Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 860
Filtrar
1.
Nat Prod Res ; 35(16): 2748-2752, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34414845

RESUMO

A new diterpenoid named jatrophacine (1), with an unusual 4,5-seco- rhamnofolane skeleton, was isolated from the roots of Jatropha curcas, together with eleven known diterpenoids. The structure of the new compound was elucidated through a detailed analysis of its 1 D- and 2 D-NMR spectra. The X-ray structure of jatrophol (2) is also presented. Anti-inflammatory activity with LPS-induced RAW 264.7 macrophages revealed that compound 1 strongly inhibited the production of nitric oxide (IC50 = 0.53 µM).


Assuntos
Anti-Inflamatórios , Diterpenos , Jatropha , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Jatropha/química , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Células RAW 264.7
2.
BMC Bioinformatics ; 22(Suppl 6): 409, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407772

RESUMO

BACKGROUND: Jatropha curcas L. is an important non-edible oilseed crop with a promising future in biodiesel production. However, little is known about the molecular biology of oil biosynthesis in this plant when compared with other established oilseed crops, resulting in the absence of agronomically improved varieties of Jatropha. To extensively discover the potentially novel genes and pathways associated with the oil biosynthesis in J. curcas, new strategy other than homology alignment is on the demand. RESULTS: In this study, we proposed a multi-step computational framework that integrates transcriptome and gene interactome data to predict functional pathways in non-model organisms in an extended process, and applied it to study oil biosynthesis pathway in J. curcas. Using homologous mapping against Arabidopsis and transcriptome profile analysis, we first constructed protein-protein interaction (PPI) and co-expression networks in J. curcas. Then, using the homologs of Arabidopsis oil-biosynthesis-related genes as seeds, we respectively applied two algorithm models, random walk with restart (RWR) in PPI network and negative binomial distribution (NBD) in co-expression network, to further extend oil-biosynthesis-related pathways and genes in J. curcas. At last, using k-nearest neighbors (KNN) algorithm, the predicted genes were further classified into different sub-pathways according to their possible functional roles. CONCLUSIONS: Our method exhibited a highly efficient way of mining the extended oil biosynthesis pathway of J. curcas. Overall, 27 novel oil-biosynthesis-related gene candidates were predicted and further assigned to 5 sub-pathways. These findings can help better understanding of the oil biosynthesis pathway of J. curcas, as well as paving the way for the following J. curcas breeding application.


Assuntos
Jatropha , Biocombustíveis , Perfilação da Expressão Gênica , Jatropha/genética , Melhoramento Vegetal , Sementes , Transcriptoma
3.
Methods Mol Biol ; 2289: 221-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270073

RESUMO

The obstacles to breeding programs in Jatropha are the long reproductive cycle with a juvenile phase that lasts several months, the highly heterozygous nature of the genome, the large canopy size, and self-incompatibility that is a long-term process which requires multiple cycles of self-pollination to achieve complete homozygosity. In vitro plant tissue culture-based tools such as haploids and doubled haploid techniques can increase the selection efficiency, resulting into selection of superior plants with complete homozygosity in one generation. It bypasses the complications of greenhouse field evaluation or off-season generation advancement, which takes about 8-10 generations in traditional breeding with the time line of 10-12 years. The haploids have in fact a single set of chromosomes, which undergoes duplication spontaneously during in vitro culture conditions, and are further converted into doubled haploid plants. This represents a major biotechnological tool to accelerate plant breeding. Here, we have established a reproducible, unique anther culture protocol in Jatropha curcas to develop haploid and doubled haploid plants.


Assuntos
Técnicas de Cultura de Células/métodos , Flores/genética , Jatropha/genética , Melhoramento Vegetal/métodos , Árvores/genética , Cromossomos de Plantas/genética , Haploidia , Homozigoto , Polinização/genética
4.
Int J Pharm ; 606: 120867, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34242629

RESUMO

Jatropha pelargoniifolia (JP) is a medicinal plant that is widely used in traditional medicine owing to its broad range of therapeutic activities. Despite its promising pharmacological activities, the use of plant extracts has several limitations which can be overcome using pharmaceutical nanotechnology. The aim of this study was to systematically investigate the effect of nanoencapsulation on the antimicrobial and anticancer activities of JP extract. JP-loaded chitosan nanoparticles (JP-CSNPs) were prepared using the ionic gelation method and characterized in terms of size, polydispersity index, zeta potential, encapsulation efficiency, and release profile. Transmission electron microscopy was used to observe the morphology of the nanoparticles. The mean particle size, zeta potential, and encapsulation efficiency of optimized JP-CSNPs were 185.5 nm, 44 mV, and 78.5%, respectively. The release profile of the JP-CSNPs was mainly dependent on the pH of the surrounding medium, and the JP extract was released in a controlled manner over time. The total phenolic and flavonoid contents in JP extract were 191.8 mg GAE/g extract and 51.4 mg of QE/g extract, respectively. The results of a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that JP-CSNPs retained the antioxidant activity of unencapsulated JP extract. JP-CSNPs also exhibited higher antimicrobial activity against gram-positive bacteria than against gram-negative bacteria, and their minimum inhibitory concentration was 1.6-fold lower than that of blank nanoparticles, indicating the synergy between JP extract and nanoparticles. In vitro cytotoxicity studies using A549 human lung adenocarcinoma cells revealed that JP-CSNPs had a 2-fold lower half-maximal inhibitory concentration than free extract. Molecular docking analyses revealed that the active phytoconstituent of JP extract, linarin, binds strongly to the active sites of bacterial DNA gyrase B and human DNA topoisomerase IIα and thus, may inhibit their activities. Computational analysis results supported the in vitro finding that JP-CSNPs act as an anticancer and antimicrobial agent. Taken together, the results of this study highlighted the advantages of using CSNPs as a nanocarrier for herbal extracts, thus providing a potential strategy for improving plant-based therapeutics.


Assuntos
Quitosana , Jatropha , Nanopartículas , Humanos , Simulação de Acoplamento Molecular , Tamanho da Partícula
5.
Rev Bras Enferm ; 74(2): e20200451, 2021.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34076218

RESUMO

OBJECTIVE: to investigate the biological activities of interest to the health of Jatropha multifida plant species in published scientific literature. METHODS: this is an integrative review, with searches between May and June 2019, using the descriptors, combined through the Boolean operator AND, Jatropha multifida, anti-infective agents, wound healing, cytotoxicity and antioxidants, in LILACS, BDENF, MEDLINE, SciFinder, Web of Science and Scopus databases and in the virtual libraries SciELO and ScienceDirect. RESULTS: twelve publications were retrieved that showed nine biological activities. The antioxidant activity was reported in 04 (33.33%) studies; antimicrobial and anticancer, addressed by 03 (25%) and 02 (16.66%); anti-inflammatory, anti-melanin deposition, healing, antiophidic, purgative and anti-influenza, seen in 01 (8.33%) each. FINAL CONSIDERATIONS: although scarce, the published scientific production highlights the biological potential of J. multifida and supports the need for further studies.


Assuntos
Anti-Infecciosos , Jatropha , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Verduras , Cicatrização
6.
BMC Plant Biol ; 21(1): 303, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187364

RESUMO

BACKGROUND: Organic mulches are widely used in crop production systems. Due to their benefits in improving soil fertility, retention of soil moisture and weed control. Field experiments were conducted during wheat growing seasons of 2018-2019 and 2019-2020 to evaluate the effects of Jatropha leaves mulch on the growth of wheat varieties 'Wadan-17' (rainfed) and 'Pirsabaq-2013' (irrigated) under well irrigated and water stress conditions (non-irrigated maintaining 40% soil field capacity). Jatropha mulch was applied to the soil surface at 0, 1, 3 and 5 Mg ha-1 before sowing grains in the field. Under conditions of water stress, Jatropha mulch significantly maintained the soil moisture content necessary for normal plant growth. RESULTS: We noted a decrease in plant height, shoot and root fresh/dry weight, leaf area, leaf relative water content (LRWC), chlorophyll, and carotenoid content due to water stress. However, water stress caused an increase in leaf and root phenolics content, leaf soluble sugars and electrolytes leakage. We observed that Jatropha mulch maintained LRWC, plant height, shoot and root fresh/dry weight, leaf area and chlorophyll content under water stress. Moreover, water stress adverse effects on leaf soluble sugar content and electrolyte leakage were reversed to normal by Jatropha mulch. CONCLUSION: Therefore, it may be concluded that Jatropha leaves mulch will minimize water stress adverse effects on wheat by maintaining soil moisture and plant water status.


Assuntos
Produção Agrícola/métodos , Jatropha , Folhas de Planta , Triticum/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Carotenoides/metabolismo , Clorofila/metabolismo , Desidratação , Raízes de Plantas/crescimento & desenvolvimento , Solo , Triticum/metabolismo , Triticum/fisiologia
7.
J Toxicol Environ Health A ; 84(18): 743-760, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34120581

RESUMO

Jatropha mollissima is used in folk medicine as antimicrobial, antiparasitic, and larvicidal. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to determine the phytochemical profile of ethanolic leaf extract of J. mollissima (EEJM) as well as potential cytotoxic, mutagenic, and antimutagenic properties. The EEJM was subjected to successive fractionation for the isolation of secondary metabolites, and five concentrations (0.01; 0.1; 1; 10 and 100 mg/ml) of extract were investigated using Allium cepa assay and the Somatic Mutation and Recombination (SMART) test. The mitotic index and % damage reduction were analyzed for A. cepa and the frequency of mutant hair for SMART. The presence of coumarins, alkaloids, flavonoids, saponins, and tannins was detected, while spinasterol and n-triacontane were the isolates identified for the first time for this species. EEJM did not exhibit cytotoxicity and was not mutagenic at 1 or 10 mg/ml using A. cepa and all concentrations of EEJM were not mutagenic in the SMART test. A cytoprotective effect was found at all concentrations. At 1 or 10 mg/ml EEJM exhibited antimutagenicity in A. cepa. In SMART, the protective effect was observed at 0.1 to 100 mg/ml EEJM. Our results demonstrate the important chemopreventive activity of EEJM, a desired quality in the search for natural anticarcinogenic compounds.


Assuntos
Jatropha/química , Testes de Mutagenicidade , Cebolas/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Relação Dose-Resposta a Droga , Compostos Fitoquímicos/química , Extratos Vegetais/química , Folhas de Planta/química
8.
Methods Mol Biol ; 2290: 79-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009584

RESUMO

Jatropha curcas L. has more attention from researchers and policymakers as an inexpensive source for produce biofuel to reduce environmental pollution by fossil fuel in the next decades without competing for lands and freshwater currently used for food production. Jatropha is a perennial deciduous, succulent oilseed shrub, belonging to family Euphorbiaceae. It is native to Central and South America. It is a multipurpose shrub, each part of the plant can be used for various purposes, Jatropha produces flowers throughout the year and enables multiple harvests, while, in arid and semi-arid regions it is harvesting twice time per year.Jatropha is a drought-tolerant plant that could be growing under malnutrition conditions, and in different climatic conditions; therefore, it is proper plant for developing marginal lands and rural areas.Due to the growing demand for biofuel, jatropha cultivation has received more attention to providing seeds. While, there are various aspects of using jatropha include use as a traditional medicine for treating skin ailments, as a hedge for protecting other crops, to reduce soil degradation, combating desertification, and deforestation, also, jatropha cultivation protects the environment through using wastewater in irrigation and reduce sequester carbon dioxide.Conventional propagation of Jatropha propagated by seeds or stem cutting which is a more satisfactory technique to produce high-yielding seedlings, while, tissue culture method used in propagation but on small scale.Jatropha curcas L. contains mixtures of numerous active substances in all parts of the plant, which are used as biopesticides, larvicides, fungicide, and nematicide; also extracts are used as pesticides for whiteflies and termites.Jatropha crude oil is used for industrial purposes like manufacturing candles, soaps, varnishes, and as a lubricant; also press seedcake is used to produce biogas and organic fertilizers. Jatropha propagated by seeds or stem cutting which is more applicable techniques to produce high-yielding seedlings, also, tissue culture method used in propagation but on small scale for scientific work.


Assuntos
Agricultura/métodos , Jatropha/crescimento & desenvolvimento , Jatropha/metabolismo , Biocombustíveis/análise , Biocombustíveis/economia , Óleos Vegetais/metabolismo , Plântula/metabolismo , Sementes/metabolismo
9.
Int J Biol Macromol ; 181: 1207-1223, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33971233

RESUMO

The basic leucine zipper (bZIP) family is one of the largest families of transcription factors (TFs) in plants and is responsible for various functions, including regulating development and responses to abiotic/biotic stresses. However, the roles of bZIPs in the regulation of responses to drought stress and salinity stress remain poorly understood in Jatropha curcas L., a biodiesel crop. In the present study, 50 JcbZIP genes were identified and classified into ten groups. Cis-element analysis indicated that JcbZIP genes are associated with abiotic stress. Gene expression patterns and quantitative real-time PCR (qRT-PCR) showed that four JcbZIP genes (JcbZIPs 34, 36, 49 and 50) are key resistance-related genes under both drought and salinity stress conditions. On the basis of the results of cis-element and phylogenetic analyses, JcbZIP49 and JcbZIP50 are likely involved in responses to drought and salinity stress; moreover, JcbZIP34 and JcbZIP36 might also play important roles in seed development and response to abiotic stress. These findings advance our understanding of the comprehensive characteristics of JcbZIP genes and provide new insights for functional validation in the further.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Secas , Jatropha/genética , Estresse Salino/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Jatropha/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética
10.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34057149

RESUMO

Jatropha curcas has recently emerged as an important bioenergy plant which is an ideal alternative for fossil fuels. It is particularly significant to analyse the codon usage bias (CUB) and further evaluate the intraspecific genetic divergence of three J. curcas in Asia, considering its potential economic benefits and various utilities. In the present study, the patterns of CUB were systematically compared, and the factors shaping CUB were identified in all three genomes of J. curcas. Our observations indicate that the preference for A/T nucleotides and A/T ending codons was present in all the three genomes. Moreover, 11 identical high-frequency codons as well as the optimal expression receptor Nicotiana tabacum were confirmed. Besides, it was observed that CUB resulted from the combined effects of natural selection and mutation pressure, while the natural selection was the determining factor. Eventually, similarity indices based on relative synonymous codon usage (RSCU) values implied low intraspecific genetic divergence in three Asian J. curcas. This study provides useful clues for improving the expression level of exogenous genes and optimizing breeding programmes by molecular-assisted breeding in J. curcas.


Assuntos
Uso do Códon , Genoma de Planta , Jatropha/classificação , Jatropha/genética , Mutação , Melhoramento Vegetal , Proteínas de Plantas/genética , Deriva Genética , Seleção Genética
11.
Curr Microbiol ; 78(5): 1914-1925, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33835233

RESUMO

Extracellular and cell-bound lipase-producing yeasts were isolated from the palm oil mill wastes and investigated for their potential uses as biocatalysts in biodiesel production. Twenty-six yeast strains were qualitatively screened as lipase producers. From those yeast strains, only six were selected and screened further for quantitative lipase production.The phylogenetic affiliations of the yeast strains were confirmed by investigating the D1/D2 domains of 26S rDNA and ITS1-5.8S-ITS2 molecular regions of the six yeast strains selected as potent lipase producers. The three yeast strains A4C, 18B, and 10F showed a close association with Magnusiomyces capitatus. Two yeast strains (17B and AgB) had a close relationship with Saprochaete clavata, whereas the strain AW2 was identified as Magnusiomyces spicifer. Three main catalytic activities of the yeast lipases were evaluated and Magnusiomyces capitatus A4C, among the selected lipase-producing yeasts, had the highest extracellular lipolytic enzyme activity (969 U/L) with the cell-bound lipolytic enzyme activity of 11.3 U/gdm. The maximum cell-bound lipolytic activity (12.4 U/gdm) was observed in the cell-bound lipase fraction produced by Magnusiomyces spicifer AW2 with an extracellular lipolytic enzyme activity of 886 U/L. Based on the specific hydrolytic enzymatic activities, the cell-bound lipases (CBLs) from the three yeast strains M. capitatus A4C, M. spicifer AW2, and Saprochaete clavata 17B were further investigated for biodiesel production. Among them, the CBL from M. spicifer AW2 synthesized the most FAME (fatty acid methyl esters) at 81.2% within 12 h indicating that it has potential for application in enzymatic biodiesel production.


Assuntos
Jatropha , Biocombustíveis , Esterificação , Jatropha/metabolismo , Lipase/metabolismo , Filogenia , Óleos Vegetais , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Solventes
12.
Ying Yong Sheng Tai Xue Bao ; 32(2): 609-617, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33650371

RESUMO

The wastes such as sewage sludge (SS) can be used to amend soil of abandoned rare-earth mine land (ARL). The energy plant Jatropha curcas could be used as a pioneer tree species in the ARL. In a pot experiment to address the responses of growth and element uptake of J. curcas, three treatments were established: adding SS to the soil of ARL (T1), adding SS and bagasse to the soil of ARL (T2), adding SS, bagasse and passivator to the soil of ARL (T3), with the untreated soil of the ARL as the control (CK). The results showed that compared with CK, T1 only significantly increased the plant height of J. curcas, T2 and T3 significantly increased the plant height, ground diameter and dry biomass of J. curcas, of which the total dry biomass increased by more than 184.7%. All the three treatments significantly increased the contents of N, P, K and Cu in J. curcas. T1 and T2 significantly increased the proportion of exchangeable Zn, Cd and Ni in the substrates, while T3 showed the opposite effects. T3 significantly decreased the migration factor (M) and mobility factor (MF) of Zn, Cd, Ni in the substrates, and significantly reduced the contents of Zn, Pb, Cd, Ni in J. curcas, with an inhibition rate of over 36.1%. The comprehensive evaluation of the membership function showed that the order of growth promotion effects on J. curcas was T2>T3>T1>CK, while the order of capacity of inhibiting J. curcas to accumulate Cu, Zn, Pb, Cd, Ni was T3>CK>T2>T1. The combined application of SS and bagasse significantly promoted the growth and element accumulation of J. curcas, and the addition of passivator significantly reduced heavy metals uptake without affecting the growth of J. curcas.


Assuntos
Jatropha , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Esgotos , Solo , Poluentes do Solo/análise
13.
Trop Anim Health Prod ; 53(2): 232, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772665

RESUMO

The nutritional value of Jatropha curcas kernel (JCK) can be improved through different processing methods; however, when using a thermal treatment, optimization of the process is needed to prevent denaturation of nutrients. In this study, JCK was toasted for varying durations (0, 10, 20, and 30 min) and nutritionally evaluated. The implication of feeding Clarias gariepinus with dietary inclusions (35% CP; 315 kcal g-1) of the toasted JCK was also reported. The results obtained suggest that prolonged duration of toasting improved the nutritional characteristics of the JCK until the 20th min. Beyond this time, the protein content and essential amino acids are reduced. However, the antinutrients continuously decreased with prolonged processing. The growth, carcass analysis, and haematology of the fish groups fed toasted JCK at varying duration also did better than those fed raw JCK. Importantly, the performance tends to reduce for those fed JCK toasted beyond 20 min. The estimated cost of producing 1 kg of the fish also substantially reduced with feeding the processed JCK than feeding raw JCK. Histological examination of the intestine and liver tissues further revealed fewer signs of histopathological degeneration for fish-fed processed JCK compared to the control. It was concluded that the processing of JCK by toasting should not exceed 20 min to improve the nutritional composition of the feed ingredients and their dietary utilization by fish.


Assuntos
Peixes-Gato , Hematologia , Jatropha , Ração Animal/análise , Animais , Dieta/veterinária
14.
Plant Biotechnol J ; 19(8): 1614-1623, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33657678

RESUMO

To engineer Nicotiana benthamiana to produce novel diterpenoids, we first aimed to increase production of the diterpenoid precursor geranylgeranyl pyrophosphate (GGPP) by up-regulation of key genes of the non-mevalonate (MEP) pathway sourced from Arabidopsis thaliana. We used transient expression to evaluate combinations of the eight MEP pathway genes plus GGPP synthase and a Jatropha curcas casbene synthase (JcCAS) to identify an optimal combination for production of casbene from GGPP. AtDXS and AtHDR together with AtGGPPS and JcCAS gave a 410% increase in casbene production compared to transient expression of JcCAS alone. This combination was cloned into a single construct using the MoClo toolkit, and stably integrated into the N. benthamiana genome. We also created multigene constructs for stable transformation of two J. curcas cytochrome P450 genes, JcCYP726A20 and JcCYP71D495 that produce the more complex diterpenoid jolkinol C from casbene when expressed transiently with JcCAS in N. benthamiana. Stable transformation of JcCYP726A20, JcCYP71D495 and JcCAS did not produce any detectable jolkinol C until these genes were co-transformed with the optimal set of precursor-pathway genes. One such stable homozygous line was used to evaluate by transient expression the involvement of an 'alkenal reductase'-like family of four genes in the further conversion of jolkinol C, leading to the demonstration that one of these performs reduction of the 12,13-double bond in jolkinol C. This work highlights the need to optimize precursor supply for production of complex diterpenoids in stable transformants and the value of such lines for novel gene discovery.


Assuntos
Diterpenos , Jatropha , Sistema Enzimático do Citocromo P-450 , Tabaco/genética
15.
J Sci Food Agric ; 101(12): 5089-5096, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570746

RESUMO

BACKGROUND: Jatropha is an oilseed crop with high kernel oil (55-58%) and protein (26-29%) contents, which makes it a good source of biodiesel and animal/aqua-feed. However, the presence of anti-nutritional toxins, such as phorbol esters, lectins, trypsin inhibitor, phytate, and saponins, restricts its use as feed. This paper describes chemical, ultraviolet (UV) radiation, and biological treatments for detoxification of jatropha kernel meal. Raw, defatted, and one-time and two-times mechanically expressed oil samples were analyzed for toxins. Chemical treatment involved heating with 90% methanol and 4% sodium hydroxide. UV treatment was carried out at UV light intensity of 53.4 mW cm-2 for 30 min. For biological treatment, cell-free extract from Pseudomonas aeruginosa (strain PAO1) was mixed with kernel meal for detoxification. RESULTS: Among treatments, chemical treatment was most effective in reducing all toxins, with phorbol esters in the range 0.034-0.052 mg g-1 , lectin 0.082-10.766 mg g-1 , trypsin inhibitor 10.499-11.350 mg g-1 , phytate 2.475-5.769 mg g-1 , and saponins 0.044-0.098 mg g-1 . Biological treatment reduced all toxins except phytate, whereas UV treatment could not reduce any of toxins and, hence, cannot be used for aqua-feed preparation. Pellets prepared from chemically detoxified kernel meal with the least oil content (defatted) resulted in the highest strength (70.93 N). CONCLUSION: Chemically treated jatropha kernel meal can be used for aqua-feed pellet preparation because of its low toxin content. The highest compressive strength was obtained for pellets with the least oil content (defatted). Biological treatment time must have been extended for many hours instead of 24 h. Jatropha kernel meal treated chemically can be recommended for aqua-feed manufacturing. © 2021 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Peixes/metabolismo , Manipulação de Alimentos/métodos , Jatropha/metabolismo , Sementes/química , Animais , Aquicultura , Manipulação de Alimentos/instrumentação , Jatropha/química , Jatropha/efeitos da radiação , Ésteres de Forbol/análise , Ácido Fítico/análise , Ácido Fítico/metabolismo , Saponinas/análise , Saponinas/metabolismo , Sementes/metabolismo , Sementes/efeitos da radiação , Inibidores da Tripsina/análise , Inibidores da Tripsina/metabolismo , Raios Ultravioleta
16.
Sci Rep ; 11(1): 890, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441589

RESUMO

The leaf curl disease of Jatropha caused by geminiviruses results in heavy economic losses. In the present study, we report the identification of a new strain of a Jatropha leaf curl Gujarat virus (JLCuGV), which encodes six ORFs with each one having RNA silencing suppressor activity. Therefore, three artificial microRNAs (amiRNAs; C1/C4, C2/C3 and V1/V2) were designed employing overlapping regions, each targeting two ORFs of JLCuGV genomic DNA and transformed in tobacco. The C1/C4 and C2/C3 amiRNA transgenics were resistant while V1/V2 amiRNA transgenics were tolerant against JLCuGV. The relative level of amiRNA inversely related to viral load indicating a correlation with disease resistance. The assessment of photosynthetic parameters suggests that the transgenics perform significantly better in response to JLCuGV infiltration as compared to wild type (WT). The metabolite contents were not altered remarkably in amiRNA transgenics, but sugar metabolism and tricarboxylic acid (TCA) cycle showed noticeable changes in WT on virus infiltration. The overall higher methylation and demethylation observed in amiRNA transgenics correlated with decreased JLCuGV accumulation. This study demonstrates that amiRNA transgenics showed enhanced resistance to JLCuGV while efficiently maintaining normalcy in their photosynthesis and metabolic pathways as well as homeostasis in the methylation patterns.


Assuntos
Begomovirus/genética , Resistência à Doença/genética , Tabaco/genética , Begomovirus/patogenicidade , Geminiviridae/genética , Geminiviridae/patogenicidade , Jatropha/genética , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia , RNA Viral/genética , Carga Viral
17.
Int J Phytoremediation ; 23(2): 171-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32805144

RESUMO

The study investigated the effects of Jatropha curcas (JC) and Vetiveria zizanioides (VZ) on hydrocarbon concentration levels in mine spoils. A 2 × 2 × 3 factorial arrangement of treatments in a completely randomized design with 3 replications was adopted. With compost amendments, JC caused 78.8 and 82.2% and VZ caused 51.1 and 39.7% decline in soil TPH and TOG concentrations, respectively after 16 weeks. Compost amendments significantly reduced TOG and TPH concentrations compared to the other treatments in both JC and VZ (p < 0.0001). However, the effect of species on TOG and TPH concentrations were marginally significant (p = 0.081 and p < 0.006, respectively). Growth in height, collar diameter and number of leaves in JC were significantly higher in the compost amendment compared to the fertilizer and control treatments (p < 0.0001). Number of leaves (p = 0.009) and collar diameter growth (p = 0.010) were significantly lower in contaminated soils compared to non-contaminated soils. Furthermore, only the number of tillers in Vetiver was significantly influenced by the soil amendments (p = 0.003) and the soil hydrocarbon levels (p = 0.048). It is concluded that phytoremediation particularly with JC is an alternate means to reducing soil hydrocarbon concentration levels. However, soils must be amended with compost for effective remediation and rapid, vigorous, early growth of plants.


Assuntos
Vetiveria , Jatropha , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Gana , Hidrocarbonetos , Manganês , Solo , Poluentes do Solo/análise
18.
Plant Dis ; 105(1): 205-206, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33200956

RESUMO

Sphingomonas carotinifaciens strain L9-754T (DSM 27347) is a gram-negative, chemoheterotrophic, and rod-shaped endophyte isolated from the stem tissues of Jatropha curcas L. This strain has putative in vitro antagonistic ability against the plant pathogenic fungus Magnaporthe grisea. A draft genome of L9-754T was obtained using the PacBio SMRT cell platform. By analyzing the genome of strain L9-754T, a gene cluster (GQR91_18700 - GQR91_18715) related to an antioxidant enzyme was identified in the obtained draft genome. The information obtained from the draft genome is expected to reveal the putative properties helpful in biocontrol applications.


Assuntos
Jatropha , Endófitos/genética , Jatropha/genética , Filogenia , Folhas de Planta , Análise de Sequência de DNA , Sphingomonas
19.
J Appl Microbiol ; 130(3): 852-864, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32816375

RESUMO

AIMS: The aims of the study were to (i) improve the evaluation criteria of detoxifying Jatropha curcas L. cake (JCC), (ii) isolate and characterize a JCC tolerant strain, (iii) explore its JCC detoxifying potential. METHODS AND RESULTS: The zebrafish was employed as a survival model to screen the strains capable of detoxifying JCC. A strain identified as Mucor circinelloides SCYA25, which is highly capable of degrading all toxic components, was isolated from soil. Different solid-state fermentation parameters were optimized by response surface methodology. The optimal values for inoculation amount, moisture content, temperature, and time were found to be 18% (1·8 × 106 spores g-1 cake), 66%, 26, and 36 days, respectively, to achieve maximum detoxification of the JCC (92%). Under optimal fermentation conditions, the protein content of JCC was increased, while the concentrations of ether extract, crude fiber, toxins, and anti-nutritional substances were all degraded considerably (P < 0·05). Scanning electron microscopy and Fourier transform infrared spectrometer analysis revealed that the fermentation process could disrupt the surface structure and improve the ratio of α-helix to ß-folding in the JCC protein, which may improve the digestibility when the detoxified JCC is used as a feedstuff. CONCLUSIONS: Our results indicate that M. circinelloides SCYA25 is able to detoxify JCC and improve its nutritional profile, which is beneficial to the safe utilization of JCC as a protein feedstuff. SIGNIFICANCE AND IMPACT OF THE STUDY: The newly identified M. circinelloides SCYA25 detoxified JCC in a safe manner to provide a potential alternative to soybean meal for the feed industry. These results also provide a new perspective and method for the toxicity evaluation and utilization of JCC and similar toxic agricultural by-products.


Assuntos
Jatropha/metabolismo , Mucor/metabolismo , Eliminação de Resíduos/métodos , Microbiologia do Solo , Toxinas Biológicas/metabolismo , Ração Animal/microbiologia , Animais , Biodegradação Ambiental , Fermentação , Jatropha/química , Jatropha/toxicidade , Mucor/isolamento & purificação , Toxinas Biológicas/análise , Toxinas Biológicas/toxicidade , Peixe-Zebra
20.
J Ethnopharmacol ; 268: 113673, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33301921

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha curcas L. (Euphorbiaceae), as a drought resistant shrub mainly cultivated in tropical and subtropical areas worldwide, is widely used as traditional medicine to cure arthritis, dysentery, abscess and pneumonia in Asian, African and South American folklores. The methanolic extracts of the roots have been revealed the anti-inflammatory activity in vivo and vitro. AIM OF STUDY: This research aimed to provide promising anti-inflammatory candidates from the roots of J. curcas. In addition, RNA-Seq was conducted to give targeted genes involved in the anti-inflammatory action. MATERIALS AND METHODS: The diterpenoids were isolated from the CH2Cl2 fraction of the methanolic extract from the roots of J. curcas by column chromatography (CC): silica gel, Sephadex LH-20, ODS, semi-preparative reversed-phase high-performance liquid chromatography (HPLC). The structures were identified based on HR-ESI-MS and 1D, 2D-NMR spectroscopic analysis. Their anti-inflammatory effects were tested on lipopolysaccharide (LPS, 500 ng/mL)-stimulated murine RAW264.7 macrophages. Furthermore, we conducted transcriptome-wide RNA sequencing to profile gene expression alterations in LPS-induced RAW264.7 cells upon treatment with jatrocurcasenone I (4) and analyzed the underlying genes targeted by this compound. RESULTS: Six diterpenoids were obtained from J. curcas, and four of them were identified to be new lathyrane diterpenoids: jatrocurcasenones F-I (1-4). Compounds 3 and 4 exhibited potent inhibitory activities against LPS-induced nitric oxide (NO) production in RAW264.7 cells with IC50 values of 11.28 µM and 7.71 µM, respectively. Western blotting analysis showed that the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were suppressed with the supplementation of 3 and 4. The results of RNA-seq showed that 4 (20 µM) exhibited regulation on the 587 differentially expressed genes (DEGs) induced by LPS (500 ng/mL). Transcriptome-wide RNA sequencing indicated that the protective activity of 4 supplementation was most likely driven by modulating expression levels of IL-1α, IL-1ß, IL-1f6, IL-6, IL-1rn, IL-27, Ccl2, Ccl5, Ccl7, Ccl9, Ccl22, Cxcl10, Tnfsf12, Tnfsf15, Lta, Trim25, Bcl2a1a, Dusp1, Dusp2, Ptgs2, Edn1 and Nr4a1. CONCLUSIONS: This study offered four new lathyrane diterpenoids, of them, jatrocurcasenone I (4) showed significant anti-inflammatory activity. RNA-Seq suggested that jatrocurcasenone I (4) could be a candidate drug for the prevention inflammation-mediated diseases by modulating 24 candidate DEGs.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Jatropha , Raízes de Plantas , Animais , Anti-Inflamatórios/isolamento & purificação , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...