Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 931
Filtrar
1.
BMC Plant Biol ; 23(1): 77, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737681

RESUMO

BACKGROUND: Jatropha curcas is a promising alternative bio-energy resource. However, underrun limited its broad application in the industry. Luckily, TAW1 is a high-productivity promoting gene that increases the lateral branches by prolonging the identification of inflorescence meristems to generate more spikes and flowers. RESULTS: In the current study, we introduced the Jatropha JcTAW1 gene into tobacco to depict its functional profile. Ectopically expressed JcTAW1 increased the lateral branches and ultimate yield of the transgenic tobacco plants. Moreover, the JcTAW1 lines had significantly higher plant height, longer roots, and better drought resistance than those of wild-type (W.T.). We performed RNA sequencing and weighted gene co-expression network analysis to determine which biological processes were affected by JcTAW1. The results showed that biological processes such as carbon metabolism, cell wall biosynthesis, and ionization transport were extensively promoted by the ectopic expression of JcTAW1. Seven hub genes were identified. Therein, two up-regulated genes affect glucose metabolism and cell wall biosynthesis, five down-regulated genes are involved in DNA repair and negative regulation of TOR (target-of-rapamycin) signaling which was identified as a central regulator to promote cell proliferation and growth. CONCLUSIONS: Our study verified a new promising candidate for Jatropha productive breeding and discovered several new features of JcTAW1. Except for boosting flowering, JcTAW1 was found to promote stem and root growth. Additionally, transcriptome analysis indicated that JcTAW1 might promote glucose metabolism while suppressing the DNA repair system.


Assuntos
Fenômenos Biológicos , Jatropha , Tabaco/genética , Resistência à Seca , Expressão Ectópica do Gene , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Glucose/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 23(1): 99, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36800929

RESUMO

BACKGROUND: The gibberellic acid-stimulated Arabidopsis (GASA) gene encodes a class of cysteine-rich functional proteins and is ubiquitous in plants. Most GASA proteins are influence the signal transmission of plant hormones and regulate plant growth and development, however, their function in Jatropha curcas is still unknown. RESULTS: In this study, we cloned JcGASA6, a member of the GASA family, from J. curcas. The JcGASA6 protein has a GASA-conserved domain and is located in the tonoplast. The three-dimensional structure of the JcGASA6 protein is highly consistent with the antibacterial protein Snakin-1. Additionally, the results of the yeast one-hybrid (Y1H) assay showed that JcGASA6 was activated by JcERF1, JcPYL9, and JcFLX. The results of the Y2H assay showed that both JcCNR8 and JcSIZ1 could interact with JcGASA6 in the nucleus. The expression of JcGASA6 increased continuously during male flower development, and the overexpression of JcGASA6 was associated with filament elongation of the stamens in tobacco. CONCLUSION: JcGASA6, a member of the GASA family in J. curcas, play an important role in growth regulation and floral development (especially in male flower). It is also involved in the signal transduction of hormones, such as ABA, ET, GA, BR, and SA. Also, JcGASA6 is a potential antimicrobial protein determined by its three-dimensional structure.


Assuntos
Jatropha , Proteínas de Plantas , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Jatropha/genética , Jatropha/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo
3.
Arch Microbiol ; 205(2): 61, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625985

RESUMO

Fungal endophytes produce a range of structurally diverse metabolites with bioactive principles. In this study, an endophytic fungus Alternaria alternata was isolated from Jatropha heynei and cultured in potato dextrose liquid broth. Culture filtrate of A. alternata was extracted in ethyl acetate and metabolites were characterized by QTOF-HRLCMS. Among compounds detected, spectral compounds such as kigelinone, and levofuraltadone were reported with antibacterial property, while 2-hydroxychrasophanol, isoathyriol, glycophymoline, columbianetin and kaempferol 3-O-ß-D- galactoside were reported with cytotoxic properties. Partially purified metabolites of A. alternata showed significant antibacterial activity against tested clinical bacterial strains by agar well diffusion method. High zone of inhibition was recorded against Enterococcus faecalis, Pseudomonas syringae and Klebsiella pneumoniae. In vitro anticancer activity of fungal extract by MTT assay displayed high cytotoxic effect on human lung carcinoma cancer cell line (A549) with IC50 value of 393.52 µg ml-1, and without any significant cytotoxic effect on human breast cancer cell line (MCF-7). Further, antibacterial and anticancer spectral compounds of A. alternata were subjected to molecular docking analysis with antibacterial target proteins such as tellurite resistance protein (2JXU), indole-3-acetaldehyde dehydrogenase (5IUU) and alkyl hydroperoxide reductase (5Y63), and anticancer target human apoptotic regulator protein (1G5M). The results of the study indicated that kigelinone, levofuraltadone, 2-hydroxychrasophanol and isoathyriol in the fungal extract have significant binding modes, with best binding energy scores with their respective antibacterial and anticancer target proteins. Alternaria alternata resident in J. heynei offers a promising source of broad-spectrum antibacterial and anticancer compounds.


Assuntos
Jatropha , Humanos , Simulação de Acoplamento Molecular , Alternaria , Antibacterianos/metabolismo , Extratos Vegetais/metabolismo , Endófitos
4.
Environ Res ; 219: 115055, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574797

RESUMO

The primary source of soil pollution is a complex mixture of numerous inorganic and organic compounds (including chlorinated compounds, nutrients, and heavy metals, etc.). The presence of all of these compounds makes remediation and cleanup difficult. In this study, the phytoremediation ability of Jatropha curcas and Pongamia pinnata was tested to remove nickel (Ni) and Zinc (Zn) from paper mill and municipal landfill contaminated soils, to understand the uptake potential and to estimate the accumulation pattern of Ni and Zn in the vegetative parts of the plant. The experiments were carried out in pots (3 kg capacity) and the different combinations of soil were made by mixing the contaminated soil with a reference soil (forest soil) as T0, T25, T50, T75 and T100. The plant biomass, chlorophyll content, proline, nitrate reductase activity and metal removal efficiency (%)were determined after 120 DAS (i.e., the days after sowing). The results of the study showed that with increasing metal stress, there is a reduction in the above-ground biomass content in both the plant species with a slightly less impact on the root biomass. Over a period of 4 months, J. curcas and P. pinnata removed 82-86% and 93-90% Ni, respectively. The removal of Zn was significantly less as compared to Ni as most of the Zn remained in the belowground part (roots) and in the soil. Besides, the phytostabilization capacities of the plants were calculated on the basis of their tolerance index (TI), bioaccumulation factor (BAF) and translocation factor (TF). The low BAF and TF values with increasing heavy metals (HMs) content indicates its higher phytostabilization capacity in the root and rhizospheric region as compared to phytoaccumulation.


Assuntos
Jatropha , Metais Pesados , Millettia , Poluentes do Solo , Zinco , Níquel , Biodegradação Ambiental , Resíduos Sólidos , Solo , Poluentes do Solo/análise , Metais Pesados/análise , Plantas
5.
J Econ Entomol ; 116(1): 192-201, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534944

RESUMO

We assessed bioactivity of ethanolic extracts from 35 species of Jatropha L. against an ornamental plant pest, the azalea lace bug, Stephanitis pyrioides (Scott). Jatropha extracts were prepared by air-drying stem, root, or whole plant material, grinding the tissue into a fine powder, adding 70% ethanol, and then vacuum filtering the contents. Emulsions included the extract diluted to the desired concentration in de-ionized water and 10% dimethyl sulfoxide (DMSO). Treatments involved pipetting 20 µl of emulsion onto three adult lace bugs in each well of a 96-well microtiter plate. Treated wells served as replicates for each of six extract concentrations and were arranged according to a RCBD. Extracts of Jatropha clavuligera Müll. Arg. and J. ribifolia (Pohl) Ballion from 0.06 to 0.50% were the most acutely bioactive with bug mortality exceeding that of the positive control - azadirachtin, a terpenoid and chief active ingredient in neem oil. At 1.00%, extracts of J. clavuligera, J. ribifolia and azadirachtin killed 100% of bugs within 3 hr. Jatropha clavuligera induced the lowest LC50 and ranked first in insecticidal potency based on ≥98% of bugs dying within 3 hr. Extracts of J. curcas L., J. gossypiifolia L., J. excisa Griseb, and azadirachtin were equally bioactive; although after 3 hr, the three Jatropha species killed bugs faster. When compared with DMSO, all extract emulsions were bioactive against adult bugs. Thus, active ingredients in a new biopesticide could be sourced from the stem, root, or whole plant extracts of at least five Jatropha species.


Assuntos
Heterópteros , Inseticidas , Jatropha , Animais , Inseticidas/farmacologia , Dimetil Sulfóxido , Emulsões , Extratos Vegetais/farmacologia
6.
Toxins (Basel) ; 14(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36356021

RESUMO

Curcin and Curcin C, both of the ribosome-inactivating proteins of Jatropha curcas, have apparent inhibitory effects on the proliferation of osteosarcoma cell line U20S. However, the inhibitory effect of the latter is 13-fold higher than that of Curcin. The mechanism responsible for the difference has not been studied. This work aimed to understand and verify whether there are differences in entry efficiency and pathway between them using specific endocytosis inhibitors, gene silencing, and labeling techniques such as fluorescein isothiocyanate (FITC) labeling. The study found that the internalization efficiency of Curcin C was twice that of Curcin for U2OS cells. More than one entering pathway was adopted by both of them. Curcin C can enter U2OS cells through clathrin-dependent endocytosis and macropinocytosis, but clathrin-dependent endocytosis was not an option for Curcin. The low-density lipoprotein receptor-related protein 1 (LRP1) was found to mediate clathrin-dependent endocytosis of Curcin C. After LRP1 silencing, there was no significant difference in the 50% inhibitory concentration (IC50) and endocytosis efficiency between Curcin and Curcin C on U2OS cells. These results indicate that LRP1-mediated endocytosis is specific to Curcin C, thus leading to higher U2OS endocytosis efficiency and cytotoxicity than Curcin.


Assuntos
Alcaloides , Jatropha , Osteossarcoma , Toxinas Biológicas , Humanos , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Jatropha/genética , Jatropha/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Toxinas Biológicas/metabolismo , Alcaloides/metabolismo , Clatrina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
7.
Genes (Basel) ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36292651

RESUMO

Jatropha is a small woody perennial biofuel-producing shrub. Stress-associated proteins (SAPs) are novel stress regulatory zinc-finger proteins and are mainly associated with tolerance against various environmental abiotic stresses in Jatropha. In the present study, the JcSAP gene family were analyzed comprehensively in Jatropha curcas and 11 JcSAP genes were identified. Phylogenetic analysis classified the JcSAP genes into four groups based on sequence similarity, similar gene structure features, conserved A20 and/or AN1 domains, and their responsive motifs. Moreover, the divergence analysis further evaluated the evolutionary aspects of the JcSAP genes with the predicted time of divergence from 9.1 to 40 MYA. Furthermore, a diverse range of cis-elements including light-responsive elements, hormone-responsive elements, and stress-responsive elements were detected in the promoter region of JcSAP genes while the miRNA target sites predicted the regulation of JcSAP genes via a candid miRNA mediated post-transcriptional regulatory network. In addition, the expression profiles of JcSAP genes in different tissues under stress treatment indicated that many JcSAP genes play functional developmental roles in different tissues, and exhibit significant differential expression under stress treatment. These results collectively laid a foundation for the functional diversification of JcSAP genes.


Assuntos
Jatropha , MicroRNAs , Jatropha/genética , Filogenia , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Biocombustíveis , Dedos de Zinco/genética , MicroRNAs/genética , Hormônios , Zinco
8.
J Environ Manage ; 323: 116223, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261981

RESUMO

Jatropha curcas L. (JCL) is one of the most prominent energy crops due to its superior agronomical traits, where it can grow in non-arable lands and harsh climates with minimal water requirements. A significant number of studies were published on the utilisation of JCL for biofuel production, whereas there are no studies on its use in greenbelt (GB) or windbreak technologies reported thus far. Meanwhile, a few approaches on the delineation of greenbelts to fight desertification in the arid regions exist in literature. This study presents a novel approach to delineate a multipurpose energy-greenbelt using JCL crop for biofuel production, as well as to preserve the soil and enhance air quality, thereby helping to combat desertification and sand-dust storms (SDS). The methodology is demonstrated using a case study in the state of Qatar for the diversification of its renewable energy resources. Moreover, Qatar is also suffering from land degradation due to erosion factors and desert creep. A multi-dimensional approach is proposed for this purpose using satellite and meteorological data to initially select the optimal plantation sites that potentially contribute to the highest possible biofuel yield. The spatial analysis was carried out using the analytical hierarchy process (AHP) technique for multi-criteria decision making in the geographic information system (ArcGIS). In addition, the Landsat and MODIS satellite imagery were utilised in combination with historical records from the weather stations to evaluate the patterns of SDS, land degradation and urban expansion, to best define optimal GB pathway. COMSOL Multiphysics software was subsequently employed to evaluate the performance of Jatropha-GB and determine its optimal density. The different solutions for GB delineation spans 166.6-227.8 km length and (6 × 6 m) of field density. It is expected that the economic and environmental benefits from the derived GB configuration include: (a) protection of up to 87% of Qatar farms against further deterioration; (b) yield of up to 36 M gallon of green liquid fuels; (c) capture of 0.33 M tonnes of CO2 per 1 km GB-depth annually; and (d) provide a better air quality for around 95% of the Qatar population.


Assuntos
Biocombustíveis , Jatropha , Conservação dos Recursos Naturais , Areia , Dióxido de Carbono , Clima Desértico , Solo , Poeira , Água
9.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232689

RESUMO

The cytokinin (CK) response regulator (RR) gene family plays a pivotal role in regulating the developmental and environmental responses of plants. Axillary bud outgrowth in the perennial woody plant Jatropha curcas is regulated by the crosstalk between CK and gibberellins (GA). In this study, we first analyzed the effects of gibberellin A3 (GA3), lovastatin (a CK synthesis inhibitor), decapitation, and their interaction, on the outgrowth of axillary buds. The results indicate that lovastatin completely inhibited GA-promoted axillary bud outgrowth and partially weakened the decapitation-promoted axillary bud outgrowth. To further characterize and understand the role of CK signaling in promoting the development of female flowers and branches, we performed bioinformatics and expression analyses to characterize the CK RR gene (JcRR) family in J. curcas. A total of 14 members of the JcRR family were identified; these genes were distributed on 10 chromosomes. Phylogenetic analysis indicated that the corresponding RR proteins are evolutionarily conserved across different plant species, and the Myb-like DNA-binding domain divides the 14 members of the JcRR family into type-A and type-B proteins. Further analysis of cis-acting elements in the promoter regions of JcRRs suggests that JcRRs are expressed in response to phytohormones, light, and abiotic stress factors; thus, JcRRs may be involved in some plant development processes. Genomic sequence comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcRR gene family, and five pairs of duplicated genes were all subjected to purifying selection. By analyzing RNA sequencing (RNA-seq) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) data, we characterized that the temporospatial expression patterns of JcRRs during the development of various tissues and the response of these genes to phytohormones and abiotic stress. The JcRRs were mainly expressed in the roots, while they also exhibited differential expression patterns in other tissues. The expression levels of all six type-A and one type-B JcRRs increased in response to 6-benzylaminopurine (6-BA), while the four type-B JcRRs levels decreased. The expression levels of two type-B JcRRs increased in response to exogenous GA3 treatment, while those of three type-A and three type-B JcRRs decreased. We found that type-A JcRRs may play a positive role in the continuous growth of axillary buds, while the role of type-B JcRRs might be the opposite. In response to abiotic stress, the expression levels of two type-A and three type-B JcRRs strongly increased. The overexpression of JcRR12 in Arabidopsis thaliana slightly increased the numbers of rosette branches after decapitation, but not under normal conditions. In conclusion, our results provide detailed knowledge of JcRRs for further analysis of CK signaling and JcRR functions in J. curcas.


Assuntos
Arabidopsis , Decapitação , Jatropha , Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , DNA/farmacologia , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Lovastatina/farmacologia , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo
10.
Sci Rep ; 12(1): 13070, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906387

RESUMO

The effects of organic amendments on the phytoremediation of cadmium (Cd) in acacia (Acacia mangium), jatropha (Jatropha curcas), and cassava (Manihot esculenta) were investigated. The bone meal/bat manure and leonardite/bat manure amendments resulted in better growth performance in both acacia and cassava (growth rate in dry biomass; GRDB 24.2 and 22.2, respectively), while bone meal (GRDB 17.2) was best for jatropha. The lower root/shoot ratio values of jatropha and acacia suggest that these species were better suited than cassava on Cd-contaminated soil. Cassava experienced toxicity symptoms after harvest (3 months). Acacia root accumulated somewhat greater Cd concentrations (up to 5.1 mg kg-1) than cassava and jatropha roots (2.2-3.9 and 2.7-4.1 mg kg-1, respectively). The bone meal and chicken manure (BMCM) treatment for jatropha had the highest bioconcentration factor for root (1.3) and the lowest translocation factor (0.7). Despite the fact that this treatment had substantial Cd concentrations in the soil (3.1 mg kg-1), low Cd accumulation value (3.2 mg kg-1) and the lowest Cd uptake value (127.8 mg plant-1) were observed, clearly indicating that this amendment reduced Cd bioavailability. When growth performance of the study plants is considered, jatropha and acacia may be suitable for phytomanagement of Cd-contaminated soil.


Assuntos
Jatropha , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Produtos Agrícolas , Esterco , Solo , Poluentes do Solo/análise
11.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684476

RESUMO

Two new neolignans jatrolignans, C (1) and D (2), a pair of epimers, were isolated from the whole plants of Jatropha curcas L. (Euphorbiaceae). Their structures were determined with HRESIMS, IR, and NMR data analysis, and electronic circular dichroism (ECD) experiments via a comparison of the experimental and the calculated ECD spectra. Their antichlamydial activity was evaluated in Chlamydia abortus. They both showed dose-dependent antichlamydial effects. Significant growth inhibitory effects were observed at a minimum concentration of 40 µM.


Assuntos
Euphorbiaceae , Jatropha , Lignanas , Jatropha/química , Lignanas/química , Lignanas/farmacologia
12.
Lett Appl Microbiol ; 75(4): 1000-1009, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35723883

RESUMO

The Jatropha gossypiifolia plant showing the severe leaf curl symptoms grown in the borders of chilli fields in Guntur, Andhra Pradesh, India was collected. The infection of begomovirus was detected using the degenerate primers followed by rolling circle amplification (RCA). The RCA products digested with KpnI and EcoRI showing the unit length of the begomovirus genome were cloned in pUC19 and sequenced to obtain the complete begomoviral genome. The sequence information of DNA-A of the two clones GuWC10 contained 2794 nt (MZ217773) and an incomplete genome GuWC3 with 2337 nt (MZ217772). The BLAST analysis of GuWC3 and GuWC10 sequence showed 85·57% identity with jatropha leaf curl Gujarat virus (JLCGV) and 82·68% identity with croton yellow vein mosaic virus (CroYVMV), respectively. The sequence analysis also showed that the GuWC10 clone had a 177 bp recombinant/chimeric sequence of JLCGV while the other region containing 2611 bp showed 92·63% identity with papaya leaf curl virus (PaLCuV/PK). However, the global alignment of the GuWC10 sequence showed a maximum of 80·60% identity with croton yellow vein virus (CroYVV) (FN645902), CroYVMV (JN817516) and PaLCuV/PK (KY978407). The second clone GuWC3 although shorter in length had recombinant sequences of JLCGV, jatropha leaf curl virus (JLCuV/ND) and okra enation leaf curl virus (OELCuV). The nucleotide sequence identity among the GuWC10 and GuWC3 was 71·9%. The phylogenetic analysis placed both the viral strains in the same clade located between PaLCuV/PK and JLCuV clades. According to the ICTV species demarcation criteria of 91% DNA-A sequence identity, the present isolate was considered as a new species of begomovirus and the name Jatropha leaf curl Guntur virus was proposed. This is the first report of a new begomovirus species infecting J. gossypiifolia and the study also reports a mixed infection of Jatropha leaf curl Guntur virus with a recombinant/chimeric JLCGV in the host J. gossypiifolia. Present study suggests the role of weed Jatropha in harbouring begomoviruses and probable source for viral recombination.


Assuntos
Begomovirus , Coinfecção , Jatropha , Begomovirus/genética , DNA Viral/genética , Genoma Viral , Filogenia , Doenças das Plantas , Análise de Sequência de DNA
13.
Chemosphere ; 305: 135345, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35738403

RESUMO

This study was carried out in order to find an environmentally friendly solution to recover the abandoned Cr-enriched sludge soil, which causes a variety of environmental issues. Hence, in this research the influence of pre-identified Brevibacillus borstelensis UTM105 and Brevibacillus borstelensis AK2 coated Jatropha curcas seed in phytoremediation process with various treatment groups (group A to F) under greenhouse condition. Furthermore, their influence on growth, biomolecules (total proteins and total chlorophyll) content, and antioxidant activity of J. curcas during the phytoremediation process were analyzed. Surprisingly, the outstanding phytoremediation was recorded in group F treatment. In these groups, Group E. accompanied it, and the Cr was reduced by up to 31.17% and 25.65%, respectively, in treated soil after 90 days of treatment. Among these two bacterial strains, the B. borstelensis AK2 had greatest effect on J. curcas growth, the yield of biomass, total protein, total chlorophyll, and antioxidant activity and it followed by B. borstelensis UTM105. These phytoremediation potential of J. curcas was effective at soil diluted with fertile and xenobiotics free soil with dilution ratio of 50:50 and followed by 75:25 ratio. Because under undiluted Cr sludge soil condition seed germination has not occurred even though the seed has been coated with potential bacterial strains and soil blend with sterilized goat manure. Hence, under diluted conditions J. curcas seed coated with B. borstelensis AK2 showed an outstanding phytoremediation process. Hence, this approach can be applied to a field study to assess the metal removal potential of this sustainable approach.


Assuntos
Brevibacillus , Jatropha , Poluentes do Solo , Antioxidantes/metabolismo , Biodegradação Ambiental , Brevibacillus/metabolismo , Clorofila/metabolismo , Cromo/metabolismo , Esgotos , Solo , Poluentes do Solo/análise
14.
An Acad Bras Cienc ; 94(3): e20201814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35766596

RESUMO

Understanding the floral and reproductive biology of botanical species is crucial for the development of strategies in plant breeding systems. Jatropha curcas L. is a promising species for the manufacture of biofuels, being previously studied mainly in genetic improvement to develop characteristics suitable to biofuels. In order to contribute with data for hybridization and breeding programs, this paper studies the floral biology and reproductive system in two experimental populations of different ages of Jatropha curcas in Cruz das Almas/BA. Both of them were examined about their anthesis, durability, number of flowers, stigma receptivity, P:O ratio, and reproduction tests. As observed, Jatropha curcas is a monoecious species and its flowering occurs between September and April. Inflorescences are composed of unisexual flowers with daytime anthesis (♂: 05-06h; ♀: 07-08h), where the staminates last 10h and pistillates 60h. The physic nut is self-compatible, forming fruits by self-fecundation and cross-pollination, although the greatest number of fruits/seeds is generated by natural pollination. Experiment 02, presented a larger number of flowers, probably due to the plant's age and physiology. Performing artificial pollination between 08:00h and 09:30h is recommended for larger production since the stigma is receptive and the flowers have a large amount of pollen available.


Assuntos
Euphorbiaceae , Jatropha , Biocombustíveis , Biologia , Brasil , Flores/genética , Genitália , Jatropha/genética , Melhoramento Vegetal , Polinização/fisiologia
15.
Sci Rep ; 12(1): 8891, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614339

RESUMO

In present studies we have evaluated mulching impact of Jatropha curcas leaves on soil health and yield of two wheat (Triticum aestivum L.) varieties Wadan-2017 (rainfed) and Pirsabak-2013 (irrigated) under imposed water stress. Mulch of Jatropha leaves was spread on the soil surface at the rate of 0, 1, 3 and 5 Mg ha-1 after seed germination of wheat. Water stress was imposed by skipping irrigations for one month at anthesis stage of wheat maintaining 40% soil field capacity. We found a significant decline in soil microbial biomass carbon (30.27%), total nitrogen (22.28%) and organic matter content (21.73%) due to imposed water stress in non-mulch plots. However, mulch application at 5 Mg ha-1 significantly improved soil organic matter (38.18%), total nitrogen (37.75%), phenolics content (16.95 mg gallic acid equivalents/g) and soil microbial biomass carbon (26.66%) as compared to non-mulch control. Soil health indicators like soil carbonates, bicarbonates, electrical conductivity, chloride ions and total dissolved salts were decreased by 5 Mg ha-1 mulch application. We noted a decline in yield indicators like spike weight (14.74%), grain spike-1 (7.02%), grain length (3.79%), grain width (3.16%), 1000 grains weight (6.10%), Awn length (9.21%), straw weight (23.53%) and total grain yield (5.98%) of wheat due to imposed water stress. Reduction in yield traits of wheat due to water stress was higher in Pirsabak-2013 than Wadan-2017. Jatropha leaves mulch application at 5 Mg ha-1 significantly minimized the loss in yield traits of wheat crop caused by water stress. Jatropha curcas leaves mulch application at 5 Mg ha-1 is recommended for the successful establishment of wheat crop under water deficit conditions.


Assuntos
Jatropha , Triticum , Agricultura , Carbono , Desidratação , Nitrogênio/análise , Folhas de Planta/química , Solo
16.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628209

RESUMO

The Sugars Will Eventually be Exported Transporters (SWEET) family is a class of sugar transporters that play key roles in phloem loading, seed filling, pollen development and the stress response in plants. Here, a total of 18 JcSWEET genes were identified in physic nut (Jatropha curcas L.) and classified into four clades by phylogenetic analysis. These JcSWEET genes share similar gene structures, and alternative splicing of messenger RNAs was observed for five of the JcSWEET genes. Three (JcSWEET1/4/5) of the JcSWEETs were found to possess transport activity for hexose molecules in yeast. Real-time quantitative PCR analysis of JcSWEETs in different tissues under normal growth conditions and abiotic stresses revealed that most are tissue-specifically expressed, and 12 JcSWEETs responded to either drought or salinity. The JcSWEET16 gene responded to drought and salinity stress in leaves, and the protein it encodes is localized in both the plasma membrane and the vacuolar membrane. The overexpression of JcSWEET16 in Arabidopsis thaliana modified the flowering time and saline tolerance levels but not the drought tolerance of the transgenic plants. Together, these results provide insights into the characteristics of SWEET genes in physic nut and could serve as a basis for cloning and further functional analysis of these genes.


Assuntos
Arabidopsis , Jatropha , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Jatropha/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Açúcares/metabolismo
17.
Biochimie ; 200: 107-118, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35623496

RESUMO

Antimicrobial resistance has been increasing globally, posing a global public health risk. It has prompted the scientific community to look for alternatives to traditional drugs. Antimicrobial Peptides (AMPs) have stood out in this context because they have the potential to control infectious diseases while causing no or little harm to mammalian cells. In the present study, three peptides, JcTI-PepI, JcTI-PepII, and JcTI-PepIII, were designed and tested for antimicrobial activity based on the primary sequence of JcTI-I, a 2S albumin with trypsin inhibitory activity from Jatropha curcas. JcTI-PepI strongly inhibited C. krusei growth, and it caused severe disruptions in cellular processes and cell morphology. C. krusei cells treated with JcTI-PepI showed indicative of membrane permeabilization and overproduction of Reactive Oxygen Species. Moreover, the yeast's ability to acidify the medium was severely compromised. JcTI-PepI was also effective against pre-formed biofilm and did not harm human erythrocytes and Vero cells. Overall, these characteristics indicate that JcTI-PepI is both safe and effective against C. krusei, an intrinsically resistant strain that causes serious health problems and is frequently overlooked. It implies that this peptide has a high potential for use as a new antimicrobial agent in the future.


Assuntos
Anti-Infecciosos , Jatropha , Animais , Anti-Infecciosos/farmacologia , Chlorocebus aethiops , Humanos , Mamíferos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Inibidores da Tripsina , Células Vero
18.
J Appl Microbiol ; 133(2): 743-757, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35491755

RESUMO

AIM: Our previous study reported a strain that can detoxify Jatropha curcas L. cake (JCC), but the detoxification duration is long. This study intends to explore the efficient detoxification of JCC through multi-strain collaborative fermentation to accelerate the detoxification process. METHODS AND RESULTS: Mucor circinelloides SCYA25 strain that we previously reported can effectively degrade the toxicity of JCC, and the newly screened Bacillus megaterium SCYA10 and Geotrichum candidum SCYA23 strains were used to detoxify JCC. Different solid-state-fermentation (SSF) parameters were optimized by single-factor tests and response surface methodology. A detoxification rate established by zebrafish toxicity of JCC at 96% was achieved under the following optimized conditions: the combination ratio of B. megaterium SCYA10, G. candidum SCYA23 and M. circinelloides SCYA25 at 2:3:1, a total injection amount of 15.25%, a feed to water ratio of 1:0.68, a fermentation temperature of 30.3°C and fermentation duration of 21.5 days. The protein content of fermented JCC (FJCC) increased, while the concentrations of ether extract, crude fibre and toxins were all degraded considerably. Metabolomics analysis revealed that the fermentation increased the contents of neurotransmitter receptor modulator, emulsifier, aromatic substances and insecticidal compounds, as well as decreasing the contents of oxidative stress and neurotoxic substances. A rat feeding trial showed that the growth performance of the rats provided with the FJCC diet was similar to that of the corn-soybean meal group, and no lesions in the liver and kidney were observed. CONCLUSION: The co-bio-fermentation process can effectively detoxify JCC and improve its nutritional value, which means it could be served as a protein feed in animal husbandry. SIGNIFICANCE: The combination of three microbial strains can detoxify JCC in a safe and effective manner to provide a great potential alternative to soybean meal. The research also suggests that metabonomics and bioinformatics are useful tools for revealing the bio-detoxification mechanism.


Assuntos
Jatropha , Ração Animal/análise , Animais , Fermentação , Jatropha/metabolismo , Metaboloma , Ratos , Peixe-Zebra/metabolismo
19.
Planta ; 255(6): 111, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478059

RESUMO

MAIN CONCLUSION: Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.


Assuntos
Jatropha , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
20.
Sci Rep ; 12(1): 6543, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449230

RESUMO

JmjC domain-containing proteins, an important family of histone lysine demethylase, play significant roles in maintaining the homeostasis of histone methylation. In this study, we comprehensively analyzed the JmjC domain-containing gene family in Jatropha curcas and found 20 JmjC domain-containing genes (JcJMJ genes). Phylogenetic analysis revealed that these JcJMJ genes can be classified into five major subgroups, and genes in each subgroup had similar motif and domain composition. Cis-regulatory element analysis showed that the number and types of cis-regulatory elements owned by the promoter of JcJMJ genes in different subgroup were significantly different. Moreover, miRNA target prediction result revealed a complicated miRNA-mediated post-transcriptional regulatory network, in which JcJMJ genes were regulated by different numbers and types of miRNAs. Further analysis of the tissue and stress expression profiles showed that many JcJMJ genes had tissue and stress expression specificity. All these results provided valuable information for understanding the evolution of JcJMJ genes and the complex transcriptional and post transcriptional regulation involved, and laid the foundation for further functional analysis of JcJMJ genes.


Assuntos
Jatropha , MicroRNAs , Regulação da Expressão Gênica de Plantas , Histona Desmetilases/metabolismo , Jatropha/genética , Jatropha/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , MicroRNAs/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...