Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.229
Filtrar
1.
Adv Drug Deliv Rev ; 196: 114817, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004938

RESUMO

Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs. Here, we review smart contact lens systems which can be classified into two groups of drug-eluting contact lens and ocular device contact lens. More specifically, this review covers smart contact lens systems with nanocomposite-laden systems, polymeric film-incorporated systems, micro and nanostructure systems, iontophoretic systems, electrochemical systems, and phototherapy systems for ocular drug delivery and therapy. After that, we discuss the future opportunities, challenges and perspectives of smart contact lens systems for ocular drug delivery and therapy.


Assuntos
Lentes de Contato , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanocompostos/química , Iontoforese , Eletroquímica , Fotoquímica , Humanos , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-36905622

RESUMO

BACKGROUND: The purpose of this study was to evaluate the effectiveness of tap water iontophoresis as a treatment for plantar hyperhidrosis. METHODS: Thirty participants living with idiopathic plantar hyperhidrosis and consented to undergo treatment using iontophoresis were recruited. The Hyperhidrosis Disease Severity Score was used to evaluate the severity of the condition before and after treatment. RESULTS: Tap water iontophoresis was found to be effective in the treatment of plantar hyperhidrosis in the study group (P = .005). CONCLUSIONS: Treatment with iontophoresis led to the reduction of disease severity and improvement of quality of life, and it is a safe, easy-to-use method with minimal side effects. This technique should be considered before the use of systemic or aggressive surgical interventions, which could have potentially more severe side effects.


Assuntos
Hiperidrose , Iontoforese , Humanos , Iontoforese/efeitos adversos , Iontoforese/métodos , Qualidade de Vida , Água
3.
Biol Pharm Bull ; 46(3): 494-504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858579

RESUMO

Although the strategy in cancer vaccination is to provide a therapeutic effect against an established tumor, there is an urgent need to develop prophylactic vaccines for non-viral cancers. In this study, we prepared polyplex nanoparticles through electrostatic interactions between a positively-charged modified tumor associated antigen, namely human derived melanoma gp10025-33 peptide (KVPRNQDWL-RRRR), and a negatively charged cytosine-phosphate-guanosine motif (CpG-ODN) adjuvant. We previously demonstrated successful transdermal delivery of various hydrophilic macromolecules by iontophoresis (IP) using weak electricity. Herein, we investigated the effectiveness of IP in the transdermal delivery of a prophylactic polyplex vaccine. IP was successful in establishing a homogenous distribution of the vaccine throughout skin. Efficacy of the vaccine was demonstrated against melanoma growth. A significant tumor regression effect was observed, which was confirmed by elevated mRNA expression levels of various cytokines, mainly interferon (IFN)-γ, as well as infiltration of cytotoxic CD8+ T cells. Additionally, we evaluated the therapeutic effect of the vaccine and we found a significant reduction in tumor burden. Stimulation of systemic immunity was confirmed by upregulation of IFN-γ. This is the first report to demonstrate the use of IP in the transdermal delivery of a prophylactic melanoma vaccine.


Assuntos
Vacinas Anticâncer , Melanoma , Humanos , Iontoforese , Linfócitos T CD8-Positivos , Interferon gama
4.
Artigo em Inglês | MEDLINE | ID: mdl-36901312

RESUMO

BACKGROUND: Carpal tunnel syndrome is a neuropathy that affects the median nerve. The aim of this review is to synthesize the evidence and perform a meta-analysis on the effects of iontophoresis in people with carpal tunnel syndrome. METHODS: The search was carried out using PubMed, Web of Science, Scopus, CINHAL Complete, Physiotherapy Evidence Database, and SciELO. The methodological quality was evaluated using PEDro. A standardized or mean difference meta-analysis (Hedge's g) using a random-effects model was calculated. RESULTS: Seven randomized clinical trials using iontophoresis for electrophysiological, pain, and functional outcomes were included. The mean of PEDro was 7/10. No statistical differences were obtained for the median sensory nerve conduction velocity (SMD = -0.89; p = 0.27) or latency (SMD = -0.04; p = 0.81), motor nerve conduction velocity (SMD = -0.04; p = 0.88) or latency (SMD = -0.01; p = 0.78), pain intensity (MD = 0.34; p = 0.59), handgrip strength (MD = -0.97; p = 0.09), or pinch strength (SMD = -2.05; p = 0.06). Iontophoresis only seemed to be superior in sensory amplitude (SMD = 0.53; p = 0.01). CONCLUSIONS: Iontophoresis did not obtain an enhanced improvement compared to other interventions, but no clear recommendations could be made due to the limited number of included studies and the heterogeneity found in the assessment and intervention protocols. Further research is needed to draw sound conclusions.


Assuntos
Síndrome do Túnel Carpal , Humanos , Iontoforese , Força da Mão , Corticosteroides/uso terapêutico , Medição da Dor
5.
Crit Care ; 27(1): 116, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944989

RESUMO

BACKGROUND: Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare disease characterized by arteriolar and capillary microthrombosis precipitating organ failure. However, the contribution of endothelial dysfunction on impaired microvascular blood flow in iTTP patients has been poorly explored. This pilot observational study aimed to explore endothelial-mediated vasoreactivity in iTTP patients at admission and its changes after plasma exchange therapy (PE). METHODS: We conducted a prospective observational study in patients (> 18-year old) admitted in ICU for iTTP. Using laser Doppler flowmetry and acetylcholine (Ach) iontophoresis in the forearm, we recorded the skin microvascular blood flow and the endothelium-mediated vasoreactivity at admission and after PE. Demographics, biological, clinical courses, and outcomes were also collected. As a control group, we used a previously published cohort of young diabetic patients after correction of ketoacidosis. RESULTS: Eighteen confirmed iTTP patients and 34 controls were included in the study, mainly female (72%) aged 43 ± 16-year-old. At admission, 55% had neurological abnormalities, 50% cardiac issues and 27.8% an acute kidney injury. Median platelet count was 19 G/mL [10-37]. Baseline microvascular blood flow was decreased in iTTP patients when compared to controls (5.97 ± 4.5 vs. 10.1 ± 6.3 PU, P = 0.03), associated with markedly impaired endothelial-mediated skin microvascular reactivity (AUC: 9627 ± 8122 vs. 16,475 ± 11,738, P = 0.03). Microvascular reactivity improved after the first PE session (AUC: 9627 ± 8122 vs 16,558 ± 10,699, P = 0.007, respectively, baseline and post-PE1) and much more after the second session (26,431 ± 23,181, P = 0.04 post-PE1 vs post-PE2). Hemolysis biomarkers (LDH and bilirubin) negatively correlated with skin microvascular flow and vasoreactivity. CONCLUSION: We highlighted a marked yet reversible skin endothelium-mediated microvascular hyporeactivity in iTTP patients that could participate in organ injury pathophysiology.


Assuntos
Púrpura , Pele , Humanos , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Masculino , Acetilcolina , Capilares , Iontoforese , Proteína ADAMTS13
6.
Chem Commun (Camb) ; 59(23): 3339-3359, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815500

RESUMO

The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.


Assuntos
Absorção Cutânea , Pele , Humanos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Iontoforese/métodos , Preparações Farmacêuticas/metabolismo , Microinjeções/métodos
7.
Bioelectrochemistry ; 151: 108374, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36750011

RESUMO

Iontophoresis, a non-invasive application of a constant low-intensity electric current, is a promising strategy to accelerate wound healing. Although its mechanisms are not yet fully elucidated, part of its action seems related to inhibiting bacteria growth. This work aimed to investigate the antimicrobial effect of iontophoresis using Staphylococcus epidermidis and Escherichia coli strains, Gram-positive and Gram-negative bacteria, respectively. Anodic iontophoresis was applied to each bacterial suspension using Ag/AgCl electrodes, and bacteria viability was evaluated after 24 h incubation by counting colony-forming units. A Quality-by-Design approach was performed to assess the influence of the iontophoresis' intensity and application time on bacterial viability. Cell morphology was evaluated by scanning electron microscopy. Iontophoresis showed antimicrobial effects on the Gram-positive bacteria only at 5 mA and 60 min application. However, a linear relationship was observed between intensity and application time for the Gram-negative one, causing drastic morphological changes and up to 98 % death. The cell wall of Gram-negative bacteria seems more susceptible to disorganization triggered by iontophoresis-induced ion transport than Gram-positive ones. Therefore, anodic iontophoresis can be a powerful ally in controlling Gram-negative bacteria proliferation in wounds.


Assuntos
Bactérias Gram-Negativas , Iontoforese , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Escherichia coli
8.
Talanta ; 256: 124276, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731212

RESUMO

Electrochemical immunosensors coupled with reverse iontophoresis (RI) for noninvasive determination of cardiac troponins were developed and validated according to ICH Q2 (R1) guideline. Linearity was in 0.01-10 and 100-500 ng/mL ranges. LODs (ng/mL) were in 6-25 × 10-4, while LOQs (µg/mL) were in 18-7.5 × 10-4 range. Chemometric evaluation was performed on raw data simply by principle component analysis and cluster analysis to discriminate stages of immunosensors. This is the first demonstration of RI determination of cardiac troponins so far. Findings of the current manuscript have great potential to develop point of care diagnostic systems for major cardiac events, where high sensitivity and specificity are required.


Assuntos
Técnicas Biossensoriais , Pele Artificial , Iontoforese , Quimiometria , Imunoensaio , Troponina I , Troponina T , Biomarcadores
9.
Biol Pharm Bull ; 46(2): 301-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724958

RESUMO

mRNA vaccines have attracted considerable attention as a result of the 2019 coronavirus pandemic; however, challenges remain regarding use of mRNA vaccines, including insufficient delivery owing to the high molecular weights and high negative charges associated with mRNA. These characteristics of mRNA vaccines impair intracellular uptake and subsequent protein translation. In the current study, we prepared a minimal mRNA vaccine encoding a tumor associated antigen human gp10025-33 peptide (KVPRNQDWL), as a potential treatment for melanoma. Minimal mRNA vaccines have recently shown promise at improving the translational process, and can be prepared via a simple production method. Moreover, we previously reported the successful use of iontophoresis (IP) technology in the delivery of hydrophilic macromolecules into skin layers, as well as intracellular delivery of small interfering RNA (siRNA). We hypothesized that combining IP technology with a newly synthesized minimal mRNA vaccine can improve both transdermal and intracellular delivery of mRNA. Following IP-induced delivery of a mRNA vaccine, an immune response is elicited resulting in activation of skin resident immune cells. As expected, combining both technologies led to potent stimulation of the immune system, which was observed via potent tumor inhibition in mice bearing melanoma. Additionally, there was an elevation in mRNA expression levels of various cytokines, mainly interferon (IFN)-γ, as well as infiltration of cytotoxic CD8+ T cells in the tumor tissue, which are responsible for tumor clearance. This is the first report demonstrating the application of IP for delivery of a minimal mRNA vaccine as a potential melanoma therapeutic.


Assuntos
Vacinas Anticâncer , Melanoma , Vacinas de mRNA , Animais , Humanos , Camundongos , Vacinas Anticâncer/genética , Linfócitos T CD8-Positivos , Iontoforese , Melanoma/terapia , Melanoma/genética , Vacinas de mRNA/genética
10.
J Control Release ; 355: 1-6, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690034

RESUMO

With regard to medical treatment through operations, remote control is possible, however, the area of remote-controllable drug treatment is yet to be established. In this study, a prototyped remote-controllable dosage management system that allows patients and caregivers to administer therapeutic drugs via an internet line without touching the dosage device or formulation was developed. This system consists of a transmitter (System A) located away from the patient, and a dosage device (System B) equipped with a receiver (B1), dosage management unit (B2), and a drug treatment unit (B3) that can be installed on the patient. Additionally, Bluetooth® is adopted to communicate from System A to System B. In the present study, System A was incorporated into a cell phone, and System B was a constant-current iontophoresis (IP) device, which was applied on excised pig skin. Sodium salt of betamethasone phosphate (BP-Na+) was selected as a model drug, and the in vitro skin permeation of BP- was evaluated. As a result, by transmitting the administration information incorporated in System A through B1 to B2, the optimal current was passed between the IP electrodes in B3, and the skin permeation of BP- was obtained by remote control. That is, the skin permeation of BP- was obtained by the current flowing from the IP device. The permeation amount decreased when the voltage load was stopped. These results suggested that remote control from System A enables dosing management of bioactive substances from dosage devices applied on the skin, intracutaneously, or subcutaneously without being near the patient. Although various trials are still required to complete the remote-controlled system, the patient does not have to go to the hospital except to take injections. Such drug administrations would lead to decreased medical expenses and increased quality of life for patients.


Assuntos
Absorção Cutânea , Dispositivos Eletrônicos Vestíveis , Animais , Suínos , Administração Cutânea , Iontoforese/métodos , Qualidade de Vida , Pele/metabolismo , Preparações Farmacêuticas/metabolismo
11.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679574

RESUMO

The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, these methods rely on bulky and expensive equipment, and they are time-consuming. The present work reports for the first time a low-cost sensing device that can be used for the simultaneous determination of sap K+ and pH in living plants by means of reverse iontophoresis. A screen-printed electrode was modified by deposition of a K+-selective membrane, achieving a super-Nernstian sensitivity of 70 mV Log[K+]−1 and a limit of detection within the micromolar level. In addition, the cathode material of the reverse iontophoresis device was modified by electrodeposition of RuOx particles. This electrode could be used for the direct extraction of ions from plant leaves and the amperometric determination of pH within the physiological range (pH 3−8), triggered by the selective reaction of RuOx with H+. A portable and low-cost (<£60) microcontroller-based device was additionally designed to enable its use in low-resource settings. The applicability of this system was demonstrated by measuring the changes in concentration of K+ and pH in tomato plants before and after watering with deionised water. These results represent a step forward in the design of affordable and non-invasive devices for the monitoring of key biomarkers in plants, with a plethora of applications in smart farming and precision agriculture among others.


Assuntos
Galvanoplastia , Iontoforese , Eletrodos , Íons
12.
Nat Commun ; 14(1): 297, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653362

RESUMO

Wearable transdermal iontophoresis eliminating the need for external power sources offers advantages for patient-comfort when deploying epidermal diseases treatments. However, current self-powered iontophoresis based on energy harvesters is limited to support efficient therapeutic administration over the long-term operation, owing to the low and inconsistent energy supply. Here we propose a simplified wearable iontophoresis patch with a built-in Mg battery for efficient and controllable transdermal delivery. This system decreases the system complexity and form factors by using viologen-based hydrogels as an integrated drug reservoir and cathode material, eliminating the conventional interface impedance between the electrode and drug reservoir. The redox-active polyelectrolyte hydrogel offers a high energy density of 3.57 mWh cm-2, and an optimal bioelectronic interface with ultra-soft nature and low tissue-interface impedance. The delivery dosage can be readily manipulated by tuning the viologen hydrogel and the iontophoresis stimulation mode. This iontophoresis patch demonstrates an effective treatment of an imiquimod-induced psoriasis mouse. Considering the advantages of being a reliable and efficient energy supply, simplified configuration, and optimal electrical skin-device interface, this battery-powered iontophoresis may provide a new non-invasive treatment for chronic epidermal diseases.


Assuntos
Iontoforese , Pele , Camundongos , Animais , Administração Cutânea , Pele/metabolismo , Absorção Cutânea , Hidrogéis/metabolismo , Sistemas de Liberação de Medicamentos
13.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R368-R380, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693173

RESUMO

Near-infrared diffuse correlation spectroscopy (NIR-DCS) is an optical imaging technique for measuring relative changes in skeletal muscle microvascular perfusion (i.e., fold change above baseline) during reactive hyperemia testing and exercise and is reported as a blood flow index (BFI). Although it is generally accepted that changes in BFI are primarily driven by changes in muscle perfusion, it is well known that large, hyperthermia-induced changes in cutaneous blood flow can uncouple this relationship. What remains unknown, is how much of an impact that changes in cutaneous perfusion have on NIR-DCS BFI and estimates of skeletal muscle perfusion under thermoneutral conditions, where changes in cutaneous blood flow are assumed to be relatively low. We therefore used epinephrine iontophoresis to pharmacologically block changes in cutaneous perfusion throughout a battery of experimental procedures. The data show that 1) epinephrine iontophoresis attenuates changes in cutaneous perfusion for up to 4-h posttreatment, even in the face of significant neural and local stimuli, 2) under thermoneutral conditions, cutaneous perfusion does not significantly impact NIR-DCS BFI during reactive hyperemia testing or moderate-intensity exercise, and 3) during passive whole body heat stress, when cutaneous vasodilation is pronounced, epinephrine iontophoresis preserves NIR-DCS measures of skeletal muscle BFI during moderate-intensity exercise. Collectively, these data suggest that cutaneous perfusion is unlikely to have a major impact on NIR-DCS estimates of skeletal muscle BFI under thermoneutral conditions, but that epinephrine iontophoresis can be used to abolish cutaneous contamination of the NIR-DCS BFI signal during studies where skin blood flow may be elevated but skeletal muscle perfusion is of specific interest.


Assuntos
Hiperemia , Iontoforese , Humanos , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Músculo Esquelético/fisiologia , Perfusão , Epinefrina
14.
Drug Deliv ; 30(1): 2165736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36628545

RESUMO

Delivery of drugs to special locations of ocular lesions, while minimizing systemic and local toxic effects, is recognized as a critical challenge in the ophthalmic practice. The special anatomy and physiology barriers within the eyeball entail effective drug delivery systems. Emerging attempts in drug delivery has led to developments in ocular iontophoresis, which acts as a noninvasive technology to enhance drug penetration using a small electric current. This technique offers greater flexibility to deliver desired drug dose in a controlled and tolerable manner. In previous studies, this technique has been testified to deliver antibiotics, corticoid, proteins and other gene drugs into the eye with the potency of treating or alleviating diverse ophthalmological diseases including uveitis, cataract, retinoblastoma, herpes simplex and cytomegalovirus retinitis (CMVR), etc. In this review, we will introduce the recent developments in iontophoresis device. We also summarize the latest progress in coulomb controlled iontophoresis (CCI), hydrogel ionic circuit (HIC) and EyeGate II delivery system (EGDS), as well as overview the potential toxicity of iontophoresis. We will discuss these factors that affect the efficacy of iontophoresis experiments, and focus on the latest progress in its clinical application in the treatment of eye diseases.


Assuntos
Oftalmopatias , Iontoforese , Humanos , Preparações Farmacêuticas/metabolismo , Iontoforese/métodos , Olho , Sistemas de Liberação de Medicamentos/métodos , Oftalmopatias/tratamento farmacológico
15.
Biosens Bioelectron ; 223: 115019, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563525

RESUMO

Recent advances in enzymatic biofuel cells (EBFCs) have resulted in great progress in health monitoring and supplying power to medical applications, such as drug delivery. On the other hand, to enhance the electric field-assisted transdermal permeation for facial mask application, an external power source is usually required. Herein, we attempted to combine an EBFC with a facial mask so that the microcurrent generated can boost the transdermal permeability of target molecules in the facial mask essence. When screen-printed onto a polypropylene-based non-woven fabric, the three-layered flexible EBFC could produce a voltage of ∼0.4 V and a maximum power density of 23.3 µW cm-2, leading to an approximately 2-3-fold increase in permeated nicotinamide, arbutin, and aspirin levels within 15 min compared to non-iontophoretic transdermal drug delivery. Both cell viability and animal experiments further demonstrated that the EBFC-powered iontophoresis worked well in living animals with good biocompatibility. These results suggest that the EBFC-powered iontophoretic facial mask can effectively improve the permeation of drugs and holds a promise for the possible cosmetic application.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Animais , Absorção Cutânea , Iontoforese/métodos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo
16.
Biosens Bioelectron ; 223: 115036, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580817

RESUMO

Skin-centric diagnosis techniques, such as epidermal physiological parameter monitoring, have developed rapidly in recent years. The analysis of interstitial fluid (ISF), a body liquid with abundant physiological information, is a promising method to obtain health status because ISF is easily assessed by implanted or percutaneous measurements. Reverse iontophoresis extracts ISF by applying an electric field onto the skin, and it is a promising method to noninvasively obtain ISF, which, in turn, enables noninvasive epidermal physiological parameter monitoring. However, the development of reverse iontophoresis was relatively slow around the 2010s due to the rigidity and low biocompatibility of the applied devices. With the rapid development of flexible electronic technology in recent years, new progress has been made in the field of reverse iontophoresis, especially in the field of blood glucose monitoring and drug monitoring. This review summarizes the recent advances and discusses the challenges and opportunities of reverse iontophoresis.


Assuntos
Técnicas Biossensoriais , Iontoforese , Iontoforese/métodos , Glicemia/análise , Automonitorização da Glicemia , Pele/química , Eletrônica
17.
J Dent Res ; 102(4): 402-411, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546596

RESUMO

Early caries lesions consist of noncavitated subsurface demineralization caused by the dissolution of hydroxyapatite from the surface to the subsurface area of the enamel. Such lesions cannot be remineralized effectively by the conventional treatment. Thus, there is a need for a noninvasive technique capable of delivering the remineralizing agent to subsurface sites. For this purpose, fluoride iontophoresis (IP) using weak currents has been investigated with some conflicting results and no information on the crystal structure and composition. Because enamel remineralization involves the role of fluid from dentin, the presence of enamel fluid is necessary to determine the repair associated with the physiological condition. This study aimed to investigate structural and compositional characteristics, including the remineralizing effect of 5% sodium fluoride (NaF) IP with different polarities, cathodal iontophoresis (CIP), and anodal iontophoresis (AIP) for the treatment of natural enamel caries under simulated pulpal pressure. A bulk measurement of the crystal structure inside the lesion was first determined using calcium (Ca) K-edge X-ray absorption spectroscopy. IP with both polarities significantly promoted subsurface remineralization. The CIP generated a significant increase in the Ca/phosphorus ratio, and fluoride at the surface lesion significantly correlated with higher mineral density (MD) and more strengthening crystal structure of the lesion volume, while the lesion's MD and other impurities at the lesion surface, mostly the carbonate ions, affected the significant increase in MD with the unchanged structure of the lesion volume after AIP. The CIP of NaF is an ideal method for rapid enamel remineralization and recrystallization of fluoroapatite/fluorohydroxyapatite.


Assuntos
Cárie Dentária , Fluoretos , Humanos , Fluoretos/química , Iontoforese , Cristalização , Remineralização Dentária/métodos , Fluoreto de Sódio/uso terapêutico , Cárie Dentária/terapia , Cárie Dentária/patologia , Durapatita , Cariostáticos/uso terapêutico
18.
J Refract Surg ; 38(10): 674-681, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36214347

RESUMO

PURPOSE: To evaluate the biomechanical changes and advanced oxidation protein products (AOPP) production after different corneal cross-linking (CXL) protocols with or without oxygen supplementation. METHODS: Ovine eyes in the study were equally distributed to five groups as control, standard Dresden protocol, diluted alcohol- and iontophoresis-assisted CXL (DAI-CXL), and 0.1% and 0.2% riboflavin-mediated iontophoresis-assisted CXL with oxygen supplementation (I-CXL). Corneas that received CXL were divided into two equal parts, one part was used for uniaxial tensiometry and one part was used for AOPP measurement. RESULTS: All treatment groups showed higher Young's modulus and stiffness compared to the control group (P < .05). Both oxygen-assisted I-CXL groups with 0.1% and 0.2% riboflavin concentrations had higher corneal Young's modulus (P = .009 and .006, respectively) and stiffness (P = .009) values, whereas the DAI-CXL group had lesser Young's modulus and stiffness values (P = .032) compared to the Dresden protocol group. All treatment groups showed higher AOPP concentrations compared to the control group (P < .05). DAI-CXL and I-CXL groups showed similar AOPP formation compared to the Dresden protocol (P = .673). CONCLUSIONS: When the epithelium is intact, the desired increase in corneal stiffness might not be achieved. However, increasing the oxygen in the environment might provide a sufficient increase in stiffness in cases undergoing epitheliumon I-CXL, which might be promising in terms of shortening the CXL therapy and decreasing the complications. [J Refract Surg. 2022;38(10):674-681.].


Assuntos
Produtos da Oxidação Avançada de Proteínas , Iontoforese , Produtos da Oxidação Avançada de Proteínas/metabolismo , Animais , Colágeno/metabolismo , Córnea/metabolismo , Substância Própria/metabolismo , Reagentes de Ligações Cruzadas , Humanos , Oxigênio/metabolismo , Oxigenoterapia , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina , Ovinos , Raios Ultravioleta
19.
Int J Pharm ; 628: 122271, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36220591

RESUMO

Application of drugs on skin with compromised barrier can significantly alter permeation of drugs with the possibility of increased adverse side effects or even toxicity. In this study, we tested in vitro delivery of diclofenac sodium from marketed brand and generic formulations across normal and compromised skin using microneedles and iontophoresis, alone and in combination. Ten tape strips on dermatomed human skin were used to create a compromised skin model, as demonstrated by changes in skin resistance and transepidermal water loss. Histology studies further confirmed creation of a compromised skin barrier. There was no significant difference between brand and generic formulations for delivery of diclofenac sodium into and across normal and compromised skin. Compromised skin showed higher total delivery (µg/sq.cm) of diclofenac sodium for all groups - microneedles (brand: 79.45 ± 8.81, generic: 92.15 ± 8.63), iontophoresis (brand: 233.13 ± 8.32, generic: 242.07 ± 11.17), combination (brand: 186.88 ± 6.76, generic: 193.8 ± 5.69) as compared to intact normal skin for same groups, microneedles (brand: 21.83 ± 1.96, generic: 20.38 ± 0.91), iontophoresis (brand: 149.78 ± 18.43, generic: 145.53 ± 12.61), and combination (brand: 80.97 ± 9.86, generic: 70.76 ± 6.56). These results indicate the effect of barrier integrity on delivery of diclofenac sodium which suggests increased absorption and systemic exposure of the drug across skin with compromised skin barrier.


Assuntos
Diclofenaco , Iontoforese , Humanos , Absorção Cutânea , Administração Cutânea , Pele/metabolismo , Medicamentos Genéricos/farmacologia , Sistemas de Liberação de Medicamentos
20.
Int J Pharm ; 628: 122294, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252645

RESUMO

The objective of this study was to investigate the feasibility of the bolus administration of PLS via skin by using dissolving microneedles of palonosetron hydrochloride (PLS-DMNs). Tip-loaded PLS-DMNs were fabricated by a casting method using sodium hyaluronate (HA) as DMNs-forming polymer. PLS-DMNs were shown to have a content of 118.5 ± 8.7 µg per piece with sufficient mechanical strength for insertion into pig skin ex vivo. In situ dissolution of PLS-DMNs was achieved within 5 min and 83.2 % of PLS was delivered. In vitro studies showed that PLS-DMNs provided much higher PLS permeation than that after passive permeation using a PLS hydrogel. Moreover, the application of 30 min-iontophoresis at the beginning of PLS-DMNs administration further enhanced PLS delivery. In vivo pharmacokinetic studies were carried out in rats. The area under the curve (AUC) and the time to reach the peak (Tmax) after application of PLS-DMNs was not significantly different compared to those after subcutaneous (S.C.) injection. PLS-DMNs plus 30 min-iontophoresis enabled the pharmacokinetic profile to be even closer to that seen after S.C. administration. These results suggest that application of PLS-DMNs with short-duration iontophoresis exhibits promise as an alternative PLS delivery method that can be painlessly self-administered with rapid onset.


Assuntos
Iontoforese , Agulhas , Ratos , Suínos , Animais , Microinjeções , Administração Cutânea , Palonossetrom , Pele , Sistemas de Liberação de Medicamentos/métodos , Vômito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...