Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.046
Filtrar
1.
Mol Cell ; 83(1): 9-11, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608672

RESUMO

Wang et al. (2022)1 employ real-time single-molecule fluorescence spectroscopy to monitor eukaryotic translation initiation events, revealing that, while mRNA engagement by ribosomal 43S subunits is slow, the subsequent mRNA scanning process is rapid- ∼10 times faster than translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Códon de Iniciação/genética , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Iniciação Traducional da Cadeia Peptídica
2.
Nucleic Acids Res ; 51(2): 891-907, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629253

RESUMO

The synthesis of mitochondrial OXPHOS complexes is central to cellular metabolism, yet many molecular details of mitochondrial translation remain elusive. It has been commonly held view that translation initiation in human mitochondria proceeded in a manner similar to bacterial systems, with the mitoribosomal small subunit bound to the initiation factors, mtIF2 and mtIF3, along with initiator tRNA and an mRNA. However, unlike in bacteria, most human mitochondrial mRNAs lack 5' leader sequences that can mediate small subunit binding, raising the question of how leaderless mRNAs are recognized by mitoribosomes. By using novel in vitro mitochondrial translation initiation assays, alongside biochemical and genetic characterization of cellular knockouts of mitochondrial translation factors, we describe unique features of translation initiation in human mitochondria. We show that in vitro, leaderless mRNA transcripts can be loaded directly onto assembled 55S mitoribosomes, but not onto the mitoribosomal small subunit (28S), in a manner that requires initiator fMet-tRNAMet binding. In addition, we demonstrate that in human cells and in vitro, mtIF3 activity is not required for translation of leaderless mitochondrial transcripts but is essential for translation of ATP6 in the case of the bicistronic ATP8/ATP6 transcript. Furthermore, we show that mtIF2 is indispensable for mitochondrial protein synthesis. Our results demonstrate an important evolutionary divergence of the mitochondrial translation system and further our fundamental understanding of a process central to eukaryotic metabolism.


Assuntos
Mitocôndrias , Iniciação Traducional da Cadeia Peptídica , Animais , Humanos , Bactérias/genética , Mamíferos/genética , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fatores de Iniciação de Peptídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Sci Rep ; 13(1): 896, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650197

RESUMO

Chloroplasts have evolved from photosynthetic cyanobacteria-like progenitors through endosymbiosis. The chloroplasts of present-day land plants have their own transcription and translation systems that show several similarities with prokaryotic organisms. A remarkable feature of the chloroplast translation system is the use of non-AUG start codons in the protein synthesis of certain genes that are evolutionarily conserved from Algae to angiosperms. However, the biological significance of such use of non-AUG codons is not fully understood. The present study was undertaken to unravel the significance of non-AUG start codons in vivo using the chloroplast genetic engineering approach. For this purpose, stable transplastomic tobacco plants expressing a reporter gene i.e. uidA (GUS) under four different start codons (AUG/UUG/GUG/CUG) were generated and ß-glucuronidase (GUS) expression was compared. To investigate further the role of promoter sequences proximal to the start codon, uidA was expressed under two different chloroplast gene promoters psbA and psbC that use AUG and a non-AUG (GUG) start codons, respectively, and also showed significant differences in the DNA sequence surrounding the start codon. Further, to delineate the role of RNA editing that creates AUG start codon by editing non-AUG codons, if any, which is another important feature of the chloroplast transcription and translation system, transcripts were sequenced. In addition, a proteomic approach was used to identify the translation initiation site(s) of GUS and the N-terminal amino acid encoded when expressed under different non-AUG start codons. The results showed that chloroplasts use non-AUG start codons in combination with the translation initiation site as an additional layer of gene regulation to over-express proteins that are required at high levels due to their high rates of turnover.


Assuntos
Biossíntese de Proteínas , Proteômica , Códon de Iniciação/genética , Biossíntese de Proteínas/genética , Códon/genética , Cloroplastos/genética , Iniciação Traducional da Cadeia Peptídica/genética
4.
RNA ; 29(3): 282-299, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517212

RESUMO

The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.


Assuntos
Fator de Iniciação 4G em Eucariotos , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Animais , Regiões 5' não Traduzidas/genética , Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/genética , Fator de Iniciação 4G em Eucariotos/metabolismo , Proteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Genome Biol ; 23(1): 254, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510274

RESUMO

BACKGROUND: Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5'-3' movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5' proximal AUG codon (i.e., the first-AUG rule). RESULTS: We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5'-3' and 3'-5' oscillations with a net 5'-3' movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans. CONCLUSIONS: Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Ribossomos/metabolismo , Códon de Iniciação/metabolismo , Códon , Biossíntese de Proteínas
6.
Cell ; 185(24): 4474-4487.e17, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36334590

RESUMO

How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.


Assuntos
Ribossomos , Saccharomyces cerevisiae , Códon de Iniciação/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
7.
Nat Commun ; 13(1): 6558, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323665

RESUMO

mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.


Assuntos
Fatores de Iniciação de Peptídeos , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Fatores de Iniciação de Peptídeos/genética , Capuzes de RNA/metabolismo , Iniciação Traducional da Cadeia Peptídica
8.
Nat Commun ; 13(1): 6621, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333315

RESUMO

Protein synthesis is an essential step in gene expression during the development of mammalian preimplantation embryos. This is a complex and highly regulated process. The accuracy of the translation initiation codon is important in various gene expression programs. However, the mechanisms that regulate AUG and non-AUG codon initiation in early embryos remain poorly understood. BZW1 is a key factor in determining the mRNA translation start codon. Here, we show that BZW1 is essential for early embryonic development in mice. Bzw1-knockdown embryos fail to undergo compaction, and show decreased blastocyst formation rates. We also observe defects in the differentiation capacity and implantation potential after Bzw1 interference. Further investigation revealed that Bzw1 knockdown causes the levels of translation initiation with CUG as the start codon to increase. The decline in BZW1 levels result in a decrease in protein synthesis in preimplantation embryos, whereas the total mRNA levels are not altered. Therefore, we concluded that BZW1 contributes to protein synthesis during early embryonic development by restricting non-AUG translational initiation.


Assuntos
Blastocisto , Implantação do Embrião , Camundongos , Animais , Códon de Iniciação , Códon , RNA Mensageiro/genética , Biossíntese de Proteínas , Iniciação Traducional da Cadeia Peptídica , Mamíferos/genética
9.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142475

RESUMO

Ribosome profiling and mass spectroscopy have identified canonical and noncanonical translation initiation codons (TICs) that are upstream of the main translation initiation site and used to translate oncogenic proteins. There have previously been conflicting reports about the patterns of nucleotides that surround noncanonical TICs. Here, we use a Kozak Similarity Score algorithm to find that nearly all of these TICs have flanking nucleotides closely matching the Kozak sequence. Remarkably, the nucleotides flanking alternative noncanonical TICs are frequently closer to the Kozak sequence than the nucleotides flanking TICs used to translate the gene's main protein. Of note, the 5' untranslated region (5'UTR) of cancer-associated genes with an upstream TIC tend to be significantly longer than the same region in genes not associated with cancer. The presence of a longer-than-typical 5'UTR increases the likelihood of ribosome binding to upstream noncanonical TICs, and may be a distinguishing feature of a number of genes overexpressed in cancer. Noncanonical TICs that are located in the 5'UTR, although thought by some to be disadvantageous and suppressed by evolution, may translate oncogenic proteins because of their flanking nucleotides.


Assuntos
Neoplasias , Regiões 5' não Traduzidas/genética , Algoritmos , Códon/genética , Códon de Iniciação/genética , Humanos , Neoplasias/genética , Nucleotídeos , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética
10.
Methods Enzymol ; 673: 141-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965005

RESUMO

Translation initiation is the first step in protein synthesis, during which the small subunit of the ribosome scans the 5' untranslated region (5'UTR) of an mRNA to identify a start codon and commence translation elongation. By unwinding and modulating secondary structures and other RNA features present in the 5'UTR, RNA helicases can regulate ribosome scanning and start codon selection. This chapter presents an approach to measure the effect of RNA helicases on mRNA translation initiation. 5'UTR luciferase reporters are transcribed in vitro and employed in either of two assays. The in vitro assay translates the reporters in a cell-free whole-cell lysate system, which allows for greater biochemical manipulation and tighter control over confounding effects. In the alternative cell-based approach, the reporters are transfected and translated in living cells, which provides a more physiological setup. Either method can be used to investigate how the perturbation of a helicase, such as changes in protein levels or mutations, affects translation initiation at the 5'UTR level. The chapter also discusses alternative approaches, troubleshooting, and further applications of these methods. These assays will provide insights on the role of helicases and other translational factors as regulators of the proteome both in physiological and diseased settings.


Assuntos
Biossíntese de Proteínas , RNA Helicases , Regiões 5' não Traduzidas , Códon de Iniciação , Iniciação Traducional da Cadeia Peptídica , RNA Helicases/genética
11.
Nucleic Acids Res ; 50(15): 8818-8833, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892287

RESUMO

Noncoding, structured 5'-untranslated regions (5'-UTRs) of bacterial messenger RNAs (mRNAs) can control translation efficiency by forming structures that either recruit or repel the ribosome. Here we exploit a 5'-UTR embedded preQ1-sensing, pseudoknotted translational riboswitch to probe how binding of a small ligand controls recruitment of the bacterial ribosome to the partially overlapping Shine-Dalgarno (SD) sequence. Combining single-molecule fluorescence microscopy with mutational analyses, we find that the stability of 30S ribosomal subunit binding is inversely correlated with the free energy needed to unfold the 5'-UTR during mRNA accommodation into the mRNA binding cleft. Ligand binding to the riboswitch stabilizes the structure to both antagonize 30S recruitment and accelerate 30S dissociation. Proximity of the 5'-UTR and stability of the SD:anti-SD interaction both play important roles in modulating the initial 30S-mRNA interaction. Finally, depletion of small ribosomal subunit protein S1, known to help resolve structured 5'-UTRs, further increases the energetic penalty for mRNA accommodation. The resulting model of rapid standby site exploration followed by gated non-equilibrium unfolding of the 5'-UTR during accommodation provides a mechanistic understanding of how translation efficiency is governed by riboswitches and other dynamic structure motifs embedded upstream of the translation initiation site of bacterial mRNAs.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Riboswitch , Regiões 5' não Traduzidas , Bactérias/genética , Ligantes , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Riboswitch/genética
12.
Mol Cell ; 82(15): 2797-2814.e11, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35679869

RESUMO

mRNA function is influenced by modifications that modulate canonical nucleobase behavior. We show that a single modification mediates distinct impacts on mRNA translation in a position-dependent manner. Although cytidine acetylation (ac4C) within protein-coding sequences stimulates translation, ac4C within 5' UTRs impacts protein synthesis at the level of initiation. 5' UTR acetylation promotes initiation at upstream sequences, competitively inhibiting annotated start codons. Acetylation further directly impedes initiation at optimal AUG contexts: ac4C within AUG-flanking Kozak sequences reduced initiation in base-resolved transcriptome-wide HeLa results and in vitro utilizing substrates with site-specific ac4C incorporation. Cryo-EM of mammalian 80S initiation complexes revealed that ac4C in the -1 position adjacent to an AUG start codon disrupts an interaction between C and hypermodified t6A at nucleotide 37 of the initiator tRNA. These findings demonstrate the impact of RNA modifications on nucleobase function at a molecular level and introduce mRNA acetylation as a factor regulating translation in a location-specific manner.


Assuntos
Citidina , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Animais , Códon de Iniciação , Citidina/análogos & derivados , Citidina/genética , Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Commun Biol ; 5(1): 587, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705698

RESUMO

Accurate and high-speed scanning and subsequent selection of the correct start codon are important events in protein synthesis. Eukaryotic mRNAs have long 5' UTRs that are inspected for the presence of a start codon by the ribosomal 48S pre-initiation complex (PIC). However, the conformational state of the 48S PIC required for inspecting every codon is not clearly understood. Here, atomistic molecular dynamics (MD) simulations and energy calculations suggest that the scanning conformation of 48S PIC may reject all but 4 (GUG, CUG, UUG and ACG) of the 63 non-AUG codons, and initiation factor eIF1 is crucial for this discrimination. We provide insights into the possible role of initiation factors eIF1, eIF1A, eIF2α and eIF2ß in scanning. Overall, the study highlights how the scanning conformation of ribosomal 48S PIC acts as a coarse selectivity checkpoint for start codon selection and scans long 5' UTRs in eukaryotic mRNAs with accuracy and high speed.


Assuntos
Fator de Iniciação 1 em Eucariotos , Iniciação Traducional da Cadeia Peptídica , Regiões 5' não Traduzidas , Códon de Iniciação/genética , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(22): e2118099119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35605125

RESUMO

Initiation of protein synthesis from the correct start codon of messenger RNA (mRNA) is crucial to translation fidelity. In bacteria, the start codon is usually preceded by a 4- to 6-mer adenosine/guanosine-rich Shine­Dalgarno (SD) sequence. Both the SD sequence and the start codon comprise the core ribosome-binding site (RBS), to which the 30S ribosomal subunit binds to initiate translation. How the rather short and degenerate information inside the RBS can be correctly accommodated by the ribosome is not well understood. Here, we used single-molecule techniques to tackle this long-standing issue. We found that the 30S subunit initially binds to mRNA through the SD sequence, whereas the downstream RBS undergoes dynamic motions, especially when it forms structures. The mRNA is either dissociated or stabilized by initiation factors, such as initiation factor 3 (IF3). The initiator transfer RNA (tRNA) further helps the 30S subunit accommodate mRNA and unwind up to 3 base pairs of the RBS structure. Meanwhile, the formed complex of the 30S subunit with structured mRNA is not stable and tends to disassociate. IF3 promotes dissociation by dismissing the bound initiator tRNA. Thus, initiation factors may accelerate the dynamic assembly­disassembly process of 30S­mRNA complexes such that the correct RBS can be preferentially selected. Our study provides insights into how the bacterial ribosome identifies a typical translation initiation site from mRNA.


Assuntos
RNA de Transferência de Metionina , Ribossomos , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA de Transferência de Metionina/genética , Ribossomos/genética , Ribossomos/metabolismo
15.
Cells ; 11(9)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563748

RESUMO

Eukaryotic gene expression is controlled at multiple levels, including gene transcription and protein translation initiation. One molecule with key roles in both regulatory mechanisms is methyl CpG binding protein 2 (MeCP2). MECP2 gain- and loss-of-function mutations lead to Rett Syndrome and MECP2 Duplication Syndrome, respectively. To study MECP2 gain-of-function, we generated stably transduced human brain cells using lentiviral vectors for both MECP2E1 and MECP2E2 isoforms. Stable overexpression was confirmed by Western blot and immunofluorescence. We assessed the impact of MeCP2E1-E2 gain-of-function on the MeCP2 homeostasis regulatory network (MECP2E1/E2-BDNF/BDNF-miR-132), mTOR-AKT signaling, ribosome biogenesis, markers of chromatin structure, and protein translation initiation. We observed that combined co-transduction of MeCP2 isoforms led to protein degradation of MeCP2E1. Proteosome inhibition by MG132 treatment recovered MeCP2E1 protein within an hour, suggesting its induced degradation through the proteosome pathway. No significant change was detected for translation initiation factors as a result of MeCP2E1, MeCP2E2, or combined overexpression of both isoforms. In contrast, analysis of human Rett Syndrome brains tissues compared with controls indicated impaired protein translation initiation, suggesting that such mechanisms may have differential sensitivity to MECP2 gain- and loss-of-function. Collectively, our results provide further insight towards the dose-dependent functional role of MeCP2 isoforms in the human brain.


Assuntos
Encéfalo , Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Serina-Treonina Quinases TOR , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Homeostase , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Iniciação Traducional da Cadeia Peptídica , Isoformas de Proteínas/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Serina-Treonina Quinases TOR/metabolismo
16.
Nucleic Acids Res ; 50(10): 5424-5442, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35552740

RESUMO

Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.


Assuntos
Células Eucarióticas/metabolismo , Fatores de Iniciação em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 4G em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas
17.
Genome Biol ; 23(1): 111, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534899

RESUMO

Recent proteogenomic studies revealed extensive translation outside of annotated protein coding regions, such as non-coding RNAs and untranslated regions of mRNAs. This non-canonical translation is largely due to start codon plurality within the same RNA. This plurality is often due to the failure of some scanning ribosomes to recognize potential start codons leading to initiation downstream-a process termed leaky scanning. Codons other than AUG (non-AUG) are particularly leaky due to their inefficiency. Here we discuss our current understanding of non-AUG initiation. We argue for a near-ubiquitous role of non-AUG initiation in shaping the dynamic composition of mammalian proteomes.


Assuntos
Mamíferos , Ribossomos , Animais , Códon , Códon de Iniciação/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
18.
J Mol Biol ; 434(12): 167588, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35439479

RESUMO

The fidelity of initiator tRNA (i-tRNA) selection in the ribosomal P-site is a key step in translation initiation. The highly conserved three consecutive G:C base pairs (3GC pairs) in the i-tRNA anticodon stem play a crucial role in its selective binding in the P-site. Mutations in the 3GC pairs (3GC mutant) render the i-tRNA inactive in initiation. Here, we show that a mutation (E265K) in the unique C-terminal tail domain of RluD, a large ribosomal subunit pseudouridine synthase, results in compromised fidelity of initiation and allows initiation with the 3GC mutant i-tRNA. RluD modifies the uridine residues in H69 to pseudouridines. However, the role of its C-terminal tail domain remained unknown. The E265K mutation does not diminish the pseudouridine synthase activity of RluD, or the growth phenotype of Escherichia coli, or cause any detectable defects in the ribosomal assembly in our assays. However, in our in vivo analyses, we observed that the E265K mutation resulted in increased retention of the ribosome binding factor A (RbfA) on 30S suggesting a new role of RluD in contributing to RbfA release, a function which may be attributed to its (RluD) C-terminal tail domain. The studies also reveal that deficiency of RbfA release from 30S compromises the fidelity of i-tRNA selection in the ribosomal P-site.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Iniciação Traducional da Cadeia Peptídica , Proteínas Ribossômicas , Anticódon/genética , Anticódon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliases/química , Mutação , Pseudouridina/biossíntese , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
19.
J Mol Biol ; 434(11): 167578, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398145

RESUMO

Expression of mRNA is often regulated by the binding of a small RNA (miRNA, snoRNA, siRNA). While the pairing contribution to the net free energy is well parameterized and can be computed in O(N) time, the cost of removing pre-existing mRNA secondary structure has not received sufficient attention. Conventional methods for computing the unfolding free energy of a target mRNA are costly, scaling like the cube of the number of target bases O(N3). Here we introduce a model to describe the unfolding costs of the binding site, which features surprisingly big differences in the free energy parameters for the four bases. The model is implemented in our O(N) algorithm, BindOligoNet. Donor splice site prediction is more accurate when using our calculation of spliceosomal U1-snRNA to mRNA net binding free energy. Our base-dependent free energies also correlate with efficient ribosome docking near the start codon.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Splicing de RNA , RNA Mensageiro , Algoritmos , Sítios de Ligação , Conformação de Ácido Nucleico , Nucleotídeos , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Nuclear Pequeno/química , Spliceossomos/química , Termodinâmica
20.
Nucleic Acids Res ; 50(9): 5282-5298, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489072

RESUMO

Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2-GTP-Met-tRNAiMet and eIF3. The 'open' 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The 'closed' form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Códon de Iniciação/metabolismo , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Humanos , Mamíferos/genética , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...