Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.646
Filtrar
1.
Sci Rep ; 13(1): 913, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650264

RESUMO

In recent years, green corrosion inhibitors derived from natural plant resources have garnered much interest. In the present work, at first, we investigated the corrosion behavior of mild steel (st-37) in the presence, and absence of Dracocephalum extract based on bulk size as a corrosion inhibitor in two widely used acidic environments (0.5 M H2SO4, and 1.0 M HCl), at room temperature. Then, we used Dracocephalum extract based on nanometer size to reduce the optimal concentration of inhibitor, increase the corrosion resistant, and efficiency. Dracocephalum extract does not contain heavy metals or other toxic compounds, and also good characteristics such as low cost, eco-friendly, and widespread availability, make it suitable nature candidate as an environmentally safe green inhibitor. The anticorrosive behavior was assessed using electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PP). In all of the studies, the inhibitory efficiency (IE%) increased as the extract dose was increased. But by using nano extract, in addition to maintaining high efficiency, the amount of inhibitor was reduced significantly. The highest IE% is 94% at the best dose of nano extract (75 ppm), but the highest IE% is 89% at the best dose of the bulk extract (200 ppm) in H2SO4 solution. Also, for the HCl solution, the highest IE% is 88% at the best dose of nano extract (100 ppm), but the highest IE% is 90% at the best dose of the bulk extract (400 ppm), by polarization method. The PP results suggest that this compound has an effect on both anodic, and cathodic processes, and that it adsorbs on mild steel surface according to the Langmuir adsorption isotherm. Optical microscopy, scanning electron microscopy (SEM) analysis, and a solid UV-Visible reflection spectrum were used to investigate the alloys' surface morphology.


Assuntos
Cáusticos , Lamiaceae , Aço/química , Corrosão , Extratos Vegetais/química
2.
Nat Commun ; 14(1): 343, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670101

RESUMO

The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.


Assuntos
Diterpenos , Lamiaceae , Lamiaceae/genética , Lamiaceae/metabolismo , Diterpenos/metabolismo , Terpenos/metabolismo , Família Multigênica , Vias Biossintéticas/genética
3.
Food Chem ; 408: 134871, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549167

RESUMO

A bioactive film with two concentrations of sage seed gum (SSG) (1 % and 1.5 %) incorporating 2 % and 4 % Zataria multiflora essential oil (ZMEO) nanoemulsion was developed. Microbiological evaluation, including disc diffusion and time-kill tests, as well as mechanical and chemical characteristics namely film thickness, water-solubility, water vapor permeability, tensile strength and elongation at break, scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) analysis, antioxidant activity, and color analysis, were examined. Results showed that the antimicrobial properties of SSG films incorporating ZMEO nanoemulsion increased significantly (P < 0.05) by the multiplication of essential oil concentration. The films with 1 % SSG-4 % ZMEO showed acceptable antioxidant properties (∼65 %), and improved physical properties (508 % thickness increase, 56.63 % water solubility decrease, and 36.85 % water vapor permeability decrease), whereas tensile strength decreased only 29.8 %, and elongation increased 115 %. According to the results, SSG-ZMEO film may have positive potential impacts on increasing the shelf-life of foodstuffs.


Assuntos
Lamiaceae , Óleos Voláteis , Óleos Voláteis/química , Vapor , Espectroscopia de Infravermelho com Transformada de Fourier , Lamiaceae/química , Sementes , Antioxidantes/química , Permeabilidade , Embalagem de Alimentos/métodos
4.
J Ethnopharmacol ; 302(Pt B): 115921, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36403741

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional medical system plays a major role in healthcare in Kachin State, Myanmar, where long-term political instability persists and conventional healthcare facilities are inadequate. A knowledge of the traditional medicinal plants therefore benefits the Kachin people, yet documentation and records of the uses of these plants are rare. In this study, we attempt to answer the questions on what medicinal plants and how they are used by the Kachin people. AIM OF THE STUDY: We aimed to document knowledge of the traditional medicinal plants and to identify those most frequently used by the Kachin people. MATERIALS AND METHODS: Eighty-two informants from eight villages in three townships were interviewed, and their knowledge of medicinal plants was recorded. The reported ailments were classified to the standard categories of the International Classification of Primary Care-2 (ICPC-2) system. Use reports (UR) were employed to evaluate the knowledge consensus of the informants. RESULTS: We recorded a total of 117 species used as medicinal plants, of which 22 are newly recorded medicinal plant species for Myanmar. The plants belonged to 103 genera in 52 families, and were used to treat a total of 72 ailments from 17 ICPC-2 disease categories. Fabaceae and Lamiaceae were the most highly represented families of medicinal plants, with eleven and eight species used, respectively. The most cited species based on URs were Tinospora cordifolia (Willd.) Hook.f. & Thomson (URs = 39), Oroxylum indicum (L.) Kurz (URs = 28), Aquilaria malaccensis Lam. (URs = 26), Chromolaena odorata (L.) R.M.King & H.Rob. (URs = 24), and Chloranthus elatior Link. (URs = 22). Digestive system disorder was the most prevalent disease category, and was treated with 47 different medicinal plants (URs = 142). Leaves were the most commonly used plant part; decoction was the dominant method of preparation; and oral consumption was the most frequent method of administration. CONCLUSION: Our study documented a list of 117 medicinal plants and their uses in traditional medicine based on the local knowledge of the Kachin people. The study also identified the five most frequently cited species and found that the plants investigated are used to treat a total of 72 diseases. The 642 therapeutic reports we collected showcase a rich and diverse living knowledge of medicinal plant use by the Kachin people. Moreover, we present 22 new medicinal records, enriching the list of known medicinal plants in Myanmar. This exploratory study has enabled us to assemble the local knowledge of the Kachin people into solid dataset that will allow further scientific validation and will potentially contribute to better integration of medicinal plants into the healthcare provision for Kachin people in Myanmar.


Assuntos
Medicina Tradicional , Plantas Medicinais , Humanos , Bignoniaceae , Lamiaceae , Mianmar
5.
Environ Res ; 218: 114946, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493805

RESUMO

Nanotechnology is a multidisciplinary area of study that has grown significantly in serving many functions and impacting human society. New fields of science have been facilitated by the clean, non-toxic, and biocompatible nature of plant-derived nanoparticles. The present study deals with the first green synthesis of silver nanoparticles (Ag-NPs) using Endostemon viscosus, and their synthesized Ag NPs were characterized by different spectral methods (UV-vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Spectroscopy (XRD), Transmission Electron Microscopy (TEM) and Energy dispersive X-ray Spectroscopy (EDAX). The change initially observed the production of Ag-NPs in color from green to ash and then confirmed by SPR band at 435 nm in UV-vis spectral analysis. The FTIR findings indicate that many functional groups belong to the pharmaceutically useful phytochemicals, which interact as reducing, capping, and stabilizing agents in synthesizing silver nanoparticles. The predominant peaks in the XRD pattern belong to the planes 210°, 111°, 200°, 241°, and 311° and thus demonstrated the Ag-NPs FCC crystal structure. TEM analysis exhibited spherical-shaped particles with an average size of 13 nm, and the EDAX band showed a distinctive metallic silver peak at 3.0 keV. The antibacterial activity of Ag-NPs tested to show a maximum zone of inhibition of 19 mm for Staphylococcus aureus and 15 mm for Escherichia coli at 100 µg/mL, respectively. Bio-fabricated Ag-NPs were assessed for antioxidant activity (DPPH with % inhibition 57.54% and FRAP with % inhibition 70.89%). The biosynthesized Ag-NPs demonstrated potential larvicidal efficacy against Aedes aegypti with more than 90% at 250 µg/mL. Histological profiles were altered while treating with Ag-NPs at 250 µg/mL. The photocatalytic activity of synthesized E. viscosus Ag-NPs was tested against methylene blue (MB) and crystal violet (CV), and the maximum degradation efficiency was found as 90 and 94%, respectively. Furthermore, the toxicity test on zebrafish embryos demonstrated that aberrations have only been induced at concentrations higher than 500 µg/mL. We conclude that the greenly produced Ag-NPs may find use in biomedical applications based on bacteria and cost-effective industrial wastewater treatment.


Assuntos
Lamiaceae , Nanopartículas Metálicas , Animais , Humanos , Antioxidantes , Peixe-Zebra/metabolismo , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Prata/toxicidade , Prata/química , Lamiaceae/metabolismo , Antibacterianos/toxicidade , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5838-5848, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36472002

RESUMO

Hd-Zip, a unique transcription factor in plant kingdom, influences the growth, development, and secondary metabolism of plants. Hd-zip Ⅳ is thought to play an important role in trichome development of Schizonepeta tenuifolia. This study aims to explore the functions of StHD1 and StHD8 in Hd-zip Ⅳ subfamily in peltate glandular trichome development. To be specific, the expression patterns of the two genes and interaction between the proteins encoded by them were analyzed based on transcriptome sequencing and two-hybrid screening. The subcellular localization was performed and functions of the genes were verified in tobacco and S. tenuifolia. The results showed that StHD1 and StHD8 had high similarity to HD-Zip Ⅳ proteins of other plants and they all had the characteristic conserved domains of HD-Zip Ⅳ subfamily. They were located in the nucleus. The two genes mainly expressed in young tissues and spikes, and StHD1 and StHD8 proteins interacted with each other. The density and length of glandular trichomes increased significantly in tobacco plants with the overexpression of StHD1 and StHD8. Inhibiting the expression of StHD1 and StHD8 by VIGS(virus-induced gene silencing) in S. tenuifolia resulted in the reduction in the density of peltate glandular trichomes, the expression of key genes related to mono-terpene synthesis, and the relative content of limonene and pulegone, the main components of monoterpene. These results suggested that StHD1 and StHD8 of S. tenuifolia formed a complex to regulate glandular trichomes and affect the biosynthesis of monoterpenes.


Assuntos
Lamiaceae , Tricomas , Tricomas/genética , Tricomas/metabolismo , Lamiaceae/genética , Tabaco/genética , Monoterpenos/metabolismo , Clonagem Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Pestic Biochem Physiol ; 188: 105265, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464370

RESUMO

Malaria and dengue are diseases transmitted by mosquitoes of the genera Anopheles and Aedes resistant to commercial insecticides, which are toxic to non-target animals. Alternatively, eco-friendly strategies have focused on searching for essential oil (EO) from plants to control these mosquitoes. In this aspect, this study was carried out to investigate the toxicity of the EO from Tetradenia riparia and its main constituent against Anopheles and Aedes larvae and non-target animals Toxorhynchites haemorrhoidalis and Gambusia affinis. The mechanism of the larvicidal action of the EO and its main compound was investigated by the acetylcholinesterase (AChE) inhibition. The EO from T. riparia was extracted by hydrodistillation with yield of 1.4 ± 0.17%. The analysis of the EO by GC-MS and GC-FID revealed fenchone (38.62%) as the main compound. The EO (100 ppm) showed larvicidal activity against Anopheles and Aedes larvae (91 to 100% of mortality) (LC50 from 29.31 to 40.76 ppm). On the other hand, fenchone (10 ppm) showed more activity (89 to 100% of mortality) (LC50 from 5.93 to 7.00 ppm) than the EO. The EO and fenchone caused the inhibition of AChE (IC50 from 1.93 to 2.65 ppm), suggesting the inhibition of this enzyme as a possible mechanism of larvicidal action. Regarding toxicity, the EO (1000 ppm) and fenchone (100 ppm) showed low toxicity against T. haemorrhoidalis and G. affinis (9 to 74% of mortality) (LC50 from 170.50 to 924.89 ppm) (SI/PSF from 17.99 to 31.91) than the α-cypermethrin (0.52 ppm) which was extremally toxic against these non-target animals (100% of mortality, LC50 from 0.22 to 0.29 ppm). This significant larvicidal activity of the T. riparia EO and its main constituent, along with the low toxicity towards non-target organisms indicate these samples as a possible eco-friendly alternative for the control of malaria and dengue vectors.


Assuntos
Aedes , Anopheles , Dengue , Lamiaceae , Malária , Óleos Voláteis , Animais , Óleos Voláteis/toxicidade , Acetilcolinesterase , Mosquitos Vetores , Malária/prevenção & controle , Larva , Dengue/prevenção & controle
8.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558125

RESUMO

Ziziphora species (Lamiaceae) have been used in traditional medicine as sedatives, antiseptics, carminatives, or expectorants. Despite their common applications in phytotherapy, there is still lack of evidence about the composition of their extracts and its impact on biological properties of the plants. The aim of this study was to evaluate the content of Ziziphora bungeana, a less studied species growing in Kazakhstan, using HPLC-ESI-QTOF-MS/MS instrumentation and to determine its antimicrobial, antioxidant, and cytotoxic activity together with inhibitory properties against tyrosinase and toxicity in erythrocyte lysis assay. Extracts from Z. bungeana were found to be sources of flavonoids, phenolic acids, organic acids, and terpenes that determined their antiradical activity. The minimum inhibitory concentrations of extracts were lower for Gram-positive bacteria (1.25-10 mg/mL) than for Gram-negative bacteria and fungi (5-20 mg/mL). The EC50 value calculated for antiradical activity ranged between 15.00 ± 1.06 µg/mL and 13.21 ± 3.24 µg/mL for ABTS and DPPH assays, respectively. Z. bungeana extracts were found to decrease the activity of tyrosinase by 50% (at 200 µg/mL) similarly to kojic acid and were slightly cytotoxic for human melanoma A375 cell line (at 200 µg/mL) with no effect on HaCaT keratinocytes. In the end, Z. bungeana did not reveal toxic effects in hemolytic assay as compared to the positive control Triton X-100. The performed tests show potential application of the plant in the treatment of infectious diseases, disorders caused by free radicals, and skin problems.


Assuntos
Lamiaceae , Extratos Vegetais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Monofenol Mono-Oxigenase , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/farmacologia , Lamiaceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia
9.
Molecules ; 27(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36558163

RESUMO

In this study, the methanolic and infusion extracts of two species, Thymbra capitata and Thymus sipyleus subsp. rosulans, were tested for their chemical composition and biological abilities (antioxidant, enzyme inhibitory and anti-inflammatory effects). The extracts yielded total phenolic and flavonoid contents in the range of 83.43-127.52 mg GAE/g and 9.41-46.34 mg RE/g, respectively. HPLC analysis revealed rosmarinic acid to be a major component of the studied extracts (15.85-26.43%). The best ABTS radical scavenging ability was observed in the methanol extract of T. capitata with 379.11 mg TE/g, followed by in the methanol extract of T. sipylus (360.93 mg TE/g). In the CUPRAC assay, the highest reducing ability was also found in the methanol extract of T. capitata with 802.22 mg TE/g. The phosphomolybdenum ability ranged from 2.39 to 3.61 mmol TE/g. In terms of tyrosinase inhibitory effects, the tested methanol extracts (83.18-89.66 mg KAE/g) were higher than the tested water extracts (18.74-19.11 mg KAE/g). Regarding the BChE inhibitory effects, the methanol extracts were active on the enzyme while the water extracts showed no inhibitory effect on it. Overall, the methanolic extracts showed better enzyme inhibition compared to the infusion extracts. Molecular docking also showed the selected exhibited potential binding affinities with all enzymes, with a preference for cholinesterases. Additionally, the extracts were effective in attenuating the LPS-induced increase in COX-2 and IL-6 gene expression in isolated colon, thus indicating promising anti-inflammatory effects. The preliminary results of this study suggest that these species are good natural sources of antioxidants and also provide some scope as enzyme inhibitors, most likely due to their bioactive contents such as phenolic acids, and thus can be exploited for different applications related to health promotion and disease prevention.


Assuntos
Lamiaceae , Thymus (Planta) , Simulação de Acoplamento Molecular , Metanol/química , Extratos Vegetais/química , Antioxidantes/química , Água , Anti-Inflamatórios/farmacologia
10.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555290

RESUMO

Acute lung injury (ALI) is a clinical respiratory disease caused by various factors, which lacks effective pharmacotherapy to reduce the mortality rate. Elsholtzia bodinieri Vaniot is an annual herbaceous plant used as a traditional herbal tea and folk medicine. Here we used bioinformatic databases and software to explore and analyze the potential key genes in ALI regulated by E. bodinieri Vaniot, including B cell leukemia/lymphoma 2 (Bcl2), prostaglandin-endoperoxide synthase 2 (Ptgs2) and NAD(P)H dehydrogenase, quinone 1 (Nqo1). In an inflammatory cells model, we verified bioinformatics results, and further mechanistic analysis showed that methanol extract of E. bodinieri Vaniot (EBE) could alleviate oxidative stress by upregulating the expression of NQO1, suppress pyroptosis by upregulating the expression of BCL2, and attenuate inflammation by downregulating the expression of PTGS2. In sum, our results demonstrated that EBE treatment could alleviate oxidative stress, suppress pyroptosis and attenuate inflammation by regulating NQO1, BCL2 and PTGS2 in a cells model, and E. bodinieri Vaniot might be a promising source for functional food or as a therapeutic agent.


Assuntos
Lesão Pulmonar Aguda , Ciclo-Oxigenase 2 , Lamiaceae , NAD(P)H Desidrogenase (Quinona) , Extratos Vegetais , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Lesão Pulmonar Aguda/etiologia , Ciclo-Oxigenase 2/genética , Inflamação/complicações , NAD(P)H Desidrogenase (Quinona)/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Lamiaceae/química , Extratos Vegetais/farmacologia
11.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558036

RESUMO

Hydroethanolic leaf extracts of 14 Iranian Zataria multiflora Boiss. populations were screened for their antifungal activity against five plant pathogenic fungi and metabolically profiled using a non-targeted workflow based on UHPLC/ESI-QTOFMS. Detailed tandem mass-spectrometric analyses of one of the most active hydroethanolic leaf extracts led to the annotation of 68 non-volatile semi-polar secondary metabolites, including 33 flavonoids, 9 hydroxycinnamic acid derivatives, 14 terpenoids, and 12 other metabolites. Rank correlation analyses using the abundances of the annotated metabolites in crude leaf extracts and their antifungal activity revealed four O-methylated flavones, two flavanones, two dihydroflavonols, five thymohydroquinone glycoconjugates, and five putative phenolic diterpenoids as putative antifungal metabolites. After bioassay-guided fractionation, a number of mono-, di- and tri-O-methylated flavones, as well as three of unidentified phenolic diterpenoids, were found in the most active subfractions. These metabolites are promising candidates for the development of new natural fungicides for the protection of agro-food crops.


Assuntos
Antifúngicos , Lamiaceae , Antifúngicos/farmacologia , Irã (Geográfico) , Lamiaceae/química , Extratos Vegetais/farmacologia
12.
An Acad Bras Cienc ; 94(suppl 4): e20200427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477817

RESUMO

Essential oils from plants have remarkable biological properties, for example as insecticides and acaricides. Here we provide chemical analysis and evaluate the toxicity of the essential oil of Mentha piperita (Lamiaceae) and its main constituent menthol against Tetranychus urticae Kogan 1836 (Acari: Tetranychidae), a polyphagous pest present in agricultural landscapes. The essential oil was obtained from M. piperita leaves via hydrodistillation. Subsequently, concentration-response bioassays in adult females (fumigation and contact) were conducted to evaluate the lethal effect on the mite with three exposure intervals. We also evaluated the reproductive performance of females after exposure. Both substances were lethal in the fumigation bioassay, in addition, the essential oil was about 6-fold more toxic than menthol after 24 and 48 h of exposure. The fecundity of T. urticae females decreased inversely proportional to the increase of the used concentrations. Essential oil contact tests showed sublethal effects, with low mortality and reproductive stimulation of T. urticae females. Therefore, menthol and M. piperita essential oil can be considered potential acaricides for T. urticae by fumigant exposure due to the deleterious effect in adults and reduction in the number of individuals in subsequent generations, that represents a promising management tool.


Assuntos
Lamiaceae , Óleos Voláteis , Tetranychidae , Humanos , Animais , Mentha piperita , Monoterpenos , Mentol/farmacologia , Óleos Voláteis/toxicidade
13.
PLoS One ; 17(12): e0277749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520800

RESUMO

Molecular biodiversity surveys have been increasingly applied in hyperdiverse tropical regions as an efficient tool for rapid species assessment of partially undiscovered fauna and flora. This is done by overcoming shortfalls in knowledge or availability of reproductive structures during the sampling period, which often represents a bottleneck for accurate specimens' identification. DNA sequencing technology is intensifying species discovery, and in combination with morphological identification, has been filling gaps in taxonomic knowledge and facilitating species inventories of tropical ecosystems. This study aimed to apply morphological taxonomy and DNA barcoding to assess the occurrence of Lamiaceae species in converted land-use systems (old-growth forest, jungle rubber, rubber, and oil palm) in Sumatra, Indonesia. In this species inventory, we detected 89 specimens of Lamiaceae from 18 species distributed in seven subfamilies from the Lamiaceae group. One third of the species identified in this study lacked sequences in the reference database for at least one of the markers used (matK, rbcL, and ITS). The three loci species-tree recovered a total of 12 out of the 18 species as monophyletic lineages and can be employed as a suitable approach for molecular species assignment in Lamiaceae. However, for taxa with a low level of interspecific genetic distance in the barcode regions used in this study, such as Vitex gamosepala Griff. and V. vestita Wall. ex Walp., or Callicarpa pentandra Roxb. and C. candidans (Burm.f.) Hochr., the use of traditional taxonomy remains indispensable. A change in species composition and decline in abundance is associated with an increase in land-use intensification at the family level (i.e., Lamiaceae), and this tendency might be constant across other plant families. For this reason, the maintenance of forest genetic resources needs to be considered for sustainable agricultural production, especially in hyperdiverse tropical regions. Additionally, with this change in species composition, accurate species identification throughout molecular assignments will become more important for conservation planning.


Assuntos
Ecossistema , Lamiaceae , Indonésia , Borracha , Lamiaceae/genética , Árvores/genética , Código de Barras de DNA Taxonômico
14.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557924

RESUMO

During the last decade there has been growing interest in the formulation of new cosmetic, food and pharmaceutical products containing natural compounds with antioxidant activity and other beneficial properties. Aromatic and medicinal plants have always been the major source of bioactive compounds, especially, wild thyme (Thymbra capitata L.), which has been used since ancient times for its valuable health benefits that could be attributed to the richness of polyphenolic compounds. This study was undertaken with the following aims: to estimate the total polyphenolic content (TPC); to evaluate the antioxidant activity; to identify and quantify the phenolic compounds of post-distilled residues of Tunisian thyme, and their contribution to the antioxidant activity. The TPC, as determined by the Folin-Ciocalteu method, was found to reach the values of 126.7 and 107.84 mg gallic acid equivalent/g plant dry weight (mg GAE/g PDW). The antioxidant activity, which is assessed by DPPH and FRAP assays, reached the values of 42.97-45.64 µg/mL and 42.22-50.21 mMFe2+/mg PDW, respectively. HPLC analysis revealed the presence of fourteen polyphenolic compounds, of which diosmin and rosmarinic acid were found to be the most abundant (24.26 to 33.80 and 22.0.1 to 26.29 mg/g PDW, respectively). An important correlation was found between the antioxidant activity and several identified phenolic compounds (p < 0.05). The findings revealed that thyme post-distilled residues have an effective natural antioxidant potential due to their high concentration of bioactive molecules, and they appear to be useful in the pharmaceutical, cosmetic, and food industries, with beneficial effects on human health. Therefore, supplementing a balanced diet with herbs may have beneficial health effects.


Assuntos
Lamiaceae , Plantas Medicinais , Thymus (Planta) , Humanos , Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Ácido Gálico/análise , Plantas Medicinais/química , Lamiaceae/química
15.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500534

RESUMO

Mosquitoes can be vectors of pathogens and transmit diseases to both animals and humans. Species of the genus Culex are part of the cycle of neglected diseases, especially Culex&nbsp;quinquefasciatus, which is an anthropophilic vector of lymphatic filariasis. Natural products can be an alternative to synthetic insecticides for vector control; however, the main issue is the poor water availability of some compounds from plant origin. In this context, nanoemulsions are kinetic stable delivery systems of great interest for lipophilic substances. The objective of this study was to investigate the larvicidal activity of the Hyptis suaveolens essential oil nanoemulsion on Cx. quinquefasciatus. The essential oil showed a predominance of monoterpenes with retention time (RT) lower than 15 min. The average size diameter of the emulsions (sorbitan monooleate/polysorbate 20) was ≤ 200 nm. The nanoemulsion showed high larvicidal activity in concentrations of 250 and 125 ppm. CL50 values were 102.41 (77.5253-149.14) ppm and 70.8105 (44.5282-109.811) ppm after 24 and 48 h, respectively. The mortality rate in the surfactant control was lower than 9%. Scanning micrograph images showed changes in the larvae's integument. This study achieved an active nanoemulsion on Cx. quinquefasciatus through a low-energy-input technique and without using potentially toxic organic solvents. Therefore, it expands the scope of possible applications of H. suaveolens essential oil in the production of high-added-value nanosystems for tropical disease vector control.


Assuntos
Aedes , Culex , Culicidae , Inseticidas , Lamiaceae , Óleos Voláteis , Humanos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Larva , Mosquitos Vetores , Inseticidas/química , Extratos Vegetais/química , Folhas de Planta/química
16.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364258

RESUMO

Distillation is the most widely used method to obtain an essential oil from plant material. The biomass used in the process is returned as a solid residue together with variable amounts of water rich in water-soluble compounds, which currently are not addressed to any further application. The scope of this work was to evaluate the phytochemical composition of wastewaters coming from hydrodistillation (DWWs) of five aromatic plants belonging to the Lamiaceae family, and to assess their in vitro antioxidant and anti-inflammatory activities. The phenolic profiles of the DWWs were determined by HPLC-DAD and HPLC-ESI/MS. Free radical scavenging ability, oxygen radical antioxidant capacity and superoxide dismutase mimetic activity of the samples under study were measured. Moreover, to investigate the anti-inflammatory activity of the DWWs, an in vitro experimental model of intestinal inflammation was used. The DWW samples' phytochemical analysis allowed the identification of 37 phenolic compounds, all exhibiting good antioxidant and anti-inflammatory activity. Our study contributes to the knowledge on the polyphenolic composition of the DWWs of five aromatic plants of the Lamiaceae family. The results highlight the presence of compounds with proven biological activity, and therefore of great interest in the pharmaceutical and nutraceutical fields.


Assuntos
Lamiaceae , Lamiaceae/química , Antioxidantes/farmacologia , Antioxidantes/química , Fenóis/química , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água
17.
Sci Rep ; 12(1): 19237, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357455

RESUMO

The Balangu (Lallemantia iberica) species have a high gastronomical impact in the Middle East and Balkan region. It is widely used in the local food industry, such as confectionery, edible oil, and protein food. In this study, 49 ecotypes were collected from different regions of Iran. 37 agronomic traits were measured during the growing season and at harvest time. To find the correlation between the grain yield per unit area, grain yield per single plant (GYSP), oil percent (OP), and protein percent (PP) with other measured traits, which these were utilized as the labels of different machine learning (ML) procedures including Linear Regression (LR), Support Vector Regression (SVR), Random Forest Regression (RFR), and Gradient Boosting Decision Tree Regression (GBDTR). It was observed that there is a linear relationship between the measured agronomic traits and the considered labels. So, the LR, RFR, and GBDTR models showed the lowest mean absolute error, mean square error, and root mean square error than SVR models and good prediction ability of the test data. Although, the RFR and GBDTR have naturally lower bias than other methods in this study, but the GBDTR scheme is preferred because of the over-fitting shortcoming of the RFR technique. The GBDTR method showed better results rather than the other ML regression methods according to the RMSE 3.302, 0.040, 0.028, and 0.060 for GYUA, GYSP, OP, and PP, respectively.


Assuntos
Ecótipo , Lamiaceae , Irã (Geográfico) , Aprendizado de Máquina , Fenótipo
18.
Sci Rep ; 12(1): 18441, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323840

RESUMO

Teak wood has chemical compounds that can be used for pharmaceutical and textile industries, in addition, this compounds are related to resistance to biodeterioration, color and modification processes. Heartwood and sapwood of T. grandis (teak), 15 years-old, were characterized by Py-CG/MS analysis and syringyl (S)/guaiacyl (G) ratio was evaluated. Heartwood and sapwood were pyrolyzed at 550 °C and 62 and 51 compounds were identified from them, respectively. The acetic acid (10%) and levoglucosan (26.65%) were the most abundant compound in the sapwood and heartwood, respectively. The high acetic acid content enhances the use of teak wood to production of artificial essences for perfumery, paints, dyes. While levoglucosan can be used in the manufacture of epoxy resins, antiparasitic and insecticides. The organic compounds identified include 2-methylanthraquinone as one of the main component responsible for the resistance of the teak wood to biological factors (fungi and termites). The syringyl (S)/guaiacyl (G) ratio of heartwood and sapwood was 0.51 and 0.50, respectively.


Assuntos
Lamiaceae , Lamiaceae/química , Madeira/química , Fungos
19.
J Evid Based Integr Med ; 27: 2515690X221132272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36423242

RESUMO

BACKGROUND AND PURPOSE: Candida infections have increased significantly in the antimicrobial resistance era, and synthetic antifungal drugs have limitations. The present work aimed to review the antifungal properties of Zataria multiflora (Z. multiflora) as an herbal remedy. METHOD: PubMed, Scopus, ScienceDirect, Web of Science, SID, Civilica, and Magiran databases were searched for the antifungal activity on in vitro, in vivo, dental biofilm, and clinical studies of Z. multiflora on Candida species. RESULTS: Overall, 33 articles evaluated the effect of Z. multiflora on Candida species and classified them into four groups, as follows in vitro (23), dental biofilm (6), in vivo (2), and clinical studies (3). All studies considered Z. multiflora effective in reducing or even inhibiting the growth of Candida species. NoMFC significant differences were seen in the effect of Z. multiflora on susceptible Candida compared to the resistant groups of Candida in the studies. It was also influential in inhibiting C. parapsilosis, C. glabrata, C. krusei, C. kefyer, and C. zeylanoides. CONCLUSION: Considering the side effects and resistance of current antifungal drugs as well as the benefits of using herbal medicines, such as lower cost, less likely to develop drug resistance, the absence of side effects, and toxicity compared with chemical ones, it is possible as a powerful alternative to replace or combine with the current antifungal for Candida infection therapy along with other therapies.


Assuntos
Candidíase , Lamiaceae , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candida glabrata
20.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430695

RESUMO

Phenolic plant constituents are well known for their health-promoting and cancer chemopreventive properties, and products containing such constituents are therefore readily consumed. In the present work, we isolated 13 phenolic constituents of four different compound classes from the aerial parts of the Moldavian dragonhead, an aromatic and medicinal plant with a high diversity on secondary metabolites. All compounds were tested for their apoptotic effect on myeloma (KMS-12-PE) and AML (Molm-13) cells, with the highest activity observed for the flavone and flavonol derivatives. While diosmetin (6) exhibited the most pronounced effects on the myeloma cell line, two polymethylated flavones, namely cirsimaritin (1) and xanthomicrol (3), were particularly active against AML cells and therefore subsequently investigated for their antiproliferative effects at lower concentrations. At a concentration of 2.5 µM, cirsimaritin (1) reduced proliferation of Molm-13 cells by 72% while xanthomicrol (3) even inhibited proliferation to the extent of 84% of control. In addition, both compounds were identified as potent FLT3 inhibitors and thus display promising lead structures for further drug development. Moreover, our results confirmed the chemopreventive properties of flavonoids in general, and in particular of polymethylated flavones, which have been intensively investigated especially over the last decade.


Assuntos
Flavonas , Lamiaceae , Leucemia Mieloide Aguda , Lignanas , Mieloma Múltiplo , Flavonóis/farmacologia , Flavonóis/química , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Flavonas/farmacologia , Flavonas/química , Lamiaceae/química , Leucemia Mieloide Aguda/tratamento farmacológico , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...