Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.846
Filtrar
1.
Sci Rep ; 12(1): 7118, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504960

RESUMO

Natural killer/T-cell lymphoma (NKTCL) in children and adolescents is a rare type of T/NK cell neoplasms. The aim of the present study was to analyze the clinicopathological and genetic features of this rare entity of lymphoma. We evaluated the clinical, histopathological and molecular features of 22 young people with NKTCL, including 15 males and 7 females, with a median age of 15 years. The results revealed that the nasal site was the most involved region while non-nasal sites were observed in 27.3% out of all cases. The tumor cells were composed of small­sized to large cells and 19 (86.4%) cases exhibited coagulative necrosis. The neoplastic cells in all patients were positive for CD3 and the cytotoxic markers. Nineteen (86.4%) cases were positive for CD56. Reduced expression of CD5 was observed in all available cases. CD30 was heterogeneously expressed in 15 (75.0%) cases. All 22 patients were EBV positive. Seven (36.8%) out of all the 19 patients during the follow-up died of the disease, and the median follow­up period was 44 months. Moreover, patients treated with radiotherapy/chemotherapy showed significantly inferior OS compared with the untreated patients. High mutation frequencies were detected including KMT2C (5/5), MST1 (5/5), HLA-A (3/5) and BCL11A (3/5), which involved in modifications, tumor suppression and immune surveillance. These results suggest that NKTCL in children and adolescents exhibits histopathological and immunohistochemical features similar to the cases in adults. Active treatment is necessary after the diagnosis of NKTCL is confirmed. Furthermore, genetic analyse may provide a deep understanding of this rare disease.


Assuntos
Linfoma Extranodal de Células T-NK , Células T Matadoras Naturais , Adolescente , Adulto , Criança , Feminino , Humanos , Antígeno Ki-1 , Células Matadoras Naturais/patologia , Linfoma Extranodal de Células T-NK/diagnóstico , Masculino , Células T Matadoras Naturais/patologia , Estudos Retrospectivos
2.
Mol Med Rep ; 25(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506449

RESUMO

Liver fibrosis is a common pathological process of chronic liver diseases, including viral hepatitis and alcoholic liver disease, and ultimately progresses to irreversible cirrhosis and cancer. Hepatic stellate cells (HSCs) are activated to produce amounts of collagens in response to liver injury, thus triggering the initiation and progression of fibrogenesis. Natural killer (NK) cells serve as the essential component of hepatic innate immunity and are considered to alleviate fibrosis by killing activated HSCs. Current antifibrotic interventions have improved fibrosis, but fail to halt its progression in the advanced stage. Clarifying the interaction between NK cells and HSCs will provide clues to the pathogenesis and potential therapies for advanced liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Fibrose , Células Estreladas do Fígado/patologia , Humanos , Células Matadoras Naturais , Cirrose Hepática/patologia
3.
Front Immunol ; 13: 803995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493522

RESUMO

In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.


Assuntos
Neoplasias Hematológicas , Neoplasias , Neoplasias Hematológicas/terapia , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Neoplasias/terapia
4.
Cell Metab ; 34(5): 747-760.e6, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508110

RESUMO

Adipose tissue (AT) plays a central role in systemic metabolic homeostasis, but its function during bacterial infection remains unclear. Following subcutaneous bacterial infection, adipocytes surrounding draining lymph nodes initiated a transcriptional response indicative of stimulation with IFN-γ and a shift away from lipid metabolism toward an immunologic function. Natural killer (NK) and invariant NK T (iNKT) cells were identified as sources of infection-induced IFN-γ in perinodal AT (PAT). IFN-γ induced Nos2 expression in adipocytes through a process dependent on nuclear-binding oligomerization domain 1 (NOD1) sensing of live intracellular bacteria. iNOS expression was coupled to metabolic rewiring, inducing increased diversion of extracellular L-arginine through the arginosuccinate shunt and urea cycle to produce nitric oxide (NO), directly mediating bacterial clearance. In vivo, control of infection in adipocytes was dependent on adipocyte-intrinsic sensing of IFN-γ and expression of iNOS. Thus, adipocytes are licensed by innate lymphocytes to acquire anti-bacterial functions during infection.


Assuntos
Sinais (Psicologia) , Células Matadoras Naturais , Adipócitos/metabolismo , Imunidade , Interferon gama/metabolismo
5.
Cell Transplant ; 31: 9636897221094244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35506155

RESUMO

Use of chimeric antigen receptors (CARs), as an immune cell therapy, has generated excellent clinical outcomes against hematologic tumors in recent years. Among them, the CAR-NK (natural killer) therapy has shown better efficacy, and less toxicity, than chimeric antigen receptor T-cell (CAR-T) therapy. In our phase II clinical trials, administering chimeric costimulatory converting receptor (CCCR)-NK92 cells on advanced non-small cell lung cancer patients proved efficacious in cell and animal experiments. However, we observed occurrence of cytokine release syndrome (CRS), a rare and unexpected side effect, never reported before during CAR-NK therapy. Here, we provide a detailed report of the patient's case, emphasize on the need to pay attention to CRS in NK cell therapy, and suggest improvements that will minimize potential toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Síndrome da Liberação de Citocina , Humanos , Células Matadoras Naturais , Neoplasias Pulmonares/tratamento farmacológico , Receptores de Antígenos Quiméricos/uso terapêutico
6.
Genome Med ; 14(1): 46, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501841

RESUMO

BACKGROUND: Natural killer (NK) cells are innate lymphoid cells that mediate antitumour and antiviral responses. However, very little is known about how ageing influences human NK cells, especially at the single-cell level. METHODS: We applied single-cell sequencing (scRNA-seq) to human lymphocytes and NK cells from 4 young and 4 elderly individuals and then analysed the transcriptome data using Seurat. We detected the proportion and phenotype of NK cell subsets in peripheral blood samples from a total of 62 young and 52 elderly healthy donors by flow cytometry. We also used flow cytometry to examine the effector functions of NK cell subsets upon IFN-α/IL-12+IL-15/K562/IL-2 stimulation in vitro in peripheral blood samples from a total of 64 young and 63 elderly healthy donors. We finally studied and integrated single-cell transcriptomes of NK cells from 15 young and 41 elderly COVID-19 patients with those from 12 young and 6 elderly healthy control individuals to investigate the impacts of ageing on NK cell subsets in COVID-19 disease. RESULTS: We discovered a memory-like NK subpopulation (NK2) exhibiting the largest distribution change between elderly and young individuals among lymphocytes. Notably, we discovered a unique NK subset that was predominantly CD52+ NK2 cells (NK2.1). These memory-like NK2.1 cells accumulated with age, exhibited proinflammatory characteristics, and displayed a type I interferon response state. Integrative analyses of a large-cohort COVID-19 dataset and our datasets revealed that NK2.1 cells from elderly COVID-19 patients are enriched for type I interferon signalling, which is positively correlated with disease severity in COVID-19. CONCLUSIONS: We identified a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Our results identify memory-like NK2.1 cells as a potential target for developing immunotherapies for infectious diseases and for addressing age-related dysfunctions of the immune system.


Assuntos
COVID-19 , Transcriptoma , Idoso , Envelhecimento/genética , Humanos , Imunidade Inata , Células Matadoras Naturais/metabolismo , Índice de Gravidade de Doença
7.
Front Immunol ; 13: 771732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359988

RESUMO

Cellular metabolism plays an important role in regulating both human and murine NK cell functions. However, it remains unclear whether cellular metabolic process impacts on the function of decidual NK cells (dNK), essential tissue-resident immune cells maintaining the homeostasis of maternal-fetal interface. Remarkably, we found that glycolysis blockage enhances dNK VEGF-A production but restrains its proliferation. Furthermore, levels of IFN-γ and TNF-α secreted by dNK get decreased when glycolysis or oxidative phosphorylation (OXPHOS) is inhibited. Additionally, glycolysis, OXPHOS, and fatty acid oxidation disruption has little effects on the secretion and the CD107a-dependent degranulation of dNK. Mechanistically, we discovered that the mammalian target of rapamycin complex 1 (mTORC1) signaling inhibition leads to decreased glycolysis and OXPHOS in dNK. These limited metabolic processes are associated with attenuated dNK functions, which include restricted production of cytokines including IFN-γ and TNF-α, diminished CD107a-dependent degranulation, and restrained dNK proliferation. Finally, we reported that the protein levels of several glycolysis-associated enzymes are altered and the mTORC1 activity is significantly lower in the decidua of women with recurrent pregnancy loss (RPL) compared with normal pregnancy, which might give new insights about the pathogenesis of RPL. Collectively, our data demonstrate that glucose metabolism and mTORC1 signaling support dNK functions in early pregnancy.


Assuntos
Aborto Habitual , Fator de Necrose Tumoral alfa , Aborto Habitual/metabolismo , Animais , Decídua , Feminino , Humanos , Células Matadoras Naturais , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
8.
Sci Transl Med ; 14(640): eabi4670, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417187

RESUMO

A better understanding of mechanisms that regulate CD8+T cell responses to therapeutic vaccines is needed to develop approaches to enhance vaccine efficacy for chronic viral infections and cancers. We show here that NK cell depletion enhanced antigen-specific T cell responses to chimp adenoviral vector (ChAdOx) vaccination in a mouse model of chronic HBV infection (CHB). Probing the mechanism underlying this negative regulation, we observed that CHB drove parallel up-regulation of programmed cell death ligand 1 (PD-L1) on liver-resident NK cells and programmed cell death 1 (PD-1) on intrahepatic T cells. PD-L1-expressing liver-resident NK cells suppressed PD-1hiCD8+T cells enriched within the HBV-specific response to therapeutic vaccination. Cytokine activation of NK cells also induced PD-L1, and combining cytokine activation with PD-L1 blockade resulted in conversion of NK cells into efficient helpers that boosted HBV-specific CD8+T cell responses to therapeutic vaccination in mice and to chronic infection in humans. Our findings delineate an immunotherapeutic combination that can boost the response to therapeutic vaccination in CHB and highlight the broader importance of PD-L1-dependent regulation of T cells by cytokine-activated NK cells.


Assuntos
Antígeno B7-H1 , Vacinas , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Células Matadoras Naturais , Camundongos , Receptor de Morte Celular Programada 1/metabolismo
9.
Front Immunol ; 13: 870038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418990

RESUMO

Ischemia-reperfusion injury can be divided into two phases, including insufficient supply of oxygen and nutrients in the first stage and then organ injury caused by immune inflammation after blood flow recovery. Hepatic ischemia-reperfusion is an important cause of liver injury post-surgery, consisting of partial hepatectomy and liver transplantation, and a central driver of graft dysfunction, which greatly leads to complications and mortality after liver transplantation. Natural killer (NK) cells are the lymphocyte population mainly involved in innate immune response in the human liver. In addition to their well-known role in anti-virus and anti-tumor defense, NK cells are also considered to regulate the pathogenesis of liver ischemia-reperfusion injury under the support of more and more evidence recently. The infiltration of NK cells into the liver exacerbates the hepatic ischemia-reperfusion injury, which could be significantly alleviated after depletion of NK cells. Interestingly, NK cells may contribute to both liver graft rejection and tolerance according to their origins. In this article, we discussed the development of liver NK cells, their role in ischemia-reperfusion injury, and strategies of inhibiting NK cell activation in order to provide potential possibilities for translation application in future clinical practice.


Assuntos
Hepatopatias , Transplante de Fígado , Traumatismo por Reperfusão , Humanos , Células Matadoras Naturais , Transplante de Fígado/efeitos adversos
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(2): 400-406, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35395970

RESUMO

OBJECTIVE: To detect the expression level of suppressors of cytokine signaling 3 (SOCS3) in acute lymphoblastic leukemia (ALL), and to observe the effect of over-expresson of SOCS3 in Jurkat cells on the cytotoxicity of NK cells. METHODS: The expression levels of SOCS3 mRNA in peripheral blood mononuclear cells of 20 children with ALL and 20 healthy children (normal control group) were detected by RT-PCR. The peripheral blood NK cells from healthy subjects were selected by immunomagnetic technique, and the purity was detected by flow cytometry. SOCS3 was overexpressed in Jurkat cells infected with lentivirus vector, and SOCS3 mRNA expression was detected by RT-PCR after lentivirus infection. The NK cells were co-cultured with the infected Jurkat, and LDH release method was used to detect the cytotoxicity of NK cells on the infected Jurkat cells. The concentrations of TNF-α and IFN-γ were determined by ELISA. The expression of NKG2D ligands MICA and MICB on the surface of Jurkat cells were detected by flow cytometry. Western blot was used to detect the effect of SOCS3 overexpression on STAT3 phosphorylation in Jurkat cells. RESULTS: Compared with the control group, the mRNA expression of SOCS3 in the peripheral blood mononucleated cells of ALL children was significantly decreased. The purity of NK cells isolated by flow cytometry could reach more than 70%. The expression of SOCS3 mRNA in Jurkat cells increased significantly after lentivirus infection. Overexpression of SOCS3 in Jurkat cells significantly promoted the killing ability of NK cells and up-regulated the secretion of TNF-α and IFN-γ from NK cells. The results of flow cytometry showed that the expression of NKG2D ligands MICA and MICB on Jurkat cells increased significantly after SOCS3 overexpression. Western blot results showed that overexpression of SOCS3 significantly reduced the phosphorylation level of STAT3 protein in Jurkat cells. CONCLUSION: SOCS3 mRNA expression was significantly decreased in ALL patients, and overexpression of SOCS3 may up-regulate the expression of MICA and MICB of NKG2D ligands on Jurkat cell surface through negative regulation of JAK/STAT signaling pathway, thereby promoting the cytotoxic function of NK cells.


Assuntos
Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteína 3 Supressora da Sinalização de Citocinas , Criança , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/citologia , Leucócitos Mononucleares/citologia , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Mensageiro/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Immunol ; 13: 852436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464400

RESUMO

Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and chronic low-grade inflammation. It shows a strong association with obesity and immune dysfunction, which makes T2DM patients more susceptible to infectious diseases. NK cells play an important role in pathogen control and tumor surveillance. However, whether NK cell distribution and functional status are altered in T2DM is unclear. To address this issue, we compared surface receptor expression and cytokine production between peripheral blood NK cells from 90 T2DM patients and 62 age- and sex-matched healthy controls. We found a significantly lower frequency and absolute number of NK cells in patients than in controls. Interestingly, the expression of inhibitory receptor Tim-3 was significantly increased, while the expression of the activating receptor NKG2D was significantly decreased, in T2DM NK cells. Both TNF-α secretion and degranulation capacity (evidenced by CD107a expression) were dampened in NK cells from patients. The expression of Tim-3 on NK cells correlated positively with both HbA1c and fasting blood glucose levels and negatively with the percentage and absolute number of total NK cells and was associated with increased NK cell apoptosis. In addition, Tim-3 expression on NK cells negatively correlated with TNF-α production, which could be restored by blocking Galectin-9/Tim-3 pathway. Our results suggest that NK cell dysfunction secondary to augmented Tim-3 expression occurs in T2DM patients, which may partly explain their increased susceptibility to cancer and infectious disease.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor Celular 2 do Vírus da Hepatite A , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Células Matadoras Naturais , Fator de Necrose Tumoral alfa/metabolismo
12.
Front Immunol ; 13: 869447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464427

RESUMO

Studies investigating the immunopathology of multiple sclerosis (MS) have largely focused on adaptive T and B lymphocytes. However, in recent years there has been an increased interest in the contribution of innate immune cells, amongst which the natural killer (NK) cells. Apart from their canonical role of controlling viral infections, cell stress and malignancies, NK cells are increasingly being recognized for their modulating effect on the adaptive immune system, both in health and autoimmune disease. From different lines of research there is now evidence that NK cells contribute to MS immunopathology. In this review, we provide an overview of studies that have investigated the role of NK cells in the pathogenesis of MS by use of the experimental autoimmune encephalomyelitis (EAE) animal model, MS genetics or through ex vivo and in vitro work into the immunology of MS patients. With the advent of modern hypothesis-free technologies such as single-cell transcriptomics, we are exposing an unexpected NK cell heterogeneity, increasingly blurring the boundaries between adaptive and innate immunity. We conclude that unravelling this heterogeneity, as well as the mechanistic link between innate and adaptive immune cell functions will lay the foundation for the use of NK cells as prognostic tools and therapeutic targets in MS and a myriad of other currently uncurable autoimmune disorders.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Linfócitos B/metabolismo , Humanos , Imunidade Inata , Células Matadoras Naturais
13.
Front Immunol ; 13: 868343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464438

RESUMO

A dysregulated immune response toward self-antigens characterizes autoimmune and autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to autoimmune diseases, while autoinflammation results from a hyper-functional innate immune system. Aside from their differences, many studies suggest that monocytes and macrophages (Mo/Ma) significantly contribute to the development of both types of disease. Mo/Ma are innate immune cells that promote an immune-modulatory, pro-inflammatory, or repair response depending on the microenvironment. However, understanding the contribution of these cells to different immune disorders has been difficult due to their high functional and phenotypic plasticity. Several factors can influence the function of Mo/Ma under the landscape of autoimmune/autoinflammatory diseases, such as genetic predisposition, epigenetic changes, or infections. For instance, some vaccines and microorganisms can induce epigenetic changes in Mo/Ma, modifying their functional responses. This phenomenon is known as trained immunity. Trained immunity can be mediated by Mo/Ma and NK cells independently of T and B cell function. It is defined as the altered innate immune response to the same or different microorganisms during a second encounter. The improvement in cell function is related to epigenetic and metabolic changes that modify gene expression. Although the benefits of immune training have been highlighted in a vaccination context, the effects of this type of immune response on autoimmunity and chronic inflammation still remain controversial. Induction of trained immunity reprograms cellular metabolism in hematopoietic stem cells (HSCs), transmitting a memory-like phenotype to the cells. Thus, trained Mo/Ma derived from HSCs typically present a metabolic shift toward glycolysis, which leads to the modification of the chromatin architecture. During trained immunity, the epigenetic changes facilitate the specific gene expression after secondary challenge with other stimuli. Consequently, the enhanced pro-inflammatory response could contribute to developing or maintaining autoimmune/autoinflammatory diseases. However, the prediction of the outcome is not simple, and other studies propose that trained immunity can induce a beneficial response both in AIF and autoimmune conditions by inducing anti-inflammatory responses. This article describes the metabolic and epigenetic mechanisms involved in trained immunity that affect Mo/Ma, contraposing the controversial evidence on how it may impact autoimmune/autoinflammation conditions.


Assuntos
Doenças Autoimunes , Doenças Hereditárias Autoinflamatórias , Autoimunidade , Humanos , Imunidade Inata , Células Matadoras Naturais
14.
Front Immunol ; 13: 861681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464440

RESUMO

There is a great interest in developing natural killer (NK) cells as adoptive cancer immunotherapy. For off-the-shelf approaches and to conduct multicenter clinical trials, cryopreserved NK cells are the preferred product. However, recent studies reported that cryopreservation of NK cells results in loss of cell motility and, as a consequence, cytotoxicity which limits the clinical utility of such products. This study assessed the impact of cryopreservation on the recovery and function of PM21-particle expanded NK cells (PM21-NK cells) as well as their antitumor activity in vitro using 2D and 3D cancer models and in vivo in ovarian cancer models, including patient-derived xenografts (PDX). Viable PM21-NK cells were consistently recovered from cryopreservation and overnight rest with a mean recovery of 73 ± 22% (N = 19). Thawed and rested NK cells maintained the expression of activating receptors when compared to expansion-matched fresh NK cells. Cryopreserved NK cells that were thawed and rested showed no decrease in cytotoxicity when co-incubated with tumor cells at varying effector-to-target (NK:T) ratios compared to expansion-matched fresh NK cells. Moreover, no differences in cytotoxicity were observed between expansion-matched cryopreserved and fresh NK cells in 3D models of tumor killing. These were analyzed by kinetic, live-cell imaging assays co-incubating NK cells with tumor spheroids. When exposed to tumor cells, or upon cytokine stimulation, cryopreserved NK cells that were thawed and rested showed no significant differences in surface expression of degranulation marker CD107a or intracellular expression of TNFα and IFNγ. In vivo antitumor activity was also assessed by measuring the extension of survival of SKOV-3-bearing NSG mice treated with fresh vs. cryopreserved NK cells. Cryopreserved NK cells caused a statistically significant survival extension of SKOV-3-bearing NSG mice that was comparable to that observed with fresh NK cells. Additionally, treatment of NSG mice bearing PDX tumor with cryopreserved PM21-NK cells resulted in nearly doubling of survival compared to untreated mice. These data suggest that PM21-NK cells can be cryopreserved and recovered efficiently without appreciable loss of viability or activity while retaining effector function both in vitro and in vivo. These findings support the use of cryopreserved PM21-NK cells as a cancer immunotherapy treatment.


Assuntos
Células Matadoras Naturais , Neoplasias , Animais , Criopreservação , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Camundongos , Neoplasias/terapia
15.
Front Immunol ; 13: 847008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464442

RESUMO

The great clinical success of chimeric antigen receptor (CAR) T cells has unlocked new levels of immunotherapy for hematological malignancies. Genetically modifying natural killer (NK) cells as alternative CAR immune effector cells is also highly promising, as NK cells can be transplanted across HLA barriers without causing graft-versus-host disease. Therefore, off-the-shelf usage of CAR NK cell products might allow to widely expand the clinical indications and to limit the costs of treatment per patient. However, in contrast to T cells, manufacturing suitable CAR NK cell products is challenging, as standard techniques for genetically engineering NK cells are still being defined. In this study, we have established optimal lentiviral transduction of primary human NK cells by systematically testing different internal promoters for lentiviral CAR vectors and comparing lentiviral pseudotypes and viral entry enhancers. We have additionally modified CAR constructs recognizing standard target antigens for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) therapy-CD19, CD33, and CD123-to harbor a CD34-derived hinge region that allows efficient detection of transduced NK cells in vitro and in vivo and also facilitates CD34 microbead-assisted selection of CAR NK cell products to >95% purity for potential clinical usage. Importantly, as most leukemic blasts are a priori immunogenic for activated primary human NK cells, we developed an in vitro system that blocks the activating receptors NKG2D, DNAM-1, NKp30, NKp44, NKp46, and NKp80 on these cells and therefore allows systematic testing of the specific killing of CAR NK cells against ALL and AML cell lines and primary AML blasts. Finally, we evaluated in an ALL xenotransplantation model in NOD/SCID-gamma (NSG) mice whether human CD19 CAR NK cells directed against the CD19+ blasts are relying on soluble or membrane-bound IL15 production for NK cell persistence and also in vivo leukemia control. Hence, our study provides important insights into the generation of pure and highly active allogeneic CAR NK cells, thereby advancing adoptive cellular immunotherapy with CAR NK cells for human malignancies further.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Linhagem Celular Tumoral , Engenharia Genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
16.
Front Immunol ; 13: 830396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464486

RESUMO

Natural killer (NK) cells are an important component of the innate immune system due to their strong ability to kill virally infected or transformed cells without prior exposure to the antigen (Ag). However, the biology of human NK (hNK) cells has largely remained elusive. Recent advances have characterized several novel hNK subsets. Among them, adaptive NK cells demonstrate an intriguing specialized antibody (Ab)-dependent response and several adaptive immune features. Most adaptive NK cells express a higher level of NKG2C but lack an intracellular signaling adaptor, FcϵRIγ (hereafter abbreviated as FcRγ). The specific expression pattern of these genes, with other signature genes, is the result of a specific epigenetic modification. The expansion of adaptive NK cells in vivo has been documented in various viral infections, while the frequency of adaptive NK cells among peripheral blood mononuclear cells correlates with improved prognosis of monoclonal Ab treatment against leukemia. This review summarizes the discovery and signature phenotype of adaptive NK cells. We also discuss the reported association between adaptive NK cells and pathological conditions. Finally, we briefly highlight the application of adaptive NK cells in adoptive cell therapy against cancer.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Biologia , Humanos , Células Matadoras Naturais , Leucócitos Mononucleares/patologia
17.
Front Immunol ; 13: 872353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464489

RESUMO

Background: Natural killer (NK) cells play major roles in eliminating tumor cells. Preliminary studies have shown that NK cells and their receptors/ligands have prognostic value in malignant tumors. However, the relevance of NK cells and their receptors/ligands level to the prognosis of hepatocellular carcinoma (HCC) remains unclear. Methods: Several electronic databases were searched from database inception to November 8, 2021. Random effects were introduced to this meta-analysis. The relevance of NK cells and their receptors/ligands level to the prognosis of HCC was evaluated using hazard ratios (HRs) with 95% confidence interval (95%CI). Results: 26 studies were included in the analysis. The pooled results showed that high NK cells levels were associated with better overall survival (HR=0.70, 95%CI 0.57-0.86, P=0.001) and disease-free survival (HR=0.61, 95%CI 0.40-0.93, P=0.022) of HCC patients. In subgroup analysis for overall survival, CD57+ NK cells (HR=0.70, 95%CI 0.55-0.89, P=0.004) had better prognostic value over CD56+ NK cells (HR=0.69, 95%CI 0.38-1.25, P=0.224), and intratumor NK cells had better prognostic value (HR=0.71, 95%CI 0.55-0.90, P=0.005) over peripheral NK cells (HR=0.66, 95%CI 0.41-1.06, P=0.088). In addition, high level of NK cell inhibitory receptors predicted increased recurrence of HCC, while the prognostic role of NK cell activating receptors remained unclear. Conclusion: NK cells and their inhibitory receptors have prognostic value for HCC. The prognostic role of NK cell activating receptors is unclear and more high-quality prospective studies are essential to evaluate the prognostic value of NK cells and their receptors/ligands for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Humanos , Células Matadoras Naturais/patologia , Ligantes , Neoplasias Hepáticas/patologia , Prognóstico , Estudos Prospectivos
18.
Virol J ; 19(1): 68, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413989

RESUMO

BACKGROUND: The onset and progression of cervical intraepithelial neoplasia (CIN) are closely associated with the persistent infection of high-risk HPV (especially type16), which is mainly caused by immune escape. Natural killer (NK) cells play an important role against virally infected cells and tumor cells through a fine balance of signals from multiple surface receptors. Overexpression of non-MHC-I specific inhibitory receptors TIGIT, KLRG1, Siglec-7, LAIR-1, and CD300a on NK cells correlates with cellular exhaustion and immune evasion, but these receptors have not been investigated in CIN. The aim of the present study was to examine the potential role of NK cell non-MHC-I specific inhibitory receptors expression in immune escape from HPV16(+)CIN patients. METHODS: The subset distribution, IFN-γ and TNF-α expression levels and immunophenotype of TIGIT, KLRG1, Siglec-7, LAIR-1, and CD300a of NK cells were investigated in peripheral blood mononuclear cell samples by flow cytometry from 82 women who were HPV16(+) with CIN grades 0, I, II-III or HPV(-) CIN 0. Immunohistochemistry was applied to detect the expression of ligands for NK receptors in the cervical tissues. HPV types were identified by PCR assays. RESULTS: The HPV16(+) subjects with high-grade lesions had an increased number of circulating peripheral blood CD56bright NK cells with reduced functionality and IFN-γ secretion. The expression levels of the inhibitory molecules TIGIT and KLRG1 on CD56bright NK cells increased in parallel with increasing CIN grade. In addition, TIGIT and KLRG1 related ligands, Poliovirus receptor (PVR), N-Cadherin and E-Cadherin expression level was also elevated with increasing CIN grade. CONCLUSIONS: Our results suggest that up-regulation of the inhibitory TIGIT, KLRG1 and their ligands may negatively regulate cervical CD56bright NK-mediated immunity to HPV16 and contribute to the progression of CIN. These results may facilitate the development of early-warning immune predictors and therapeutic strategies for HPV16(+) CIN based on the TIGIT and KLRG1 inhibitory pathways of NK cells.


Assuntos
Neoplasia Intraepitelial Cervical , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Papillomavirus Humano 16 , Humanos , Células Matadoras Naturais , Lectinas Tipo C/genética , Leucócitos Mononucleares/metabolismo , Ligantes , Infecções por Papillomavirus/patologia , Receptores Imunológicos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
19.
Viruses ; 14(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35458466

RESUMO

γδ T cells are members of 'unconventional' T cells that combine the properties of adaptive T lymphocytes and innate cells such as NK cells [...].


Assuntos
Linfócitos Intraepiteliais , Vírus , Imunidade Inata , Células Matadoras Naturais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T gama-delta
20.
Front Immunol ; 13: 817377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432334

RESUMO

Natural killer (NK) cells are a type of innate lymphoid cell that are involved in the progression of acute myocardial infarction and ischemic stroke. Although multiple forms of programmed cell death are known to play important roles in these diseases, the correlation between NK cells and apoptosis-related genes during acute myocardial infarction and ischemic stroke remains unclear. In this study, we explored the distinct patterns of NK cell infiltration and apoptosis during the pathological progression of acute myocardial infarction and ischemic stroke using mRNA expression microarrays from the Gene Expression Omnibus database. Since the abundance of NK cells correlated positively with apoptosis in both diseases, we further examined the correlation between NK cell abundance and the expression of apoptosis-related genes. Interestingly, APAF1 and IRAK3 expression correlated negatively with NK cell abundance in both acute myocardial infarction and ischemic stroke, whereas ATM, CAPN1, IL1B, IL1R1, PRKACA, PRKACB, and TNFRSF1A correlated negatively with NK cell abundance in acute myocardial infarction. Together, these findings suggest that these apoptosis-related genes may play important roles in the mechanisms underlying the patterns of NK cell abundance and apoptosis in acute myocardial infarction and ischemic stroke. Our study, therefore, provides novel insights for the further elucidation of the pathogenic mechanism of ischemic injury in both the heart and the brain, as well as potential useful therapeutic targets.


Assuntos
AVC Isquêmico , Infarto do Miocárdio , Apoptose/genética , Humanos , Imunidade Inata , Células Matadoras Naturais/metabolismo , Infarto do Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...