male-sterility from whole mitochondrial genomes, cytology of anther development and transcriptome data.


Assuntos
Brassica , Genoma Mitocondrial , Infertilidade , Brassica/genética , Citoplasma/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Infertilidade das Plantas/genética
8.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360921

RESUMO

Hybrid varieties can provide the boost needed to increase stagnant wheat yields through heterosis. The lack of an efficient hybridization system, which can lower the cost of goods of hybrid seed production, has been a major impediment to commercialization of hybrid wheat varieties. In this review, we discuss the progress made in characterization of nuclear genetic male sterility (NGMS) in wheat and its advantages over two widely referenced hybridization systems, i.e., chemical hybridizing agents (CHAs) and cytoplasmic male sterility (CMS). We have characterized four wheat genes, i.e., Ms1, Ms5, TaMs26 and TaMs45, that sporophytically contribute to male fertility and yield recessive male sterility when mutated. While Ms1 and Ms5 are Triticeae specific genes, analysis of TaMs26 and TaMs45 demonstrated conservation of function across plant species. The main features of each of these genes is discussed with respect to the functional contribution of three sub-genomes and requirements for complementation of their respective mutants. Three seed production systems based on three genes, MS1, TaMS26 and TaMS45, were developed and a proof of concept was demonstrated for each system. The Tams26 and ms1 mutants were maintained through a TDNA cassette in a Seed Production Technology-like system, whereas Tams45 male sterility was maintained through creation of a telosome addition line. These genes represent different options for hybridization systems utilizing NGMS in wheat, which can potentially be utilized for commercial-scale hybrid seed production.


Assuntos
Hibridização Genética , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento
9.
Plant Physiol Biochem ; 167: 210-221, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34371391

RESUMO

The miR2119 is involved in the growth, development and abiotic stress response of some legumes, including Medicago truncatula, Phaseolus vulgaris and soybean (Glycine max (L.) Merr.). Our previous small RNA sequencing analysis showed that miR2119b was up-regulated in the flower buds of soybean cytoplasmic male sterile (CMS) line compared with its maintainer line, but the role and mechanism of miR2119b in the regulation of soybean male fertility are still unclear. In this study, the gma-miR2119b and its target gene alcohol dehydrogenase 1.3b (ADH1.3b) were characterized and found to be highly expressed in the flowers of soybean CMS line and its maintainer. Transgenic Arabidopsis plants overexpressing gma-miR2119b exhibit male fertility abnormalities, including pollen fertility and germination rate decreased. Enzyme activity detection found the ADH and catalase (CAT) enzyme activities in inflorescence of gma-miR2119b overexpressed plants were lower than those of wild-type. Bioinformatics and gene expression analysis showed that gma-miR2119b/GmADH1.3b module was responsive to high temperature (HT) stress during flowering. After HT stress, the gma-miR2119b overexpressed plants showed male sterility, including shorter filament, sterile pollen, indehiscent anther and non seed. Moreover, some key genes involved in HT response and reactive oxygen species (ROS) signal regulation pathway, including heat shock protein70, galactinol synthase 1 and CAT, showed down-regulated expression in transgenic plants under HT stress, suggesting that gma-miR2119b regulates male fertility via HT-ROS signaling pathway under HT stress. It was speculated that the gma-miR2119b acted as a negative regulator of male fertility in plants by regulating ADH1, HT-induced and ROS scavenging genes expression.


Assuntos
Arabidopsis , Soja , Arabidopsis/genética , Fertilidade , Flores/genética , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , RNA , Soja/genética
10.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445247

RESUMO

The utilization of heterosis is an important way to improve wheat yield, and the production of wheat hybrid seeds mainly relies on male-sterile lines. Male sterility in line 15 Fan 03 derived from a cross of 72,180 and Xiaoyan 6 is controlled by a single recessive gene. The gene was mapped to the distal region of chromosome 4BS in a genetic interval of 1.4 cM and physical distance of 6.57 Mb between SSR markers Ms4BS42 and Ms4BS199 using an F2 population with 1205 individuals. Sterile individuals had a deletion of 4.57 Mb in the region presumed to carry the Ms1 locus. The allele for sterility was therefore named ms1s. Three CAPS markers were developed and verified from the region upstream of the deleted fragment and can be used for ms1s marker-assisted selection in wheat hybrid breeding. This work will enrich the utilization of male sterility genetic resources.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Genes Recessivos , Loci Gênicos , Infertilidade das Plantas/genética , Triticum/genética , Melhoramento Vegetal
11.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445290

RESUMO

Celery (Apium graveolens L.) is an important leafy vegetable worldwide. The development of F1 hybrids in celery is highly dependent on cytoplasmic male sterility (CMS) because emasculation is difficult. In this study, we first report a celery CMS, which was found in a high-generation inbred line population of the Chinese celery "tanzhixiangqin". Comparative analysis, following sequencing and assembly of the complete mitochondrial genome sequences for this celery CMS line and its maintainer line, revealed that there are 21 unique regions in the celery CMS line and these unique regions contain 15 ORFs. Among these ORFs, only orf768a is a chimeric gene, consisting of 1497 bp sequences of the cox1 gene and 810 bp unidentified sequences located in the unique region, and the predicted protein product of orf768a possesses 11 transmembrane domains. In summary, the results of this study indicate that orf768a is likely to be a strong candidate gene for CMS induction in celery. In addition, orf768a can be a co-segregate marker, which can be used to screen CMS in celery.


Assuntos
Apium/genética , Genoma Mitocondrial , Infertilidade das Plantas/genética , Apium/crescimento & desenvolvimento , Apium/metabolismo , Mapeamento Cromossômico , Herança Extracromossômica/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genes de Plantas , Estudos de Associação Genética , Fases de Leitura Aberta , Pólen/genética , Análise de Sequência de DNA
12.
Theor Appl Genet ; 134(11): 3661-3674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34319425

RESUMO

KEY MESSAGE: Identification and functional analysis of the male sterile gene MS6 in Glycine max. Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


Assuntos
Infertilidade das Plantas/genética , Polimorfismo de Nucleotídeo Único , Soja/genética , Fatores de Transcrição/genética , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/genética
13.
Plant Cell Rep ; 40(10): 1957-1970, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319484

RESUMO

KEY MESSAGE: A novel genic male-sterile mutant ms40 was obtained from EMS treated RP125. The key candidate gene ZmbHLH51 located on chromosome 4 was identified by map-based cloning. This study further enriched the male sterile gene resources for both production applications and theoretical studies of abortion mechanisms. Maize male-sterile mutant 40 (ms40) was obtained from the progeny of the ethyl methanesulfonate (EMS) treated inbred line RP125. Genetic analysis indicated that the sterility was controlled by a single recessive nuclear gene. Cytological observation of anthers revealed that the cuticles of ms40 anthers were abnormal, and no Ubisch bodies were observed on the inner surface of ms40 anthers through scanning electron microscopy(SEM). Moreover, its tapetum exhibited delayed degradation and then blocked the formation of normal microspores. Using map-based cloning strategy, the ms40 locus was found to locate in a 282-kb interval on chromosome 4, and five annotated genes were predicted within this region. PCR-based sequencing detected a single non-synonymous SNP (G > A) that changed glycine (G) to arginine (A) in the seventh exon of Zm00001d053895, while no sequence difference between ms40 and RP125 was found for the other four genes. Zm00001d053895 encodes the bHLH transcription factor ZmbHLH51 which is localized in the nucleus. Phylogenetic analysis showed that ZmbHLH51 had the highest homology with Sb04g001650, a tapetum degeneration retardation (TDR) bHLH transcription factor in Sorghum bicolor. Co-expression analysis revealed a total of 1192 genes co-expressed with ZmbHLH51 in maize, 647 of which were anther-specific genes. qRT-PCR results suggested the expression levels of some known genes related to anther development were affected in ms40. In summary, these findings revealed the abortion characteristics of ms40 anthers and lay a foundation for further studies on the mechanisms of male fertility.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Zea mays/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Mutação , Filogenia , Proteínas de Plantas/metabolismo , Pólen/genética , Zea mays/citologia
14.
Ann Bot ; 128(5): 559-575, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232290

RESUMO

BACKGROUND AND AIMS: Cold stress in rice (Oryza sativa) plants at the reproductive stage prevents normal anther development and causes pollen sterility. Tapetum hypertrophy in anthers has been associated with pollen sterility in response to cold at the booting stage. Here, we re-examined whether the relationships between anther abnormality and pollen sterility caused by cold stress at the booting stage in rice can be explained by a monovalent factor such as tapetum hypertrophy. METHODS: After exposing plants to a 4-d cold treatment at the booting stage, we collected and processed anthers for transverse sectioning immediately and at the flowering stage. We anatomically evaluated the effect of cold treatment on anther internal morphologies, pollen fertilities and pollen numbers in the 13 cultivars with various cold sensitivities. KEY RESULTS: We observed four types of morphological anther abnormalities at each stage. Pollen sterility was positively correlated with the frequency of undeveloped locules, but not with tapetum hypertrophy as commonly believed. In cold-sensitive cultivars grown at low temperatures, pollen sterility was more frequent than anther morphological abnormalities, and some lines showed remarkably high pollen sterility without any anther morphological alterations. Most morphological anomalies occurred only in specific areas within large and small locules. Anther length tended to shorten in response to cold treatment and was positively correlated with pollen number. One cultivar showed a considerably reduced pollen number, but fertile pollen grains under cold stress. We propose three possible relationships to explain anther structure and pollen sterility and reduction due to cold stress. CONCLUSIONS: The pollen sterility caused by cold stress at the booting stage was correlated with the frequency of entire locule-related abnormalities, which might represent a phenotypic consequence, but not a direct cause of pollen abortion. Multivalent factors might underlie the complicated relationships between anther abnormality and pollen sterility in rice.


Assuntos
Infertilidade , Oryza , Resposta ao Choque Frio , Flores , Infertilidade das Plantas , Pólen
15.
Theor Appl Genet ; 134(10): 3237-3247, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272568

RESUMO

KEY MESSAGE: Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level. Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Fenótipo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/química , Flores/química , Perfilação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética
16.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200260

RESUMO

Orobanchaceae have become a model group for studies on the evolution of parasitic flowering plants, and Aeginetia indica, a holoparasitic plant, is a member of this family. In this study, we assembled the complete chloroplast and mitochondrial genomes of A. indica. The chloroplast and mitochondrial genomes were 56,381 bp and 401,628 bp long, respectively. The chloroplast genome of A. indica shows massive plastid genes and the loss of one IR (inverted repeat). A comparison of the A. indica chloroplast genome sequence with that of a previous study demonstrated that the two chloroplast genomes encode a similar number of proteins (except atpH) but differ greatly in length. The A. indica mitochondrial genome has 53 genes, including 35 protein-coding genes (34 native mitochondrial genes and one chloroplast gene), 15 tRNA (11 native mitochondrial genes and four chloroplast genes) genes, and three rRNA genes. Evidence for intracellular gene transfer (IGT) and horizontal gene transfer (HGT) was obtained for plastid and mitochondrial genomes. ψndhB and ψcemA in the A. indica mitogenome were transferred from the plastid genome of A. indica. The atpH gene in the plastid of A. indica was transferred from another plastid angiosperm plastid and the atpI gene in mitogenome A. indica was transferred from a host plant like Miscanthus siensis. Cox2 (orf43) encodes proteins containing a membrane domain, making ORF (Open Reading Frame) the most likely candidate gene for CMS development in A. indica.


Assuntos
Citoplasma/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Mitocondrial , Genomas de Plastídeos , Orobanchaceae/genética , Infertilidade das Plantas , Proteínas de Plantas/genética , Citoplasma/metabolismo , Filogenia
17.
Plant Biol (Stuttg) ; 23(6): 947-955, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34263994

RESUMO

Differences in pollen sterility between morphs in distylous populations may represent the first step in the evolution of gender specialization. Theoretically, for partially or completely male sterile individuals to persist they must have some fitness advantage that compensates for the loss of male function. Gender specialization is considered a widespread process in Erythroxylum, but male sterility and the resource reallocation to female function have been investigated in few species and populations. In 18 populations of four distylous species of Erythroxylum, we quantified the levels of male sterility, estimated through pollen sterility, in short- and long-styled flowers to test if sterility is morph-biased. In one population per species, we also described the frequency of floral visitors, the production of flowers and fruits, and the quality of fruits and seeds of short- and long-styled plants to evaluate the expression of trade-offs in allocation to male and female function. In some populations of E. campestre and E. deciduum, short-styled flowers possessed higher levels of pollen sterility than long-styled flowers. Although most flowers of E. suberosum and E. tortuosum also expressed pollen sterility, the frequency of sterility was similar between morphs in all populations. Differences in reproductive output between morphs occurred only in populations of species with morph-biased sterility, but none of the variations reflect resource allocation to female fitness of short-styled plants. Differences in the level of sterility between morphs indicates the potential for gender specialization in populations of E. campestre and E. deciduum, despite the apparent lack of a trade-off in allocation.


Assuntos
Erythroxylaceae , Infertilidade das Plantas , Flores , Pólen , Reprodução
18.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206810

RESUMO

Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.


Assuntos
Perfilação da Expressão Gênica/métodos , Melhoramento Vegetal/métodos , Pólen/genética , Transcriptoma , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Pólen/metabolismo , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo , Zea mays/metabolismo
19.
BMC Plant Biol ; 21(1): 313, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215178

RESUMO

BACKGROUND: Harnessing heterosis is one of the major approaches to increase rice yield and has made a great contribution to food security. The identification and selection of outstanding parental genotypes especially among male sterile lines is a key step for exploiting heterosis. Two-line hybrid system is based on the discovery and application of photoperiod- and thermo-sensitive genic sensitive male sterile (PTGMS) materials. The development of wide-range of male sterile lines from a common gene pool leads to a narrower genetic diversity, which is vulnerable to biotic and abiotic stress. Hence, it is valuable to ascertain the genetic background of PTGMS lines and to understand their relationships in order to select and design a future breeding strategy. RESULTS: A collection of 118 male sterile rice lines and 13 conventional breeding lines from the major rice growing regions of China was evaluated and screened against the photosensitive (pms3) and temperature sensitive male sterility (tms5) genes. The total gene pool was divided into four major populations as P1 possessing the pms3, P2 possessing tms5, P3 possessing both pms3 and tms5 genes, and P4 containing conventional breeding lines without any male sterility allele. The high genetic purity was revealed by homozygous alleles in all populations. The population admixture, principle components and the phylogenetic analysis revealed the close relations of P2 and P3 with P4. The population differentiation analysis showed that P1 has the highest differentiation coefficient. The lines from P1 were observed as the ancestors of other three populations in a phylogenetic tree, while the lines in P2 and P3 showed a close genetic relation with conventional lines. A core collection of top 10% lines with maximum within and among populations genetic diversity was constructed for future research and breeding efforts. CONCLUSION: The low genetic diversity and close genetic relationship among PTGMS lines in P2, P3 and P4 populations suggest a selection sweep and they might result from a backcrossing with common ancestors including the pure lines of P1. The core collection from PTGMS panel updated with new diverse germplasm will serve best for further two-line hybrid breeding.


Assuntos
Oryza/genética , Fotoperíodo , Infertilidade das Plantas/genética , Sementes/genética , Temperatura , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Análise por Conglomerados , Ontologia Genética , Estudos de Associação Genética , Marcadores Genéticos , Luz , Nucleotídeos/genética , Oryza/efeitos da radiação , Filogenia , Infertilidade das Plantas/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Reprodutibilidade dos Testes , Sementes/efeitos da radiação
20.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203740

RESUMO

Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.


Assuntos
Genes de Plantas , Genoma Mitocondrial , Infertilidade das Plantas/genética , Triticum/genética , Arabidopsis/genética , Mapeamento Cromossômico , DNA Mitocondrial/genética , Estudos de Associação Genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...