Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.598
Filtrar
1.
Cells ; 11(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954164

RESUMO

Axotomy in the CNS activates retrograde signals that can trigger regeneration or cell death. Whether these outcomes use different injury signals is not known. Local protein synthesis in axon tips plays an important role in axon retraction and regeneration. Microarray and RNA-seq studies on cultured mammalian embryonic or early postnatal peripheral neurons showed that axon growth cones contain hundreds to thousands of mRNAs. In the lamprey, identified reticulospinal neurons vary in the probability that their axons will regenerate after axotomy. The bad regenerators undergo early severe axon retraction and very delayed apoptosis. We micro-aspirated axoplasms from 10 growing, 9 static and 5 retracting axon tips of spinal cord transected lampreys and performed single-cell RNA-seq, analyzing the results bioinformatically. Genes were identified that were upregulated selectively in growing (n = 38), static (20) or retracting tips (18). Among them, map3k2, csnk1e and gtf2h were expressed in growing tips, mapk8(1) was expressed in static tips and prkcq was expressed in retracting tips. Venn diagrams revealed more than 40 components of MAPK signaling pathways, including jnk and p38 isoforms, which were differentially distributed in growing, static and/or retracting tips. Real-time q-PCR and immunohistochemistry verified the colocalization of map3k2 and csnk1e in growing axon tips. Thus, differentially regulated MAPK and circadian rhythm signaling pathways may be involved in activating either programs for axon regeneration or axon retraction and apoptosis.


Assuntos
Axônios , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Lampreias/genética , Mamíferos , Regeneração Nervosa/genética , RNA-Seq , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Transcriptoma/genética
2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955736

RESUMO

The river lamprey (L. fluviatilis) is a representative of the ancestral jawless vertebrate group. We performed a histological analysis of trunk muscle fiber differentiation during embryonal, larval, and adult musculature development in this previously unstudied species. Investigation using light, transmission electron (TEM), and confocal microscopy revealed that embryonal and larval musculature differs from adult muscle mass. Here, we present the morphological analysis of L. fluviatilis myogenesis, from unsegmented mesoderm through somite formation, and their differentiation into multinucleated muscle lamellae. Our analysis also revealed the presence of myogenic factors LfPax3/7 and Myf5 in the dermomyotome. In the next stages of development, two types of muscle lamellae can be distinguished: central surrounded by parietal. This pattern is maintained until adulthood, when parietal muscle fibers surround the central muscles on both sides. The two types show different morphological characteristics. Although lampreys are phylogenetically distant from jawed vertebrates, somite morphology, especially dermomyotome function, shows similarity. Here we demonstrate that somitogenesis is a conservative process among all vertebrates. We conclude that river lamprey myogenesis shares features with both ancestral and higher vertebrates.


Assuntos
Lampreias , Rios , Animais , Lampreias/fisiologia , Larva , Desenvolvimento Muscular , Somitos , Vertebrados
3.
BMC Genomics ; 23(1): 420, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35659564

RESUMO

BACKGROUND: The group XIV of C-type lectin domain-containing proteins (CTLDcps) is one of the seventeen groups of CTLDcps discovered in mammals and composed by four members: CD93, Clec14A, CD248 and Thrombomodulin, which have shown to be important players in cancer and vascular biology. Although these proteins belong to the same family, their phylogenetic relationship has never been dissected. To resolve their evolution and characterize their protein domain composition we investigated CTLDcp genes in gnathostomes and cyclostomes and, by means of phylogenetic approaches as well as synteny analyses, we inferred an evolutionary scheme that attempts to unravel their evolution in modern vertebrates. RESULTS: Here, we evidenced the paralogy of the group XIV of CTLDcps in gnathostomes and discovered that a gene loss of CD248 and Clec14A occurred in different vertebrate groups, with CD248 being lost due to chromosome disruption in birds, while Clec14A loss in monotremes and marsupials did not involve chromosome rearrangements. Moreover, employing genome annotations of different lampreys as well as one hagfish species, we investigated the origin and evolution of modern group XIV of CTLDcps. Furthermore, we carefully retrieved and annotated gnathostome CTLDcp domains, pointed out important differences in domain composition between gnathostome classes, and assessed codon substitution rate of each domain by analyzing nonsynonymous (Ka) over synonymous (Ks) substitutions using one representative species per gnathostome order. CONCLUSIONS: CTLDcps appeared with the advent of early vertebrates after a whole genome duplication followed by a sporadic tandem duplication. These duplication events gave rise to three CTLDcps in the ancestral vertebrate that underwent further duplications caused by the independent polyploidizations that characterized the evolution of cyclostomes and gnathostomes. Importantly, our analyses of CTLDcps in gnathostomes revealed critical inter-class differences in both extracellular and intracellular domains, which might help the interpretation of experimental results and the understanding of differences between animal models.


Assuntos
Feiticeiras (Peixe) , Lectinas Tipo C , Animais , Evolução Molecular , Feiticeiras (Peixe)/genética , Feiticeiras (Peixe)/metabolismo , Lampreias/genética , Lampreias/metabolismo , Lectinas Tipo C/genética , Mamíferos/metabolismo , Filogenia , Domínios Proteicos , Vertebrados/genética
4.
Biochem Biophys Res Commun ; 614: 153-160, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35597152

RESUMO

Previous studies have demonstrated that Neu5Gc is highly expressed in breast, ovarian, prostate, colon and lung cancers, but not in normal human cells. The presence of Neu5Gc is important for prognosis and is associated with aggressiveness, metastasis, and tumor grade. However, increased Neu5Gc in bladder cancer remains unclear. LIP from lamprey binds the carbohydrate receptor of N-glycolylneuraminic acid (Neu5Gc). The combination of Neu5Gc and LIP suggested that it might be used as a diagnostic tool for the detection of Neu5Gc tumor antigen. Here, the classical animal model of bladder cancer was successfully induced by MNU bladder perfusion. The ELISA results showed that the expression level of Neu5Gc in the urine of normal rats was 94.96 ± 21.01ng/mg, and that of bladder cancer rats was 158.28 ± 34.86 ng/mg. In addition, the results of SNA and LIP immunohistochemistry demonstrated the high expression of Neu5Gc in bladder cancer. After the addition of Neu5Gc to BIU-87 and SV-HUC-1 cells, transcriptomic sequencing and real-time quantitative PCR analysis demonstrated that the gene expression of Neu5Gc synthesis pathway was significantly increased. These data suggest that LIP provides a new tool for the detection of biological samples, especially urine from patients with bladder cancer or suspected cancer, and that revealing the mechanism of abnormal glycosylation can provide theoretical basis for clinical studies.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Antígenos de Neoplasias , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Lampreias , Ratos , Neoplasias da Bexiga Urinária/diagnóstico
5.
Front Neural Circuits ; 16: 884785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615623

RESUMO

The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.


Assuntos
Locomoção , Mesencéfalo , Animais , Estimulação Elétrica , Comportamento Exploratório , Lampreias/fisiologia , Locomoção/fisiologia , Mesencéfalo/fisiologia , Camundongos , Ratos , Suínos
6.
Front Immunol ; 13: 822616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359986

RESUMO

The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.


Assuntos
Citidina Desaminase , Lampreias , Animais , Citidina , Citidina Desaminase/genética , DNA/metabolismo , Lampreias/genética , Lampreias/metabolismo , Vertebrados/metabolismo
7.
Sci Rep ; 12(1): 6044, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411012

RESUMO

The blood-brain barrier (BBB) represents a significant bottleneck for the delivery of therapeutics to the central nervous system. In recent years, the promise of coopting BBB receptor-mediated transport systems for brain drug delivery has increased in large part due to the discovery and engineering of BBB-targeting antibodies. Here we describe an innovative screening platform for identification of new BBB targeting molecules from a class of lamprey antigen recognition proteins known as variable lymphocyte receptors (VLRs). Lamprey were immunized with murine brain microvessel plasma membranes, and the resultant repertoire cloned into the yeast surface display system. The library was screened via a unique workflow that identified 16 VLR clones that target extracellular epitopes of in vivo-relevant BBB membrane proteins. Of these, three lead VLR candidates, VLR-Fc-11, VLR-Fc-30, and VLR-Fc-46 selectively target the brain vasculature and traffic within brain microvascular endothelial cells after intravenous administration in mice, with VLR-Fc-30 being confirmed as trafficking into the brain parenchyma. Epitope characterization indicates that the VLRs, in part, recognize sialylated glycostructures. These promising new targeting molecules have the potential for brain targeting and drug delivery with improved brain vascular specificity.


Assuntos
Células Endoteliais , Lampreias , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Epitopos/metabolismo , Linfócitos , Camundongos
8.
Fish Shellfish Immunol ; 124: 454-461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35452833

RESUMO

The TIR domain-containing adaptor inducing IFN-ß (TRIF) is an adaptor molecule that plays a critical role in the Toll-like receptors (TLRs)-mediated innate immune signaling pathway. Lamprey, as the most primitive jawless vertebrate, rely mainly on innate immunity to defend against various pathogens infection. The function of TRIF in lamprey remains unknown. In this study, a homologous adaptor molecule TRIF, named LmTRIF, was identified in Northeast Chinese lamprey (Lethenteron morii). The LmTRIF coding sequence (cds) is 1242 bp in length and encodes 413 amino acids (aa). Domain analysis showed that LmTRIF is characterized with the classical TIR domain and a lack of TRAF6 binding motif. The results of evolutionary tree indicated that the relationship between LmTRIF and other homologous proteins was consistent with the position of lamprey in the species evolutionary history. The relative expression of LmTRIF was highest in the liver of larvae and in the gill of adults, respectively. Cellular immunofluorescence assays showed that LmTRIF was expressed in the cytoplasma in both mammalian cell line HEK 293T and the fish cell line EPC. The double luciferase reporter gene assay showed that the overexpression of LmTRIF promoted the activity of NF-κB, an immune transcription factor downstream of the classical TLR signaling pathway. In this study, we identified the TLR adaptor molecule TRIF from L. morii, a vertebrate more primitive than fish. Our results suggested an important role of LmTRIF in the innate immune signal transduction process of L. morii and is the basis for the origin and evolution of the TLR signaling pathway in the innate immune system in vertebrates.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Lampreias , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , China , Lampreias/genética , Lampreias/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo
9.
BMC Biol ; 20(1): 76, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361194

RESUMO

BACKGROUND: The endostyle is an epithelial exocrine gland found in non-vertebrate chordates (amphioxi and tunicates) and the larvae of modern lampreys. It is generally considered to be an evolutionary precursor of the thyroid gland of vertebrates. Transformation of the endostyle into the thyroid gland during the metamorphosis of lampreys is thus deemed to be a recapitulation of a past event in vertebrate evolution. In 1906, Stockard reported that the thyroid gland in hagfish, the sister cyclostome group of lampreys, develops through an endostyle-like primordium, strongly supporting the plesiomorphy of the lamprey endostyle. However, the findings in hagfish thyroid development were solely based on this single study, and these have not been confirmed by modern molecular, genetic, and morphological data pertaining to hagfish thyroid development over the last century. RESULTS: Here, we showed that the thyroid gland of hagfish undergoes direct development from the ventrorostral pharyngeal endoderm, where the previously described endostyle-like primordium was not found. The developmental pattern of the hagfish thyroid, including histological features and regulatory gene expression profiles, closely resembles that found in modern jawed vertebrates (gnathostomes). Meanwhile, as opposed to gnathostomes but similar to non-vertebrate chordates, lamprey and hagfish share a broad expression domain of Nkx2-1/2-4, a key regulatory gene, in the pharyngeal epithelium during early developmental stages. CONCLUSIONS: Based on the direct development of the thyroid gland both in hagfish and gnathostomes, and the shared expression profile of thyroid-related transcription factors in the cyclostomes, we challenge the plesiomorphic status of the lamprey endostyle and propose an alternative hypothesis where the lamprey endostyle could be obtained secondarily in crown lampreys.


Assuntos
Feiticeiras (Peixe) , Glândula Tireoide , Animais , Desenvolvimento Embrionário , Feiticeiras (Peixe)/genética , Lampreias/genética , Vertebrados/genética
10.
Cells ; 11(8)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455988

RESUMO

The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek's nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty.


Assuntos
Cordados , Pronefro , Animais , Genes Homeobox , Lampreias , Tretinoína/farmacologia , Vertebrados/genética
11.
J Hered ; 113(4): 380-397, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35439308

RESUMO

Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft G. australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16 000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n = 186) and sequence data from Cyt-b (766 bp, n = 94) and COI (589 bp, n = 20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species.


Assuntos
Lampreias , Metagenômica , Animais , Fluxo Gênico , Lampreias/genética , Nova Zelândia , Análise de Sequência de DNA
12.
J Fish Biol ; 100(6): 1455-1463, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35441403

RESUMO

Anthropogenic activities are increasingly threatening aquatic biodiversity, especially anadromous species. Monitoring and conservation measures are thus required to protect, maintain and restore imperilled populations. While many species can be surveyed using traditional capture and visual census techniques, species that use riverine habitats in a less conspicuous manner, such as sea lamprey Petromyzon marinus, can be more challenging to monitor. Sea lamprey larvae (ammocoetes) can spend several years in freshwater burrowed within soft sediments, inhibiting their detection and assessment. Here, we present a qPCR assay based on the detection of environmental DNA (eDNA) to identify the presence of ammocoetes burrowed in the sediment. We present an extensively validated method that ensured both species-specificity of the assay as well as the capacity to detect ammocoetes when abundances are low. Experiments on burrowing activity suggested that most of the DNA released into the sediment occurs during burrowing. Overall, we demonstrate this new molecular-based tool is an efficient and effective complement to traditional monitoring activities targeting larval stages of sea lampreys.


Assuntos
DNA Ambiental , Petromyzon , Animais , Ecossistema , Lampreias/genética , Larva/genética , Petromyzon/genética , Rios
13.
Nano Lett ; 22(7): 2702-2711, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35324204

RESUMO

The therapeutic efficacy of wound infections caused by bacteria is challenged by limited wound repairs and a high risk of inflammation. Microneedles have been generated for wound healing since they are able to efficiently pierce the epidermis and deliver drugs. However, regular microneedles cannot provide oriented traction to "shrink" the wound area, and most microneedles are made of inert polymers, which mainly serve as a support but rarely participate in the following physiological processes. Herein, inspired by lamprey teeth, we designed oriented antibacterial sericin microneedles with dually functionalized needles to provide penetration and directional traction. Sericin, derived from silkworm cocoons, was employed to fabricate microneedle tips, significantly improving skin repair via hair follicle regeneration and angiogenesis. Besides, zinc oxide nanoparticles were integrated as an antibacterial module, endowing the OASM with high bacterial suppression. It is believed that the synergy of these systems may effectively heal infected wounds, suggesting its clinically translational potential.


Assuntos
Sericinas , Infecção dos Ferimentos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lampreias , Agulhas , Sericinas/farmacologia , Cicatrização , Infecção dos Ferimentos/tratamento farmacológico
14.
J Med Chem ; 65(7): 5821-5829, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35302785

RESUMO

1α,25-dihydroxyvitamin D3 (1,25D3) regulates many physiological processes in vertebrates by binding to the vitamin D receptor (VDR). Phylogenetic analysis indicates that jawless fishes are the most basal vertebrates exhibiting a VDR gene. To elucidate the mechanism driving VDR activation during evolution, we determined the crystal structure of the VDR ligand-binding domain (LBD) complex from the basal vertebratePetromyzon marinus, sea lamprey (lVDR). Comparison of three-dimensional crystal structures of the lVDR-1,25D3 complex with higher vertebrate VDR-1,25D3 structures suggests that 1,25D3 binds to lVDR similarly to human VDR, but with unique features for lVDR around linker regions between H11 and H12 and between H9 and H10. These structural differences may contribute to the marked species differences in transcriptional responses. Furthermore, residue co-evolution analysis of VDR across vertebrates identifies amino acid positions in H9 and the large insertion domain VDR LBD specific as correlated.


Assuntos
Lampreias , Receptores de Calcitriol , Animais , Lampreias/metabolismo , Ligantes , Filogenia , Ligação Proteica , Receptores de Calcitriol/metabolismo , Vitamina D
15.
Elife ; 112022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103591

RESUMO

Cerebrospinal fluid-contacting (CSF-c) neurons line the central canal of the spinal cord and a subtype of CSF-c neurons expressing somatostatin, forms a homeostatic pH regulating system. Despite their importance, their intricate spatial organization is poorly understood. The function of another subtype of CSF-c neurons expressing dopamine is also investigated. Imaging methods with a high spatial resolution (5-10 nm) are used to resolve the synaptic and ciliary compartments of each individual cell in the spinal cord of the lamprey to elucidate their signalling pathways and to dissect the cellular organization. Here, light-sheet and expansion microscopy resolved the persistent ventral and lateral organization of dopamine- and somatostatin-expressing CSF-c neuronal subtypes. The density of somatostatin-containing dense-core vesicles, resolved by stimulated emission depletion microscopy, was shown to be markedly reduced upon each exposure to either alkaline or acidic pH and being part of a homeostatic response inhibiting movements. Their cilia symmetry was unravelled by stimulated emission depletion microscopy in expanded tissues as sensory with 9 + 0 microtubule duplets. The dopaminergic CSF-c neurons on the other hand have a motile cilium with the characteristic 9 + 2 duplets and are insensitive to pH changes. This novel experimental workflow elucidates the functional role of CSF-c neuron subtypes in situ paving the way for further spatial and functional cell-type classification.


Assuntos
Cílios , Dopamina/química , Microscopia/métodos , Somatostatina/química , Animais , Dopamina/líquido cefalorraquidiano , Lampreias , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microtúbulos/química , Proteínas dos Microtúbulos/metabolismo , Neurônios/fisiologia , Somatostatina/líquido cefalorraquidiano , Medula Espinal , Coloração e Rotulagem
16.
Mol Immunol ; 143: 122-134, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131593

RESUMO

The nucleotide oligomerization domain (NOD)-like receptor (NLR) is a relatively conserved receptor family involved in natural immunity that plays a key role in the resistance to pathogen invasion and regulation of the innate immune response. Lethenteron reissneri (lamprey) is a representative species of existing ancient jawless vertebrates. Studies of the evolutionary relationship of immune system-related molecules in lampreys can provide an important reference for the origin and evolution of innate immunity. However, the characterization and evolutionary patterns of the NLR family remain unclear in the lamprey genome. Based on the genome database of L. reissneri, we identified nine NLR genes, characterized their functional domains and chromosomal positions, and constructed a network comprising the results of gene structure and gene-collinearity analyses. Comparative genomics studies suggest that Lr-NODa and Lr-NODb most likely share the common ancestor of NOD1 and NOD2 in jawed vertebrates, and that Lr-NODb may have been generated by lamprey-specific tandem duplication of Lr-NODa. Additionally, phylogenetic analysis of the NLRC subfamily suggests that Lr-NLRC3a has ancestral traits and may be derived from the common ancestor of another vertebrate NLRC subfamily. Further analysis of the formation of the NLRC subfamily has shown that exon shuffling, domain recombination, and chromosome rearrangement play important roles in its structural evolution. Furthermore, real-time quantitative polymerase chain reaction shows that most NLR genes in lamprey are highly expressed in the immune tissues of the heart, gill, and supraneural body, with these genes also showing significant responses to polyinosinic-polycytidylic acid infection. These results indicate that NLR genes are involved in the immune protection of L. reissneri and provide an important theoretical foundation for studies of the functional evolution of vertebrate NLRs involved in the innate immune system.


Assuntos
Regulação da Expressão Gênica , Genoma , Lampreias/genética , Lipopolissacarídeos/farmacologia , Proteínas NLR/genética , Poli I-C/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Éxons/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade , Íntrons/genética , Proteínas NLR/química , Proteínas NLR/metabolismo , Filogenia , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética , Distribuição Tecidual
17.
J Neurosci ; 42(12): 2385-2403, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35063999

RESUMO

Efficient and reliable neurotransmission requires precise coupling between action potentials (APs), Ca2+ entry and neurotransmitter release. However, Ca2+ requirements for release, including the number of channels required, their subtypes, and their location with respect to primed vesicles, remains to be precisely defined for central synapses. Indeed, Ca2+ entry may occur through small numbers or even single open Ca2+ channels, but these questions remain largely unexplored in simple active zone (AZ) synapses common in the nervous system, and key to addressing Ca2+ channel and synaptic dysfunction underlying numerous neurologic and neuropsychiatric disorders. Here, we present single channel analysis of evoked AZ Ca2+ entry, using cell-attached patch clamp and lattice light-sheet microscopy (LLSM), resolving small channel numbers evoking Ca2+ entry following depolarization, at single AZs in individual central lamprey reticulospinal presynaptic terminals from male and females. We show a small pool (mean of 23) of Ca2+ channels at each terminal, comprising N-(CaV2.2), P/Q-(CaV2.1), and R-(CaV2.3) subtypes, available to gate neurotransmitter release. Significantly, of this pool only one to seven channels (mean of 4) open on depolarization. High temporal fidelity lattice light-sheet imaging reveals AP-evoked Ca2+ transients exhibiting quantal amplitude variations of 0-6 event sizes between individual APs and stochastic variation of precise locations of Ca2+ entry within the AZ. Further, total Ca2+ channel numbers at each AZ correlate to the number of presynaptic primed synaptic vesicles. Dispersion of channel openings across the AZ and the similar number of primed vesicles and channels indicate that Ca2+ entry via as few as one channel may trigger neurotransmitter release.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry through voltage-gated calcium channels (VGCCs) causes neurotransmitter release. To understand neurotransmission, its modulation, and plasticity, we must quantify Ca2+ entry and its relationship to vesicle fusion. This requires direct recordings from active zones (AZs), previously possible only at calyceal terminals containing many AZs, where few channels open following action potentials (APs; Sheng et al., 2012), and even single channel openings may trigger release (Stanley, 1991, 1993). However, recording from more conventional terminals with single AZs commonly found centrally has thus far been impossible. We addressed this by cell-attached recordings from acutely dissociated single lamprey giant axon AZs, and by lattice light sheet microscopy of presynaptic Ca2+ entry. We demonstrate nanodomains of presynaptic VGCCs coupling with primed vesicles with 1:1 stoichiometry.


Assuntos
Cálcio , Terminações Pré-Sinápticas , Animais , Feminino , Lampreias , Masculino , Neurotransmissores , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas
18.
J Fish Biol ; 100(3): 831-834, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34882797

RESUMO

The lamprey genus Exomegas Gill, 1883, was erected on the assumption that it was distinguishable from Geotria Gray, 1851, by possessing three rather than two cusps on the transverse lingual lamina (TLL). Based on literature review and examination of holotypes and new data, the authors reaffirm that the TLL of Geotria possesses two or three cusps in the adult stage. The reduction or disappearance of the middle cusp at the beginning or during the spawning run constitutes a key feature of Geotria. The resurrection of Exomegas by Firpo Lacoste, Fernández and Scioscia, Journal of Fish Biology, 2021, 1-6, 1507-1512, is therefore unjustified and not supported.


Assuntos
Brânquias , Lampreias , Animais , Peixes
19.
Artigo em Inglês | MEDLINE | ID: mdl-34728403

RESUMO

The study was designed to identify the types of mitogen-activated protein kinases (MAPKs) in erythrocytes and liver tissues of river lamprey Lampetra fluviatilis and monitor the changes in protein expression levels of found enzymes on the course of prespawning starvation (from November to the end of May). Immunoreactivity of the native and phosphorylated forms of ERK1/2, JNK and p38 was examined in the cytosolic and membrane cell fractions. Both lamprey erythrocytes and liver were found to highly express ERK1/2 and JNK, whereas only trace amounts of p38 were revealed in hepatic tissues. ERK1/2 was identified in cytosolic and membrane fractions, whereas JNK and p38 were predominantly cytosolic enzymes. Total cellular amounts of ERK1/2 and phospho-ERK1/2 in both erythrocytes and liver tissues appeared to be relatively stable on the course of prespawning starvation. However, before spawning ERK1/2 translocated from cytosol to membranes, with partial decline of its cytoplasmic expression being compensated by increases in membrane-bound pool. Immunoreactivity of cytoplasmic JNK, phospho-JNK and p38 were stable from November to March, but sharply decreased before spawning exhibiting almost negligible levels in May, which suggests the depletion of their cellular fractions. Most probably, ERK1/2 plays more important role in mediating adaptive responses of erythrocytes and liver tissues to conditions of natural starvation and maintenance of cell viability before spawning and death of animals in May.


Assuntos
Proteínas de Peixes/metabolismo , Lampreias/metabolismo , Fígado/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Eritrócitos/enzimologia , Feminino , Proteínas de Peixes/sangue , Lampreias/sangue , Masculino , Proteínas Quinases Ativadas por Mitógeno/sangue , Reprodução , Estações do Ano , Inanição/sangue , Inanição/enzimologia , Frações Subcelulares/enzimologia
20.
Cell Tissue Res ; 387(1): 13-27, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34674044

RESUMO

The olfactory system allows animals to navigate in their environment to feed, mate, and escape predators. It is well established that odorant exposure or electrical stimulation of the olfactory system induces stereotyped motor responses in fishes. However, the neural circuitry responsible for the olfactomotor transformations is only beginning to be unraveled. A neural substrate eliciting motor responses to olfactory inputs was identified in the lamprey, a basal vertebrate used extensively to examine the neural mechanisms underlying sensorimotor transformations. Two pathways were discovered from the olfactory organ in the periphery to the brainstem motor nuclei responsible for controlling swimming. The first pathway originates from sensory neurons located in the accessory olfactory organ and reaches a single population of projection neurons in the medial olfactory bulb, which, in turn, transmit the olfactory signals to the posterior tuberculum and then to downstream brainstem locomotor centers. A second pathway originates from the main olfactory epithelium and reaches the main olfactory bulb, the neurons of which project to the pallium/cortex. The olfactory signals are then conveyed to the posterior tuberculum and then to brainstem locomotor centers. Olfactomotor behavior can adapt, and studies were aimed at defining the underlying neural mechanisms. Modulation of bulbar neural activity by GABAergic, dopaminergic, and serotoninergic inputs is likely to provide strong control over the hardwired circuits to produce appropriate motor behavior in response to olfactory cues. This review summarizes current knowledge relative to the neural circuitry producing olfactomotor behavior in lampreys and their modulatory mechanisms.


Assuntos
Locomoção/fisiologia , Olfato/fisiologia , Animais , Lampreias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...