RESUMO
Plant microtubules (MTs) form highly dynamic and distinct arrays throughout the cell cycle and are essential for cell and organ morphogenesis. A plethora of microtubule associated-proteins (MAPs), both conserved and plant-specific, ensure the dynamic response of MTs to internal and external cues. The MAP215 family MT polymerase/nucleation factor and the MT severing enzyme katanin are among the most conserved MAPs in eukaryotes. Recent studies have revealed unexpected functional and physical interactions between MICROTUBULE ORGANIZATION 1 (MOR1), the Arabidopsis homolog of MAP215, and KATANIN 1 (KTN1), the catalytic subunit of katanin. In this minireview, we provide a short overview on current understanding of the functions and regulations of MOR1 and katanin in cell morphogenesis and plant growth and development.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismoRESUMO
Plant cells form microtubule arrays, called `cortical microtubules', beneath the plasma membrane which are critical for cell-wall organization and directional cell growth. Cortical microtubules are nucleated independently of centrosomes. Spiral2 is a land-plant-specific microtubule minus-end-targeting protein that stabilizes the minus ends by inhibiting depolymerization of the filament. Spiral2 possesses an N-terminal microtubule-binding domain and a conserved C-terminal domain whose function is unknown. In this study, the crystal structure of the conserved C-terminal domain of Spiral2 was determined using the single-wavelength anomalous dispersion method. Refinement of the model to a resolution of 2.2â Å revealed a helix-turn-helix fold with seven α-helices. The protein crystallized as a dimer, but SEC-MALS analysis showed the protein to be monomeric. A structural homology search revealed that the protein has similarity to the C-terminal domain of the katanin regulatory subunit p80. The structure presented here suggests that the C-terminal domain of Spiral2 represents a new class of microtubule dynamics modulator across the kingdom.
Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Cristalografia por Raios X , Microtúbulos/metabolismo , Katanina/química , Katanina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Proper stamen filament elongation is essential for pollination and plant reproduction. Plant hormones are extensively involved in every stage of stamen development; however, the cellular mechanisms by which phytohormone signals couple with microtubule dynamics to control filament elongation remain unclear. Here, we screened a series of Arabidopsis thaliana mutants showing different microtubule defects and revealed that only those unable to sever microtubules, lue1 and ktn80.1234, displayed differential floral organ elongation with less elongated stamen filaments. Prompted by short stamen filaments and severe decrease in KTN1 and KTN80s expression in qui-2 lacking five BZR1-family transcription factors (BFTFs), we investigated the crosstalk between microtubule severing and brassinosteroid (BR) signaling. The BFTFs transcriptionally activate katanin-encoding genes, and the microtubule-severing frequency was severely reduced in qui-2. Taken together, our findings reveal how BRs can regulate cytoskeletal dynamics to coordinate the proper development of reproductive organs.
Assuntos
Brassinosteroides , Katanina , Microtúbulos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Severing proteins are nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily whose function is to remodel the largest cellular filaments, microtubules. The standard AAA+ machines adopt hexameric ring structures for functional reasons, while being primarily monomeric in the absence of the nucleotide. Both major severing proteins, katanin and spastin, are believed to follow this trend. However, studies proposed that they populate lower-order oligomers in the presence of cofactors, which are functionally relevant. Our simulations show that the preferred oligomeric assembly is dependent on the binding partners and on the type of severing protein. Essential dynamics analysis predicts that the stability of an oligomer is dependent on the strength of the interface between the helical bundle domain (HBD) of a monomer and the convex face of the nucleotide binding domain (NBD) of a neighboring monomer. Hot spots analysis found that the region consisting of the HBD tip and the C-terminal (CT) helix is the only common element between the allosteric networks responding to nucleotide, substrate, and intermonomer binding. Clustering analysis indicates the existence of multiple pathways for the transition between the secondary structure of the HBD tip in monomers and the structure(s) it adopts in oligomers.
Assuntos
Adenosina Trifosfatases , Microtúbulos , Katanina/química , Katanina/metabolismo , Espastina/metabolismo , Adenosina Trifosfatases/química , Nucleotídeos/metabolismoRESUMO
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and ß-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on ß-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Assuntos
Caenorhabditis elegans , Tubulina (Proteína) , Animais , Katanina/genética , Tubulina (Proteína)/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-TraducionalRESUMO
Stephanie Sarbanes et al. discuss microtubule-severing enzymes, highlighting their shared structure and mechanism and the diversity of processes in which they participate.
Assuntos
Microtúbulos , Katanina/metabolismo , Microtúbulos/metabolismoRESUMO
Microtubules are cytoskeletal polymers that separate chromosomes during mitosis and serve as rails for intracellular transport and organelle positioning. Manipulation of microtubules is widely used in cell and developmental biology, but tools for precise subcellular spatiotemporal control of microtubules are currently lacking. Here, we describe a light-activated system for localized recruitment of the microtubule-severing enzyme katanin. This system, named opto-katanin, uses targeted illumination with blue light to induce rapid, localized, and reversible microtubule depolymerization. This tool allows precise clearing of a subcellular region of microtubules while preserving the rest of the microtubule network, demonstrating that regulation of katanin recruitment to microtubules is sufficient to control its severing activity. The tool is not toxic in the absence of blue light and can be used to disassemble both dynamic and stable microtubules in primary neurons as well as in dividing cells. We show that opto-katanin can be used to locally block vesicle transport and to clarify the dependence of organelle morphology and dynamics on microtubules. Specifically, our data indicate that microtubules are not required for the maintenance of the Golgi stacks or the tubules of the endoplasmic reticulum but are needed for the formation of new membrane tubules. Finally, we demonstrate that this tool can be applied to study the contribution of microtubules to cell mechanics by showing that microtubule bundles can exert forces constricting the nucleus.
Assuntos
Adenosina Trifosfatases , Optogenética , Katanina/genética , Katanina/metabolismo , Adenosina Trifosfatases/metabolismo , Microtúbulos/metabolismo , MitoseRESUMO
Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Katanina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Forma Celular , Anisotropia , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Celulose/metabolismo , Proteínas Repressoras/metabolismoRESUMO
Background: Sepsis is a systemic inflammatory response that can elicit organ dysfunction as well as circulatory diseases in serious cases. When inflammatory responses are especially dysregulated, severe complications can arise, including sepsis-induced liver injury. Various microRNAs along with circular (circ) RNAs are involved in inflammatory responses; nevertheless, their functions in regulating sepsis-induced liver injury remain unknown. The cecal ligation and puncture (CLP) procedure can induce liver injury as well as polymicrobial sepsis. Methods: In this study, CLP was used to induce liver injury as well as polymicrobial sepsis. Then, liver function, inflammatory cytokine expression, and hepatic histopathology were evaluated. High-throughput sequencing was employed to investigate the abnormal hepatic circRNA expression after CLP. Raw264.7 cells were utilized to simulation an in vitro sepsis inflammation model with LPS induce. The relative mRNA as well as protein levels of TNF-α, IL-1ß, and IL-6 was explored by quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays. We explored functional connections among circRNAs, miR-31-5p, and gasdermin D (GSDMD) using dual-luciferase reporter assays. Western blot was employed to test GSDMD, caspase-1, and NLRP3 expression in mice and cell models. Results: Our results showed that CLP-induced sepsis promoted liver injury via increasing inflammatory pyroptosis. The abnormal expression of circ-Katnal1 played an important role in CLP-induced sepsis. Downregulating circ-Katnal1 suppressed LPS-induced inflammatory pyroptosis in Raw264.7 cells. Bioinformatics and luciferase reporter results confirmed that miR-31-5p and GSDMD were downstream targets of circ-Katnal1. Inhibiting miR-31-5p or upregulating GSDMD reversed the protective effects of silencing circ-Katnal1. Conclusion: Taken together, circ-Katnal1 enhanced inflammatory pyroptosis in sepsis-induced liver injury through the miR-31-5p/GSDMD axis.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Katanina/genética , MicroRNAs , Sepse , Animais , Apoptose , Katanina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose , RNA Circular/genética , Sepse/patologiaRESUMO
KATNAL2 mutations have been associated with autism spectrum disorder (ASD) and other related neurodevelopmental disorders (NDDs) such as intellectual disability (ID) in several cohorts. KATNAL2 has been implicated in brain development, as it is required for ciliogenesis in Xenopus and is required for dendritic arborization in mice. However, a causative relationship between the disruption of Katnal2 function and behavioral defects has not been established. Here, we generated a katnal2 null allele in zebrafish using CRISPR/Cas9-mediated genome editing and carried out morphological and behavioral characterizations. We observed that katnal2-/- embryos displayed delayed embryonic development especially during the convergence and extension (CE) movement. The hatched larvae showed reduced brain size and body length. In the behavioral tests, the katnal2-/- zebrafish exhibited reduced locomotor activity both in larvae and adults; increased nocturnal waking activity in larvae; and enhanced anxiety-like behavior, impaired social interaction, and reduced social cohesion in adults. These findings indicate an important role for katnal2 in development and behavior, providing an in vivo model to study the mechanisms underlying the ASD related to KATNAL2 mutations.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Katanina/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário , Larva/genética , Peixe-Zebra/genéticaRESUMO
Katanin p60 ATPase-containing subunit A1 (KATNA1) is a microtubule-cleaving enzyme that regulates the development of neural protrusions through cytoskeletal rearrangements. However, the mechanism underlying the linkage of the small ubiquitin-like modifier (SUMO) protein to KATNA1 and how this modification regulates the development of neural protrusions is unclear. Here we discovered, using mass spectrometry analysis, that SUMO-conjugating enzyme UBC9, an enzyme necessary for the SUMOylation process, was present in the KATNA1 interactome. Moreover, GST-pull down and co-immunoprecipitation assays confirmed that KATNA1 and SUMO interact. We further demonstrated using immunofluorescence experiments that KATNA1 and the SUMO2 isoform colocalized in hippocampal neurites. We also performed a bioinformatics analysis of KATNA1 protein sequences to identify three potentially conserved SUMOylation sites (K77, K157, and K330) among vertebrates. Mutation of K330, but not K77 or K157, abolished KATNA1-induced microtubule severing and decreased the level of binding observed for KATNA1 and SUMO2. Cotransfection of SUMO2 and wildtype KATNA1 in COS7 cells increased microtubule severing, whereas no effect was observed after cotransfection with the K330R KATNA1 mutant. Furthermore, in cultured hippocampal neurons, overexpression of wildtype KATNA1 significantly promoted neurite outgrowth, whereas the K330R mutant eliminated this effect. Taken together, our results demonstrate that the K330 site in KATNA1 is modified by SUMOylation and SUMOylation of KATNA1 promotes microtubule dynamics and hippocampal neurite outgrowth.
Assuntos
Katanina , Microtúbulos , Crescimento Neuronal , Sumoilação , Adenosina Trifosfatases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Katanina/genética , Katanina/metabolismo , Microtúbulos/enzimologia , Microtúbulos/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismoRESUMO
BACKGROUND: Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single-nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. OBJECTIVES: The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well-characterised cohort of infertile men because of severe spermatogenic failure. MATERIALS AND METHODS: A total of 715 infertile men because of severe spermatogenic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case-control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. RESULTS: Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli-cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. CONCLUSIONS: Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non-functional transcript isoform in the testis.
Assuntos
Azoospermia , Infertilidade Masculina , Katanina , Oligospermia , Animais , Humanos , Masculino , Azoospermia/genética , Infertilidade Masculina/genética , Katanina/genética , Oligospermia/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Sêmen , Espermatogênese/genéticaRESUMO
ABSTRACT: Katanin subunits p60 and p80 are involved in microtubule-mediated cytoskeletal organization during cell division. Their aberrant expression has been found in prostate, breast, and non-small cell lung (NSCLC) cancers. It has recently been reported that compared with adjacent papillary thyroid carcinoma (PTC) tissues, both are highly expressed in tumor tissues. Here, we investigated whether katanin subunits p60 and p80 can be used as potential biomarkers for PTC to distinguish nodular goiter (NG).Immunohistochemistry was performed to investigate the expression of katanin subunits p60 and p80 in the tissues of 97 cases of PTC and NG. This cohort included 87 cases with PTC (74 classical or conventional (CPTC) and 13 follicular (FVPTC) variants) and 10 cases with NG.We found that katanin subunits p60 and p80 were expressed in PTC, but not in NG. The cutoff values of katanin p60 and p80 for PTC were 22.43% and 0.83%, respectively. The katanin subunit p60 was significantly associated with lymph node metastasis. Katanin subunit p80 was more highly expressed in CPTC than in FVPTC. The expression of the katanin subunit p60 was positively correlated with the expression of katanin p80 in PTC. Importantly, we found that overexpression of katanin p60 increased the expression of katanin p80 in a human papillary thyroid carcinoma KTC-1 cell line, which further supports the existence of katanin p60 and p80 feedback loops.Our results indicate that katanin subunits p60 and p80 may be used as potential PTC biomarkers to distinguish NG and may be novel therapeutic targets for PTC.
Assuntos
Bócio Nodular , Neoplasias da Glândula Tireoide , Adenosina Trifosfatases , Biomarcadores , Bócio Nodular/diagnóstico , Humanos , Katanina/metabolismo , Masculino , Câncer Papilífero da Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/diagnósticoRESUMO
The MAP215 family of microtubule (MT) polymerase/nucleation factors and the MT severing enzyme katanin are widely conserved MT-associated proteins (MAPs) across the plant and animal kingdoms. However, how these two essential MAPs coordinate to regulate plant MT dynamics and development remains unknown. Here, we identified novel hypomorphic alleles of MICROTUBULE ORGANIZATION 1 (MOR1), encoding the Arabidopsis thaliana homolog of MAP215, in genetic screens for mutants oversensitive to the MT-destabilizing drug propyzamide. Live imaging in planta revealed that MOR1-green fluorescent protein predominantly tracks the plus-ends of cortical MTs (cMTs) in interphase cells and labels preprophase band, spindle and phragmoplast MT arrays in dividing cells. Remarkably, MOR1 and KATANIN 1 (KTN1), the p60 subunit of Arabidopsis katanin, act synergistically to control the proper formation of plant-specific MT arrays, and consequently, cell division and anisotropic cell expansion. Moreover, MOR1 physically interacts with KTN1 and promotes KTN1-mediated severing of cMTs. Our work establishes the Arabidopsis MOR1-KTN1 interaction as a central functional node dictating MT dynamics and plant growth and development.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismoRESUMO
Oral squamous cell carcinoma (OSCC) is a common cancer with high recurrence, metastasis rates and poor prognosis. Circular RNAs (circRNAs) take part in regulating OSCC. Herein, we examined the role of circ_0008068 in OSCC. The circ_0008068, Katanin p60 ATPase-containing subunit A-like 1 (KATNAL1) mRNA, microRNA-153-3p (miR-153-3p) and acylgycerol kinase (AGK) contents were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Moreover, in vitro and in vivo assays were conducted to scrutinize the effects of circ_0008068 on OSCC. Additionally, the contact between miR-153-3p and circ_0008068 or AGK was assessed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Thereafter, we found that the appearance of circ_0008068 and AGK was increased, and miR-153-3p content was diminished in OSCC. Circ_0008068 lack subdued cell proliferation, migration, invasion, tube formation and glycolysis metabolism, but stimulated cell apoptosis in OSCC. In addition, circ_0008068 bound to miR-153-3p to modulate the expression of its target AGK. Besides, miR-153-3p was validated to act as a tumor suppressor in OSCC tumorigenesis by suppressing AGK. Additionally, circ_0008068 knockdown also attenuated tumor growth in nude mice. In all, circ_0008068 expedited the growth of OSCC by miR-153-3p/AGK axis.Abbreviations: OSCC: Oral squamous cell carcinoma; AGK: Acylgycerol kinase; CircRNA: Circular RNA; KATNAL1: Katanin p60 ATPase-containing subunit A-like 1; qRT-PCR: Quantitative real-time polymerase chain reaction; miRNAs/miRs: MicroRNAs; RIP: RNA immunoprecipitation; 3'UTR3': -untranslated region; HK2: Hexokinase 2; LDHA Lactate dehydrogenase A; IHC: Immunohistochemistry; CCK8: Cell counting kit-8; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
Assuntos
MicroRNAs , Neoplasias Bucais , RNA Circular , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Katanina/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Circular/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologiaRESUMO
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Morfogênese , Plantas/metabolismoRESUMO
Mobile microRNAs (miRNAs) serve as local and long-distance signals in the developmental patterning and stress responses in plants. However, mechanisms governing the non-cell autonomous activities of miRNAs remain elusive. Here, we show that mutations that disrupt microtubule dynamics are specifically defective for the non-cell autonomous actions of mobile miRNAs, including miR165/6 that is produced in the endodermis and moves to the vasculature to pattern xylem cell fates in Arabidopsis roots. We show that KTN1, a subunit of a microtubule-severing enzyme, is required in source cells to inhibit the loading of miR165/6 into ARGONUATE1 (AGO1), which is cell autonomous, to enable the miRNA to exit the cell. Microtubule disruption enhances the association of miR165/6 with AGO1 in the cytoplasm. These findings suggest that although cell-autonomous miRNAs load onto AGO1 in the nucleus, the cytoplasmic AGO1 loading of mobile miRNAs is a key step regulated by microtubules to promote the range of miRNA cell-to-cell movement.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica de Plantas , Katanina/genética , MicroRNAs/genética , Microtúbulos/metabolismo , Plantas Geneticamente Modificadas/metabolismoRESUMO
Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Katanina/genética , Katanina/metabolismo , Microtúbulos/metabolismo , Raízes de Plantas/metabolismo , Tropismo/fisiologia , Água/metabolismoRESUMO
Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.