Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.379
Filtrar
1.
Sci Total Environ ; 865: 161307, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36596421

RESUMO

Research utilizing the model soil nematode Caenorhabditis elegans has revealed that agriculturally relevant nanoparticles (NP), such as zinc oxide NP (ZnONP), cause toxicity at low concentrations and disrupt molecular pathways of pathogen resistance. However, in most nanotoxicity assessments, model organisms are exposed to a single stressor but in nature organisms are affected by multiple sources of stress, including infections, which might exacerbate or mitigate negative effects of NP exposure. Thus, to expand our understanding of the environmental consequences of released NP, this project examined the synergistic/antagonistic effects of ZnONP on C. elegans infected with a common pathogen, Klebsiella pneumoniae. Individual exposures of C. elegans to ZnONP, zinc sulfate (Zn2+ ions) or K. pneumoniae significantly decreased nematode reproduction compared to controls. To assess the combined stress of ZnONP and K. pneumoniae, C. elegans were exposed to equitoxic EC30 concentrations of ZnONP (or Zn ions) and K. pneumoniae. After the combined exposure there was no decrease in reproduction. This complete elimination of reproductive toxicity was unexpected because exposures were conducted at EC30 Zn concentrations and reproductive toxicity due to Zn should have occurred. Amelioration of the pathogen effects by Zn are partially explained by the Zn impact on the K. pneumoniae biofilm. Quantitative assessments showed that external biofilm production and estimated colony forming units (CFU) of K. pneumoniae within the nematodes were significantly decreased. Taken together, our results suggest that during the combined exposure of C. elegans to both stressors Zn in ionic or particulate form inhibits K. pneumoniae ability to colonize nematode's intestine through decreasing pathogen biofilm formation. This highlights the unpredictable nature of combined stressor effects, calling into question the utility of exposures in simplified laboratory media.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Caenorhabditis elegans , Óxido de Zinco/farmacologia , Klebsiella pneumoniae , Solo , Nanopartículas/toxicidade , Íons/metabolismo
2.
Nat Commun ; 14(1): 84, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604414

RESUMO

Nuclear magnetic resonance relaxometry represents a powerful tool for extracting dynamic information. Yet, obtaining links to molecular motion is challenging for many ions that relax through the quadrupolar mechanism, which is mediated by electric field gradient fluctuations and lacks a detailed microscopic description. For sodium ions in aqueous electrolytes, we combine ab initio calculations to account for electron cloud effects with classical molecular dynamics to sample long-time fluctuations, and obtain relaxation rates in good agreement with experiments over broad concentration and temperature ranges. We demonstrate that quadrupolar nuclear relaxation is sensitive to subpicosecond dynamics not captured by previous models based on water reorientation or cluster rotation. While ions affect the overall water retardation, experimental trends are mainly explained by dynamics in the first two solvation shells of sodium, which contain mostly water. This work thus paves the way to the quantitative understanding of quadrupolar relaxation in electrolyte and bioelectrolyte systems.


Assuntos
Sódio , Água , Sódio/química , Íons/química , Espectroscopia de Ressonância Magnética , Água/química , Eletrólitos
3.
Top Curr Chem (Cham) ; 381(1): 7, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607442

RESUMO

The incorporation of aryl substituents at the meso-positions of calix[4]pyrrole (C4P) scaffolds produces aryl-extended (AE) and super-aryl-extended (SAE) calix[4]pyrroles. The cone conformation of the all-α isomers of "multi-wall" AE-C4Ps and SAE-C4Ps displays deep aromatic clefts or cavities. In particular, "four-wall" receptors feature an aromatic polar cavity closed at one end with four convergent pyrrole rings and fully open at the opposite end. This makes AE- and SAE-C4P scaffolds effective receptors for the molecular recognition of negatively charged ions and neutral guest molecules with donor-acceptor and hydrogen bonding motifs. In addition, adequately functionalized all-α isomers of multi wall AE- and SAE-C4P scaffolds self-assemble into uni-molecular and supra-molecular aggregates displaying capsular and cage-like structures. The self-assembly process requires the presence of template ions or molecules that lock the C4P cone conformation and complementing the inner polar functions and volumes of their cavities. We envisioned performing an in-depth revision of AE- and SAE-C4P scaffolds owing to their importance in different domains such as supramolecular chemistry, biology, material sciences and pharmaceutical chemistry. Herewith, besides the synthetic details on the elaboration of their structures, we also draw attention to their diverse applications. The organization of this review is mainly based on the number of "walls" present in the AE-C4P derivatives and their structural modifications. The sections are further divided based on the C4P functions and applications. The authors are convinced that this review will be of interest to researchers working in the general area of supramolecular chemistry as well as those involved in the study of the binding properties and applications of C4P derivatives.


Assuntos
Porfirinas , Pirróis , Pirróis/química , Porfirinas/química , Modelos Moleculares , Íons/química , Conformação Molecular
4.
J Appl Lab Med ; 8(1): 53-66, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610415

RESUMO

BACKGROUND: Ultra-performance liquid chromatography (UPLC)-MSE/quadrupole time-of-flight (QTOF) high-resolution mass spectrometry employs untargeted, data-independent acquisition in a dual mode that simultaneously collects precursor ions and product ions at low and ramped collision energies, respectively. However, algorithmic analysis of large-scale multivariate data of comprehensive drug screening as well as the positivity criteria of drug identification have not been systematically investigated. It is also unclear whether ion ratio (IR), the intensity ratio of a defined product ion divided by the precursor ion, is a stable parameter that can be incorporated into the MSE/QTOF data analysis algorithm. METHODS: IR of 91 drugs were experimentally determined and variation of IR was investigated across 5 concentrations measured on 3 different days. A data-driven machine learning approach was employed to develop multivariate linear regression (MLR) models incorporating mass error, retention time, number of detected fragment ions and IR, accuracy of isotope abundance, and peak response using drug-supplemented urine samples. Performance of the models was evaluated in an independent data set of unknown clinical urine samples in comparison with the results of manual analysis. RESULTS: IR of most compounds acquired by MSE/QTOF were low and concentration-dependent (i.e., IR increased at higher concentrations). We developed an MLR model with composite score outputs incorporating 7 parameters to predict positive drug identification. The model achieved a mean accuracy of 89.38% in the validation set and 87.92% agreement in the test set. CONCLUSIONS: The MLR model incorporating all contributing parameters can serve as a decision-support tool to facilitate objective drug identification using UPLC-MSE/QTOF.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Íons
5.
Top Curr Chem (Cham) ; 381(1): 8, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36624333

RESUMO

Photochromic compounds of the spiropyran family have two main isomers capable of inter-switching with UV or visible light. In the current review, we discuss recent advances in the synthesis, investigation of properties, and applications of spiropyran derivatives. Spiropyrans of the indoline series are in focus as the most promising representatives of multi-sensitive spirocyclic compounds, which can be switched by a number of external stimuli, including light, temperature, pH, presence of metal ions, and mechanical stress. Particular attention is paid to the structural features of molecules, their influence on photochromic properties, and the reactions taking place during isomerization, as the understanding of the structure-property relationships will rationalize the synthesis of compounds with predetermined characteristics. The main prospects for applications of spiropyrans in such fields as smart material production, molecular electronics and nanomachinery, sensing of environmental and biological molecules, and photopharmacology are also discussed.


Assuntos
Benzopiranos , Nitrocompostos , Estrutura Molecular , Benzopiranos/química , Nitrocompostos/química , Íons
6.
Phys Med Biol ; 68(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36625355

RESUMO

Objective.Carbon is an ion species of significant radiobiological interest, particularly in view of its use in cancer radiotherapy, where its large Relative Biological Efficiency is often exploited to overcome radio resistance. A growing interest in highly pulsed carbon delivery has arisen in the context of the development of the FLASH radiotherapy approach, with recent studies carried out at dose rates of 40 Gy s-1. Laser acceleration methods, producing ultrashort ion bursts, can now enable the delivery of Gy-level doses of carbon ions at ultra-high dose rates (UHDRs), exceeding 109Gy s-1. While studies at such extreme dose rate have been carried out so far using low LET particles such as electrons and protons, the radiobiology of high-LET, UHDR ions has not yet been explored. Here, we report the first application of laser-accelerated carbon ions generated by focussing 1020W cm-2intense lasers on 10-25 nm carbon targets, to irradiate radioresistant patient-derived Glioblastoma stem like cells (GSCs).Approach.We exposed GSCs to 1 Gy of 9.5 ± 0.5 MeV/n carbon ions delivered in a single ultra-short (∼400-picosecond) pulse, at a dose rate of 2 × 109Gy s-1, generated using the ASTRA GEMINI laser of the Central Laser Facility at the Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK. We quantified carbon ion-induced DNA double strand break (DSB) damage using the 53BP1 foci formation assay and used 225 kVp x-rays as a reference radiation.Main Results.Laser-accelerated carbon ions induced complex DNA DSB damage, as seen through persistent 53BP1 foci (11.5 ± 0.4 foci/cell/Gy) at 24 h and significantly larger foci (1.69 ± 0.07µm2) than x-rays induced ones (0.63 ± 0.02µm2). The relative foci induction value for laser-driven carbon ions relative to conventional x-rays was 3.2 ± 0.3 at 24 h post-irradiation also confirming the complex nature of the induced damage.Significance.Our study demonstrates the feasibility of radiobiology investigations at unprecedented dose rates using laser-accelerated high-LET carbon ions in clinically relevant models.


Assuntos
Quebras de DNA de Cadeia Dupla , Prótons , Humanos , Células Cultivadas , Íons , DNA , Lasers , Carbono/uso terapêutico
7.
Food Res Int ; 163: 112307, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36596203

RESUMO

Binuclear copper ions at the active site determine the catalysis of tyrosinase (TYR)1 whose activity can be inhibited by copper's chelation with other compounds. In this study, tilapia (Oreochromis niloticus) skin was used to generate TYR-inhibitory peptides after being treated by different enzymes and 4 h-Alcaline protease hydrolysate exhibited the highest TYR inhibition and copper chelation. Immobilized metal affinity chromatography was used for purifying copper chelating peptides, among which PFRMY (IC50: 0.43 ± 0.08 mg/mL) and RGFTGM (IC50: 1.61 ± 0.04 mg/mL) exhibited the highest TYR-inhibitory capacity and the lowest docking energy. Both two peptides inhibited TYR in a mixed manner and interacted with key residues binding to copper ions within TYR mainly by hydrogen bonds and hydrophobic forces, while PFRMY had a more compact and stable conjugation with TYR. Zebrafish assay revealed that PFRMY reduced not only melanin synthesis but in vivo TYR activity.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/metabolismo , Ciclídeos/metabolismo , Monofenol Mono-Oxigenase , Cobre , Peixe-Zebra/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Íons
8.
Sci Rep ; 13(1): 437, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624146

RESUMO

Eggshells offer many advantages as adsorbents, such as affordability without special preparations other than pulverization and calcination. However, the manufacturing industry generally has a severe problem with high concentrations of heavy metals in wastewater. The purpose of this study was to use eggshell byproducts and calcined eggshell treatment for the adsorption of copper in an aqueous solution. The reaction time, metal concentration, adsorbent dose, temperature, and pH were evaluated using primary factors followed by the response surface method (RSM) to investigate the optimum conditions for eggshell byproducts and calcined eggshell adsorption treatment. The results of the one-factor-at-a-time experiment showed that the optimal adsorption rate was obtained from treatment at 24 h, 25 mg/L, 10 mg, and 25 °C. In addition, the effect of pH on the adsorption rates of eggshells and eggshells with membrane were detected at pH values of 5 and 5.9 and found to be 95.2, 90.5, and 73.3%. The reaction surface experiment showed that the best adsorption rate reached 99.3% after calcination at 900 °C for 2 h and a 20 min reaction. The results showed that eggshells, eggshell membranes, eggshells with membrane, and calcined eggshells could be applied to remove copper ions from industrial wastewater. The adsorption capacity of the calcined eggshell is better than that of the non-calcined eggshell and has good neutrality in acidic industrial wastewater. Therefore, it is convenient and practical for practical production and application. Likewise, this study conveys promising findings in the context of improving wastewater treatment based on a circular economy approach to waste reuse in the food industry and represents a valuable direction for future research.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Cobre , Casca de Ovo/química , Água , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Cinética , Íons
9.
Anal Chim Acta ; 1239: 340556, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628696

RESUMO

A feasible, fast and reliable method for estimating ion association constants in PVC plasticized membranes of ion-selective electrodes from potentiometric data has been theoretically and experimentally substantiated. The method is based on the established fact of complete dissociation of salts of quaternary ammonium cations R4N + An‒ (except for those containing methyl substituents at the nitrogen atom) in a membrane plasticized with o-nitrophenyl octyl ether (o-NPOE). Therefore, the boundary potential at the interface of the membrane with an aqueous solution of R4N+ depends only upon the concentrations of the corresponding solution and the ion exchanger in the membrane and is independent of the presence of a lipophilic ionic additive (LIA), which makes it possible to use such ions as reference ones in the internal filling solution. If the ions studied (i+) are capable of forming ion associates with the ion exchanger, then the introduction of LIA into the membrane will lead to a decrease in the concentration of free i+ ions and to a corresponding increase in the boundary potential, from which the ion association constant can be directly calculated. The results obtained agree with the known literature data and the results of quantum chemical calculations. The prospective of applying the proposed method to the study of other membrane compositions is discussed.


Assuntos
Eletrodos Seletivos de Íons , Membranas Artificiais , Íons , Potenciometria , Etil-Éteres
10.
Anal Chim Acta ; 1239: 340725, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628725

RESUMO

Because R/S-mandelic acids (MA) and their derivatives are critical starting materials or intermediates in the synthesis of chiral drugs, their chirality discrimination is important. In this study, R/S-MA and its derivatives, including R/S-2-phenylpropionic acid (2-PPA), R/S-methoxyphenylaceticacid (MPA), and R/S-2-hydroxy-4-phenylbutyric acid (HPBA), were accurate simultaneous mobility-discriminated by forming diastereomer complexes for the first time, which were obtained by simply mixing with cyclodextrins (α, ß, γ-CD) and transition-metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+). The mass spectra revealed non-covalent diastereomer complexes formed by CD, enantiomers, and metal ions, and ion-mobility spectrometry (IMS) was performed for 109 pairs of complexes. Significant chiral discrimination was observed in the formed diastereomeric complexes, and their separation peak-to-peak resolution (Rp-p) for the enantiomers depended on the transition metal ion type. In most cases, the Rp-p value gradually increases with CD size, with quaternary complexes having the largest Rp-p value. The greatest chiral distinctions of 2-PPA, MA, MPA, and HPBA were obtained by the diastereomeric complex ions of [(2-PPA)(α)2+Zn2+-H]+, [(MA)(α)2+Zn2+-H]+, [(MPA)2(ß)+Co2+-H]+, and [(HPBA)(α)2+Fe2+-H]+, with Rp-p values of 1.35, 1.57, 1.70, and 0.71, respectively. Furthermore, the favorable conformation and collisional cross section (CCS) value of the different [CD + R/S-MA + Cu-H]+ complexes were measured using chemical theoretical calculations to detail their intermolecular interaction, revealing that [α-CD + R/S-MA + Cu-H]+ has two favored gas complexes, and the CCS calculated were consistent with the TIMS observed. In addition, R2 > 0.99 was obtained for the relative quantification of the chiral enantiomers. Overall, the proposed method provides a promising strategy for distinguishing the enantiomers of MA and their derivatives, with the advantages of simplicity, speed, and accuracy, without the need for complex chemical derivatization or chromatographic separation.


Assuntos
Ciclodextrinas , Ácidos Mandélicos , Ácidos Mandélicos/química , Ciclodextrinas/química , Espectrometria de Massas , Íons , Estereoisomerismo
11.
Anal Chim Acta ; 1239: 340649, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628746

RESUMO

Here, we present a new and an easy to assemble dielectric barrier discharge plasma ionization source based on printed circuit boards with two parallel isolated electrodes for generating a plasma inside an inert fused silica capillary. For demonstration, this plasma source is coupled to an ion mobility spectrometer. With two different sample gas feeds the analytes can either pass through the plasma or bypass the plasma before entering the reaction region of the ion mobility spectrometer, allowing for different ionization pathways, e.g. electron impact ionization, ionization by excited species, e.g. helium metastables, or chemical ionization via reactant ions generated inside or downstream of the plasma. The plasma source, in particular, the electrode geometry and the capillary diameter were designed with the help of electric field simulations. A rectangular electrode with a height of at least twice the outer diameter of the capillary turned out to be ideal, in both the simulation and the experiment. Furthermore, a simple control electronics has been developed, which can be easily applied to other plasma sources. With the plasma source presented here, detection limits in the mid pptv range have been reached.


Assuntos
Íons
12.
Anal Chim Acta ; 1239: 340671, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628754

RESUMO

Iron ions, one of the most common heavy metal pollutants in industrial waste materials, are continuously actively or passively delivered to the environment. Meanwhile, the importance of Fe3+ in biological processes in vivo can not be neglected due to its crucial role in maintaining normal physiological function. Therefore, a ratiometric fluorescence covalent organic framework (TD-COF) was constructed for tracking-by-detection of Fe3+. Alkynes-extended 1,3,6,8-tetrakis(4-ethynyl benzaldehyde)-pyrene (TEBPY) with complete planar structure and 2,5-dihydroxyterephthalohydrazide (DHTH) with functional group -OH were selected as the building blocks. The ratiometric fluorescence TD-COF with a dandelion-like structure exhibited its dual emission peaked at 510 nm and 630 nm. It displayed an obvious fluorescence color variation of yellow-red-black in the presence of Fe3+. Benefiting from the high luminescent efficiency (QY of 36.4%) and multiple identical binding sites, TD-COF exhibited a wide linear range to Fe3+ (0.005-50 µM) with a detection limit of 10.9 nM. Additionally, a smartphone visual sensing platform integrated with TD-COF was developed based on the color transformation and successfully applied to visual smart real-time monitoring Fe3+. More surprisingly, the maximum adsorption capacity of TD-COF towards Fe3+ was 833.3 mg/g due to the coordination interaction and cationic π-effect. The practicability of the smartphone-integrated ratiometric sensing platform for visual tracking-by-detection of Fe3+ was verified by choosing tap water as the actual sample, and the recoveries were calculated to be 98.71-100.88%. This work thus developed COF-based ratiometric sensing of Fe3+, which is an attractive candidate for further application in fluorescent sensing and visual monitoring.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Limite de Detecção , Íons , Ferro , Corantes Fluorescentes/química , Espectrometria de Fluorescência
13.
Anal Chim Acta ; 1239: 340730, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628773

RESUMO

In this work, we report the development of a new type of highly active and stable Bi-based electrode material, i.e., BiCu metal-organic frames (MOF) derived carbon film (CF) encapsulating BiCu alloy nanoparticles (BiCu-ANPs) for electrochemical sensing. The integration of Bi with Cu to form BiCu-ANPs can improve their electrocatalytic activity as well as the acid resistance. Meanwhile, the carbon film that encapsulates BiCu-ANPs not only guarantees the BiCu-ANPs with high electrical conductivity and fast electrochemical kinetics but also effectively alleviates the volume change during the adsorption and desorption of heavy metal (HM) ions. Therefore, the as-obtained CF encapsulating BiCu-ANPs (BiCu-ANPs@CF) exhibits fully exposed active sites, facile charge transfer, high stability and conductivity, which gives rise to enhanced sensitivity and stability for the electrochemical detection of HM ions. When integrated into a potable electrochemical sensing system for simultaneous detection of Pb2+, Cd2+ and Zn2+, the BiCu-ANPs@CF modified electrode exhibits low detection limit (i.e., 0.081 ppb for Pb2+, 0.95 ppb for Cd2+, 35 ppb for Zn2+), wide detection range (i.e., 0.5-700 ppb for Pb2+, 5-900 ppb for Cd2+, 150-600 ppb for Zn2+) and good anti-interference. Finally, the system has been used for on-site detection of multiplexed HM ions in human biological liquids and environmental water with a good spiked recovery rate, which demanstrates its promise application in the future for on-site monitoring of human health and pollutants in water quality.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Humanos , Carbono , Cádmio/química , Ligas , Chumbo , Metais Pesados/química , Íons
14.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615547

RESUMO

In this study, a new series of phosphors, Ca9-xZnxGd0.9(PO4)7:0.1Eu3+ (x = 0.00-1.00, step dx 0.05), was synthesized, consisting of centro- and non-centrosymmetric phases with ß-Ca3(PO4)2-type structure. Crystal structures with space groups R3c (0.00 ≤ x < 0.35) and R3¯c (x > 0.8) were determined using X-ray powder diffraction and the method of optical second harmonic generation. In the region 0.35 ≤ x ≤ 0.75, phases R3c and R3¯c were present simultaneously. Refinement of the Ca8ZnGd(PO4)7 crystal structure with the Rietveld method showed that 71% of Gd3+ ions are in M3 sites and 29% are in M1 sites. A luminescent spectroscopy study of Ca9-xZnxGd0.9(PO4)7:0.1Eu3+ indicated the energy transfer from the crystalline host to the Gd3+ and Eu3+ luminescent centers. The maximum Eu3+ luminescence intensity corresponds to the composition with x = 1.


Assuntos
Substâncias Luminescentes , Substâncias Luminescentes/química , Európio/química , Luminescência , Íons , Zinco
15.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615635

RESUMO

Copper-containing wastewater is a significant problem in the water industry. In this work, biosorption of copper ions on alginate beads have been considered as a promising solution. The effective diffusion coefficient De is the parameter describing the diffusion of copper ions in calcium alginate granules. Granules with a wide spectrum of alginate content from several to several dozen percent (0.6-20%) were tested. The granules with an alginate content of 20% were produced by a new method. The conductometric method was used to determine De. The study determined the De values depending on the process parameters (temperature and pH of copper solutions) and the alginate content in the granules. The RSM method was used to analyze the obtained results. The conducted research proved that all analyzed factors significantly affect the value of the diffusion coefficient (R2 = 0.98). The optimum operating conditions for biosorption of copper ions from CuCl2 salt, on alginate beads obtained by RSM were as follows: 0.57% of alginate content in the granules, temperature of 60.2 °C, and pH of 2. The maximum value of De was found to be 2.42·10-9 m2/s.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/química , Adsorção , Alginatos/química , Íons , Concentração de Íons de Hidrogênio , Cinética
16.
Chemosphere ; 316: 137851, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642130

RESUMO

The heavy metal contaminant arsenic exist in the form of arsenite (As(III)) and arsenate (As(V)) ions. These ions are highly carcinogenic that are usually present in the ground water. To date, most of the designed polymer inclusion membrane (PIM) involved only about separation without differentiating the oxidation states. Thus, there is a research gap on separation of element with different oxidation states. Thus, this study addresses such research gap which have been not explored previously. To extract such ions from water, the present study involves fabrication of PIM by varying the compositions of the base polymer, carrier and plasticizer. Also effect of the strip solution, and transport properties were studied. High performance membrane was obtained with 50% (w/w) Aliquat 336 and 50% (w/w) Cellulose triacetate (CTA). The production of 1 m2 of PIM may cost approximately 0.08-0.16$. Also, we have combined the separation capacity of polymer inclusion membrane (PIM) with the sensitivity and elemental detection using atomic absorption spectrometry (AAS) to detect and separate As(III) and As(V). AAS is limited to detecting only elemental arsenic (As) and does not distinguish between As(III) and As(V). Further, to address such limitations in this current study we were able to separate As(V) from As(III) within 5 h. In addition, to provide sole solution a device was fabricated to extract As(V) in the field studies which displayed outstanding efficiency of 99.7 ± 0.2%. The extracted samples was tested in AAS to differentiate between oxidation states of the arsenic species and these important results are supportive in finding out the redox potential of water and for other geochemical explorations.


Assuntos
Arsênio , Polímeros , Polímeros/química , Membranas Artificiais , Água , Íons
17.
J Chem Inf Model ; 63(2): 412-431, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36630710

RESUMO

Force fields (FFs) for molecular simulation have been under development for more than half a century. As with any predictive model, rigorous testing and comparisons of models critically depends on the availability of standardized data sets and benchmarks. While such benchmarks are rather common in the fields of quantum chemistry, this is not the case for empirical FFs. That is, few benchmarks are reused to evaluate FFs, and development teams rather use their own training and test sets. Here we present an overview of currently available tests and benchmarks for computational chemistry, focusing on organic compounds, including halogens and common ions, as FFs for these are the most common ones. We argue that many of the benchmark data sets from quantum chemistry can in fact be reused for evaluating FFs, but new gas phase data is still needed for compounds containing phosphorus and sulfur in different valence states. In addition, more nonequilibrium interaction energies and forces, as well as molecular properties such as electrostatic potentials around compounds, would be beneficial. For the condensed phases there is a large body of experimental data available, and tools to utilize these data in an automated fashion are under development. If FF developers, as well as researchers in artificial intelligence, would adopt a number of these data sets, it would become easier to compare the relative strengths and weaknesses of different models and to, eventually, restore the balance in the force.


Assuntos
Inteligência Artificial , Benchmarking , Simulação por Computador , Íons
18.
Dalton Trans ; 52(4): 909-918, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36594631

RESUMO

A two-dimensional (2D) cobalt(II) metal-organic framework (MOF) constructed by a ditopic organic ligand, formulated as {[Co(Hbic)(H2O)]·4H2O}n (1) (H2bic = 1H-benzimidazole-5-carboxylic acid), was hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction shows that the distorted octahedral Co2+ ions, as coordination nodes, are bridged to form 2D honeycomb networks, which are further organized into a 3D supramolecular porous framework through multiple hydrogen bonds and interlayer π-π interactions. Dynamic crystallography experiments reveal the anisotropic thermal expansion behavior of the lattice, suggesting a flexible hydrogen-bonded 3D framework. Interestingly, hydrogen-bonded (H2O)4 tetramers were found to be located in porous channels, yielding 1D proton transport pathways. As a result, the compound exhibited a high room-temperature proton conductivity of 1.6 × 10-4 S cm-1 under a relative humidity of 95% through a Grotthuss mechanism. Magnetic investigations combined with theoretical calculations reveal giant easy-plane magnetic anisotropy of the distorted octahedral Co2+ ions with the experimental and computed D values being 87.1 and 109.3 cm-1, respectively. In addition, the compound exhibits field-induced slow magnetic relaxation behavior at low temperatures with an effective energy barrier of Ueff = 45.2 cm-1. Thus, the observed electrical and magnetic properties indicate a rare proton conducting SIM-MOF. The foregoing results provide a unique bifunctional cobalt(II) framework material and suggest a promising way to achieve magnetic and electrical properties using a supramolecular framework platform.


Assuntos
Cobalto , Prótons , Cobalto/química , Temperatura , Porosidade , Íons , Fenômenos Magnéticos
19.
J Radiol Prot ; 43(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36599152

RESUMO

Hadron radiation therapy is of great interest worldwide. Heavy-ion beams provide ideal therapeutic conditions for deep-seated local tumours. At the Heidelberg Ion Beam Therapy Center (HIT, Germany), protons and carbon ions are already integrated into the clinical routine, while16O ions are still used for research only. To ensure the protection of the technical staff and members of the public, it is required to estimate the neutron dose distribution for optimal working conditions and at different locations. The Particle and Heavy Ion Transport Code System (PHITS) is used in this work to evaluate the dose rate distribution of secondary neutrons in a treatment room at HIT where16O ions are used: an equivalent target in soft tissue is considered in the shielding assessment to simulate the interaction of the beam with patients. The angular dependence of neutron fluences and energy spectra around the considered phantom were calculated. Alongside the spatial distribution of the neutron and photon fluence, a map of the effective dose rate was estimated using the ICRP fluence-to-effective dose conversion coefficients, exploiting the PHITS code's built-in capabilities. The capability of the actual shielding design of the studied HIT treatment room was approved.


Assuntos
Nêutrons , Humanos , Doses de Radiação , Método de Monte Carlo , Transporte de Íons , Íons
20.
Chem Commun (Camb) ; 59(8): 1038-1041, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602009

RESUMO

The ability of spectator metal ions such as vanadium to enhance the electrochemical performance of supercapacitors has been explained. Vanadium-incorporated CoO(OH) combined with NiMn-layered double hydroxide (LDH) yields a specific capacitance of 1700 F g-1 at 1 A g-1 with 96% retention after 5000 cycles. The assembled asymmetric supercapacitor exhibits an energy density of 45.93 W h Kg-1 and a power density of 752 W kg-1@1 A g-1.


Assuntos
Óxidos , Vanádio , Oxirredução , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...