Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
Food Chem ; 403: 134056, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191416

RESUMO

Gelation of soybean proteins with different coagulates as affected by okara nano-sized dietary fiber (NDF) were investigated. As compared with the MgCl2 tofu, the tofu induced by glocono-δ-lactone was softer with higher moisture and denser microstructure. As the volumetric ratio of NDF increased, pH, viscosity, particle size, and zeta potential of the NDF soymilk steadily increased. Regardless of coagulate type, tofu proteins' prevalence of α-helix + ß-turn increased with the NDF ratio up to 40 % while ß-sheet + random coil decreased. At the same time, intermolecular interactions (predominate hydrophobic interaction) significantly decreased, leading to form more porous structures in the two types of tofu. Accordingly, yield and moisture of tofu increased gradually with the NDF ratio, water holding capacity increased and then decreased, hardness decreased continuously. Results suggested that NDF affected the secondary structure and intermolecular interactions of soymilk proteins, which was independent of coagulate.


Assuntos
Alimentos de Soja , Leite de Soja , Proteínas de Soja/química , Leite de Soja/química , Fibras na Dieta , Viscosidade , Soja/química
2.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234732

RESUMO

In this study, the protein bioaccessibility of soymilk gels produced by the addition of glu-cono-δ-lactone (GDL) and fermentation with lactic acid bacteria (LAB) was examined using an in vitro gastrointestinal simulated digestion model. The in vitro protein digestibility, soluble protein content, free amino acids contents, degree of hydrolysis, electrophoretic patterns, and peptide content were measured. The results suggested that acid-induced soymilk gel generated by GDL (SG) showed considerably reduced in vitro protein digestibility of 75.33 ± 1.00% compared to the soymilk gel induced by LAB (SL) of 80.57 ± 1.53% (p < 0.05). During the gastric digestion stage, dramatically higher (p < 0.05) soluble protein contents were observed in the SG (4.79-5.05 mg/mL) than that of SL (4.31-4.35 mg/mL). However, during the later intestinal digestion phase, the results were the opposite. At the end of the gastrointestinal digestion phase, the content of small peptides was not significantly different (p > 0.05) between the SL (2.15 ± 0.03 mg/mL) and SG (2.17 ± 0.01 mg/mL), but SL showed higher content of free amino acids (20.637 g/L) than that of SG (19.851 g/L). In general, soymilk gel induced by LAB had a higher protein bioaccessibility than the soymilk gel coagulated by GDL.


Assuntos
Lactobacillales , Leite de Soja , Aminoácidos/metabolismo , Fermentação , Géis/química , Gluconatos , Lactobacillales/metabolismo , Lactonas/química , Leite de Soja/química
3.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076965

RESUMO

Soy isoflavones are phytochemicals that possess various beneficial physiological properties such as anti-aging, anti-tumor, and antioxidant properties. Since soy isoflavones exist in glycoside forms, their bioavailability requires initial hydrolysis of the sugar moieties bound to them to be efficiently absorbed through the gut epithelium. Instead of conventional chemical hydrolysis using acids or organic solvents, alternative strategies for enhancing the bioavailability of soy isoflavones using biological methods are gaining attention. Here, we engineered Leuconostoc citreum isolated from Korean kimchi for efficient bioconversion of soy isoflavone glycosides into their aglycone forms to enhance their bioavailability. We first constructed an expression module based on the isoflavone hydrolase (IH)-encoding gene of Bifidobacterium lactis, which mediates conversion of isoflavone glycosides to aglycone forms. Using a high copy number plasmid and bicistronic expression design, the IH was successfully synthesized in L. citreum. Additionally, we determined enzymatic activity of the IH using an in vivo ß-glucosidase assay and confirmed its highly efficient bioconversion efficiency for various types of isoflavone glycosides. Finally, we successfully demonstrated that the engineered L. citreum could convert isoflavone glycosides present in fermented soymilk into aglycones.


Assuntos
Isoflavonas , Leite de Soja , Fermentação , Glicosídeos/metabolismo , Isoflavonas/metabolismo , Leuconostoc , Leite de Soja/química , Leite de Soja/metabolismo
4.
Curr Microbiol ; 79(10): 317, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088517

RESUMO

Tofu is one of the main foods made with soybeans. The aim of this work was to evaluate the effect of L. plantarum and L. fermentum on the volatile compounds and sensorial profile of fermented tofu during ripening. The soy milk was fermented separately with two native strains (L. plantarum or L. fermentum) until reaching a pH of 5.5, and the fermented tofu was obtained. The tofu obtained by acidification with lactic acid was used as a control and was characterized by microbial survival (L. plantarum, L. fermentum, and P. freudenreichii) for 0, 20, and 40 days of storage at 15 °C. Moreover, the lactic and acetic acid content was determined by high-performance liquid chromatography (HPLC), and the volatile compounds were evaluated by gas. Chromatography-mass spectrometry (GC-MS). The results were analyzed by an ANOVA test (P < 0.05). After storage, the lactic acid bacteria (LAB) survived in the fermented tofu at a concentration higher than 8.0 log CFU/g after 40 days of storage. The shelf life of fermented tofu obtained by acidification was fewer than 20 days because of the presence of fungi and yeasts. The hexanal content was reduced by approximately 96% (P < 0.05) in the tofu obtained by fermentation compared with the control. This process for fermented tofu production employing two native strains could be used for industrial purposes.


Assuntos
Lactobacillus fermentum , Lactobacillus plantarum , Alimentos de Soja , Leite de Soja , Fermentação
5.
Front Endocrinol (Lausanne) ; 13: 927726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034464

RESUMO

Soy-based infant formulas (SFs) are often consumed by cow's milk allergic children. However, some concerns have risen since soy intake may adversely affect thyroid function in iodine-deficient or subclinical hypothyroid individuals. We report the first Italian case of SF induced goiter and hypothyroidism registered in our country since National Iodine program has been instituted. Finally, we review cases previously reported in literature. A 22-month-old toddler with a previous diagnosis of cow's milk protein allergy came to clinical attention for important goiter and overt hypothyroidism. Detailed dietary anamnesis revealed that he was on a restrictive dietary regimen based on soymilk since 12 months of age. A temporary levothyroxine substitution was instituted to avoid hypothyroidism complications. Adequate iodine supplementation and diet diversification completely reversed SF-induced hypothyroidism and goiter, confirming the diagnostic suspicion of soymilk-induced thyroid dysfunction in a iodine-deficient toddler. This case report demonstrates the importance of careful dietary habits investigation and adequate micronutrients supplementation in children on a restrictive diet due to multiple food allergies in order to prevent nutritional deficits.


Assuntos
Bócio , Hipotireoidismo , Iodo , Leite de Soja , Dieta , Humanos
6.
ACS Appl Mater Interfaces ; 14(30): 34480-34487, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35858126

RESUMO

Foodborne biomaterials, derived from diets, comprise selfassembled collections of many micro- or nanoscale units with abundant nutrients and active substances. In this study, soybean milk (SBM) was selected as a tissue engineering product for simple and feasible wound repair. SBM is a common drink prepared from soybeans and is rich in soy protein, soy isoflavones, and other bioactive components. Thus, SBM has substantial potential for antioxidation and tissue remodeling. Here, the multifunctional effect of SBM as a bioactive coating for promoting wound healing was studied. The results showed that SBM has good biocompatibility and biological activity. It efficiently scavenges intracellular reactive oxygen species, significantly enhances epithelial cell migration, and improves angiogenesis, thereby accelerating tissue remodeling. The results of animal experiments further confirmed that the SBM-bioinspired coating has promising applications for cutaneous wound regeneration.


Assuntos
Leite de Soja , Soja , Dieta , Humanos , Cicatrização
7.
Food Microbiol ; 106: 104042, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690436

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus is a beneficial lactic acid bacterium and constitutes one of the most used, and thus consumed, dairy starters, worldwide. This homofermentative bacterium was the first lactobacillus described and is involved in the fermentation of yogurt and of diverse other fermented products, including cheeses. It has a long history of safe use, as well as documented probiotic lato sensu effects, including alleviation of lactose intolerance. Plant-based fermented products presently experience a considerable development, as a result of evolution of consumers' habits, in a general context of food transition. This requires research and development, and thus scientific knowledge, to allow such transition, including the development of fermented soy milks. These last indeed offer an alternative source of live and active bacteria. The yogurt starters L. delbrueckii subsp. bulgaricus, together with Streptococcus thermophilus, have been implemented to generate yogurt-type fermented soy milks worldwide. While the adaptation of these starters to the dairy environment has been extensively studied, little is known about L. delbrueckii adaptation to the soy environment. We therefore investigated its adaptation to soy milk and compared it to cow's milk. Surprisingly, it did not grow in soy milk, neither alone, nor in co-culture with S. thermophilus. Acidification of soy milk was however faster in the presence of both species. In order to deepen such adaptation, we then compared L. delbrueckii growth and survival in soy milk ultrafiltrate (SUF, the aqueous phase of soy milk) and compared it to cow's milk ultrafiltrate (MUF, the aqueous phase of cow milk). This comparison revealed major differences in terms of cell morphology and proteome composition. Lactobacilli appeared deformed and segmented in soy. Major differences in both the surface and the cellular proteome indicated upregulation of stress proteins, yet downregulation of cell cycle and division machinery. Altogether, these results suggest that soy milk may be a stressing environment for the yogurt starter L. delbrueckii subsp. bulgaricus.


Assuntos
Lactobacillus delbrueckii , Leite de Soja , Fermentação , Lactobacillus/metabolismo , Lactobacillus delbrueckii/metabolismo , Proteoma , Streptococcus thermophilus/metabolismo , Iogurte/microbiologia
8.
J Sci Food Agric ; 102(15): 7221-7230, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35730767

RESUMO

BACKGROUND: The soy isoflavone microbial metabolites dihydrodaidzein (DHD), dihydrogenistein (DHG), equol and 5-hydroxy-equol are generally more biologically active than their precursors daidzein and genistein. Bacteria responsible for isoflavone metabolism have been isolated and identified. Fermented soymilk is a potential functional food; however, there are few lactic acid bacteria capable of metabolizing soy isoflavones. RESULTS: A newly isolated Gram-positive facultative anaerobic bacterium, which was named Lactobacillus acidipiscis HAU-FR7, was isolated from the traditional Chinese fermented soy product 'stinky tofu'. Bacterium strain HAU-FR7 can grow under aerobic conditions and can also convert most of the daidzin and genistin in soymilk into DHD and DHG, respectively. The concentrations of DHD and DHG produced were 183 and 134 µmol L-1 , respectively, after fermentation for 24 h. Strain HAU-FR7 does not produce the biogenic amines cadaverine, putrescine, histamine or tyramine, and an antibiotic susceptibility test showed that HAU-FR7 is sensitive to nine of the ten tested antibiotics, except for vancomycin. Moreover, the 1,1-diphenyl-2- picrylhydrazyl free radical scavenging capacity of soymilk fermented with HAU-FR7 was significantly higher than that of unfermented soymilk. CONCLUSION: A facultative anaerobic lactic acid bacterium, designated Lactobacillus acidipiscis HAU-FR7, is capable of reducing the soy isoflavone glucosides daidzin and genistin in soymilk to DHD and DHG efficiently, even in the presence of atmospheric oxygen. The biotransformation activity of HAU-FR7 grown in soymilk is higher than that in de Man-Rogosa-Sharpe liquid culture medium. © 2022 Society of Chemical Industry.


Assuntos
Isoflavonas , Alimentos de Soja , Leite de Soja , Humanos , Fermentação , Glucosídeos/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Leite de Soja/metabolismo , Isoflavonas/metabolismo , Bactérias/metabolismo , China
9.
Nutrients ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35565689

RESUMO

This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.


Assuntos
Perilla , Leite de Soja , Antioxidantes , Suplementos Nutricionais/análise , Alimentos Fortificados , Frutas , Voluntários Saudáveis , Humanos , Perilla/química , Fagocitose , Triglicerídeos
10.
J Chromatogr A ; 1673: 463099, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35526302

RESUMO

In the current work, for the first time, a vitamin-based metal-organic framework constructed from cobalt ions and vitamin B3 has been used as a sorbent in dispersive micro-solid-phase extraction. The proposed method was used to extract and enrich aflatoxins (B1, B2, G1, and G2) from soy milk samples before their quantification by high performance liquid chromatography-tandem mass spectrometry. In this work, first the metal-organic framework was synthesized and characterized using techniques such as X-ray diffraction, Fourier transform infrared spectrophotometry, scanning electron microscopy, nitrogen adsorption/desorption, and energy-dispersive X-ray spectroscopy. Then it was used as an efficient sorbent in the proposed dispersive micro-solid-phase extraction. For this purpose, after precipitating the proteins of soy milk sample with the aid of trichloroacetic acid, the supernatant phase was taken, mixed with the synthesized sorbent, and vortexed. After centrifuging, the analytes loaded on the adsorbent were eluted with methanol to transfer them into an organic phase which was compatible with the subsequently employed separation system. The adsorption capacity of the synthesized MOF for aflatoxins B1, B2, G1, and G2 were 0.77, 0.83, 0.70, and 0.54 mg g-1, respectively. Under the best experimental situations, satisfactory outcomes including acceptable extraction recoveries (64-75%), low limits of detection (11.3-48.2 ng L-1) and quantification (42.8-161.6 ng L-1), and good repeatability (relative standard deviations equal or less than 4.0 and 4.7% for intra- and inter- day precisions, respectively) were obtained. In addition, green synthesis of the metal-organic framework (using vitamin B3 as a linker, water as the reaction solvent, and mild conditions) and usage low amount or volume of the adsorbent and organic solvents during the extraction process were the other beneficial aspects of this work which caused the suggested analytical method to be environmentally friendly.


Assuntos
Aflatoxinas , Estruturas Metalorgânicas , Leite de Soja , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Extração em Fase Sólida/métodos , Solventes/química , Espectrometria de Massas em Tandem/métodos , Vitaminas
11.
J Sci Food Agric ; 102(12): 5358-5367, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35318666

RESUMO

BACKGROUND: Soybean is believed to have good nutraceutical potential which is important for human health. Yellow soybean (YS) is generally used for the production of soymilk and other products, while black soybean (BS) is less explored. During the production of soymilk, residue, called okara is generated which is reported to have a good amount of nutrient content. Studies are generally performed with YS while BS is less explored. The present work is a comparison of the nutraceutical potential of BS and YS and their okara, mainly in terms of proximate, minerals, antinutrients, and isoflavone content and bioactivity of all types of samples in terms of antioxidant and antimicrobial activity. RESULTS: Compared to raw soybean, protein content decreased significantly in both types of okara. Phytochemicals like ascorbic acid, catechin, quercetin, and gallic acid were significantly (P < 0.05) high in BS residue in comparison to respective raw soybean. Among isoflavones, daidzin and genistin were found significantly varying among all the samples, and glycitin and glycitein were not present in YS. CONCLUSION: The nutraceutical potential and antimicrobial activity were comparative for both the raw beans and their okara, while the phytochemical contents and antioxidant activity were higher in the case of BS and its okara. © 2022 Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Isoflavonas , Leite de Soja , Anti-Infecciosos/análise , Antioxidantes/análise , Humanos , Isoflavonas/análise , Minerais , Leite de Soja/química , Soja/química
12.
Biol Res Nurs ; 24(3): 294-307, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332795

RESUMO

Purpose: We aimed to determine the effects of 12 weeks of soy milk consumption combined with resistance training (RT) on body composition, physical performance, and skeletal muscle regulatory markers in older men. Methods: In this randomized clinical trial study, 60 healthy elderly men (age = 65.63 ± 3.16 years) were randomly assigned to four groups: resistance training (RT; n = 15), soy milk consumption (SMC; n = 15), resistance training + soy milk (RSM; n = 15), and control (CON; n = 15) groups. The study was double-blind for the soy milk/placebo. Participants in RT and RSM groups performed resistance training (3 times/week) for 12 weeks. Participants in the SMC and RSM groups consumed 240 mL of soy milk daily. Body composition [body mass (BM), body fat percent (BFP), waist-hip ratio (WHR), and fat mass (FM)], physical performance [upper body strength (UBS), lower body strength (LBS), VO2max, upper anaerobic power, lower anaerobic power, and handgrip strength], and serum markers [follistatin, myostatin, myostatin-follistatin ratio (MFR), and growth and differentiation factor 11 (GDF11)] were evaluated before and after interventions. Results: All 3 interventions significantly (p < 0.05) increased serum follistatin concentrations (RT = 1.7%, SMC = 2.9%, RSM = 7.8%) and decreased serum myostatin (RT = -1.3% SMC = -5.4%, RSM = -0.5%) and GDF11 concentrations (RT = -1.4%, SMC = -1.4%, RSM = -9.0%), and MFR (RT = -2.6%, SMC = -3.2%, RSM = -12%). In addition, we observed significant reduction in all 3 intervention groups in BFP (RT = -3.6%, SMC = -1.4%, RSM = -6.0%), WHR (RT = -2.2%, SMC = -2.1%, RSM = -4.3%), and FM (RT = -9.6%, SMC = -3.8%, RSM = -11.0%). Moreover, results found significant increase only in RT and RSM groups for muscle mass (RT = 3.8% and RSM = 11.8%), UBS (RT = 10.9% and RSM = 21.8%), LBS (RT = 4.3% and RSM = 7.8%), upper anaerobic power (RT = 7.8% and RSM = 10.3%), and lower anaerobic power (RT = 4.6% and RSM = 8.9%). Handgrip strength were significantly increased in all 3 intervention groups (RT = 7.0%, SMC = 6.9%, RSM = 43.0%). VO2max significantly increased only in RSM (1.7%) after 12 weeks of intervention. Additionally, significant differences were observed between the changes for all variables in the RSM group compared to RT, SMC, and CON groups (p < 0.05). Conclusions: There were synergistic effects of soy milk and RT for skeletal muscle regulatory markers, body composition, and physical performance. Results of the present study support the importance of soy milk in conjunction with RT for older men.


Assuntos
Treinamento de Força , Leite de Soja , Idoso , Biomarcadores , Composição Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/farmacologia , Folistatina/farmacologia , Fatores de Diferenciação de Crescimento/farmacologia , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Miostatina/farmacologia , Desempenho Físico Funcional , Treinamento de Força/métodos
13.
Food Chem ; 381: 132158, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114622

RESUMO

The effects of different ultrasound treatments (20 kHz at 400 W for 0 to 9 min) on the functional properties, flavor characteristics, and storage stability of soybean milk at 4 °C were investigated. Results indicated that non-sonicated soymilk had the maximum particle size D4, 3 of 2.47 ± 0.47 µm, while 9 min high intensity ultrasound (HIU) decreased D4, 3 to 0.44 ± 0.01 µm. 9 min of HIU decreased the total number of microorganisms in soymilk from 4.51 to 3.95 Log (CFU/mL). Moreover, 9 min HIU increased the absolute value of ζ-potential from 36.43 to 34.13 mV. Turbiscan test showed that 9 min HIU decreased the instability index of soymilk from 0.78 to 0.65. Furthermore, sensory analysis, electronic nose, electronic tongue, and gas chromatography-mass spectrometry showed that 7 min HIU decreased the content of aldehydes, furans, ketones, and alcohols by 52.09%, 75.01%, 56.79%, and 57.27%, respectively.


Assuntos
Leite de Soja , Soja , Animais , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Leite , Leite de Soja/química , Soja/química
14.
Benef Microbes ; 13(1): 61-72, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35098908

RESUMO

Lactobacillus delbrueckii subsp. delbrueckii TUA4408L has the ability to grow and ferment soymilk and is able to modulate the innate immune response of intestinal epithelial cells in vitro. These two properties prompt us to evaluate whether the soymilk fermented with the TUA4408L strain can induce beneficial immunomodulatory effects in vivo. For this purpose, pigs were selected as a preclinical model. The studies performed here demonstrated that the L. delbrueckii subsp. delbrueckii TUA4408L-fermented soymilk (TUA4408L FSM) reduced blood markers of inflammation and differentially regulated the expression of inflammatory and regulatory cytokines in the intestinal mucosa. These immunological changes induced by the TUA4408L FSM were associated to an enhanced resistance to pathogenic Escherichia coli and an improved grow performance and meat quality of pigs. The experiments and analysis in our study indicate that the immunobiotic TUA4408L FSM could be an interesting non-dairy functional food to beneficially modulate the intestinal immune system, improve protection against pathogens and reduce inflammatory damage. The preclinical study carried out here in pigs could have a better correlation in humans, compared to a rodent model. However, the clinical relevance of these findings still needs to be confirmed by further research, for example, in controlled human challenge studies.


Assuntos
Lactobacillus delbrueckii , Probióticos , Leite de Soja , Animais , Lactobacillus , Lactobacillus delbrueckii/metabolismo , Probióticos/metabolismo , Probióticos/farmacologia , Suínos
15.
Biotechnol Appl Biochem ; 69(1): 172-182, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33398897

RESUMO

The current research work was carried out to evaluate the effect of three different varieties (NARC-II, Williams 82, Ajmeri) of soybean along with single and coculture impact of Lactobacillus acidophilus and Lactobacillus casei on fermented soymilk. The periodically microbial and antioxidative activities of fermented soymilk were analyzed during the storage of 24 days. Moreover, the effect of fermentation on rheological and structural changes was examined along with isoflavone contents in fermented soymilk. Viability of cells and antioxidative activities were found to be significantly (P < 0.05) higher in fermented soymilk using mixed cultures. The rheological attributes demonstrated higher viscosity in coculture fermented soymilk. Scanning electron microscopic examination indicated that the growth characteristic of L. casei has a relatively more uniform texture and smaller pore size in comparison to L. acidophilus. Nevertheless, the combination of cultures exhibited precise pore formation with stronger cross-links of soybean protein throughout the structure. Assessment of isoflavones exhibited higher values, for daidzein (20.87 ppm) in comparison to genistein (6.57 ppm), in Ajmeri-based coculture soymilk. Conclusively, L. casei and L. acidophilous exhibited considerable antioxidant potential in the development of viscous, less porous, and rich in bioactive metabolites fermented soymilk, when used in combination and among varieties Ajmeri results it was the top of all. This suggests that the process evidence in this study could be recommended for high-quality soymilk production.


Assuntos
Isoflavonas , Lactobacillus casei , Probióticos , Leite de Soja , Fermentação , Microbiologia de Alimentos , Lactobacillus acidophilus
16.
J Texture Stud ; 53(1): 108-121, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689342

RESUMO

Soy-cow blended milk is a potential nutritional beverage and raw material for dairy products. This study determined the particle size, flow, lubrication, flavor and sensory properties of cow milk, soy milk and their blends. Twenty-one major volatile compounds were identified using solid-phase microextraction gas chromatography (SPME-GCMS) in cow milk and soy milk. Among all the compounds detected in the milk samples, hexanal, associated with off flavor was found highest in soymilk followed by cow milk and blended milk. From confocal images, soy-cow blended milk at a ratio of 1:1 showed a homogenous distribution of small fat globules and protein compared to the soy milk and cow milk. The addition of soy milk to cow milk lowers the particle size although not significantly (p > .05) and decreases the viscosity of blended milk. Cow milk was the most viscous (2.66 mPa·s at 50 s-1 ) with large particles (0.48 µm) observed from confocal images. However, soymilk was found to have better lubrication properties (boundary regime) with a lower friction coefficient (~0.30) compared to cow milk (~0.40) and blended milk (~0.50) at low entrainment speed (0.1-2 mm/s). The sensory panel ranked cow milk as creamier and more viscous while soymilk was perceived as more astringent with beany flavor. Overall, a proportion of 3:7 soy-cow blended milk was more acceptable than the other two blended milks with less beany flavor, as confirmed by the lower amount of hexanal from gas chromatography mass spectrometer.


Assuntos
Leite de Soja , Paladar , Animais , Bovinos , Emulsões/análise , Feminino , Leite/química , Percepção , Leite de Soja/química
17.
J Agric Food Chem ; 70(23): 6849-6863, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34645264

RESUMO

Soybean processing waste (SPW) has potential as a sustainable source of phytochemicals and functional foods. A variety of phytochemicals, nutrients, and minerals have been characterized from SPW using various analytical methods. SPW utilization strategies may provide a new way to increase production of bioactive compounds, nutritional supplements, and cosmetic ingredients. SPW has the potential for value-added processing, to improve commercial use, and to lower environmental pollution through proper use. Okara, a byproduct generated during soybean processing of tofu and soy milk, is rich in dietary fiber, isoflavones, and saponins. Isoflavones, an important class of biologically active compounds owing to their multifunctional and therapeutic effects, are extracted from SPW. Further, studies have shown that okara has potential prebiotic and therapeutic value in lowering the risk of noncommunicable diseases. Therefore, in this review, we focus on several extraction methods and pharmacotherapeutic effects of different SPWs. Their effective uses in functional foods, nutraceuticals, and health applications, as biocatalysts, and as value-added resources have been discussed.


Assuntos
Isoflavonas , Alimentos de Soja , Leite de Soja , Alimento Funcional , Leite de Soja/química , Soja/química
18.
J Appl Microbiol ; 133(1): 104-119, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34724304

RESUMO

The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.


Assuntos
Lactobacillales , Probióticos , Leite de Soja , Fermentação , Microbiologia de Alimentos
19.
Food Chem ; 373(Pt B): 131476, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731815

RESUMO

Soybean and its derivatives are rich sources of nutrients and bioactive compounds with antioxidant properties, however, the wastes with high nutritional value are discarded by the industry. This study aimed to evaluate centesimal composition, microbial safety and antioxidant activity of soybean processing wastes (okara and okara flour) and soymilk. High fiber, carbohydrate, energy and lipids contents were found. Antioxidant activity by spectrophotometric and Electron Paramagnetic Resonance assays showed values for soybean (72.4% and 83.5%), okara (9.6% and 7.7%), okara flour (30.7% and 11.5%) and soymilk (28.4% and 36.5%). The total phenolic content was an average of 3.33 mg of gallic acid equivalent.g-1. Infrared spectra revealed no significant changes in the absorption bands, guaranteeing non-alteration in the compounds composition after processing. Microbiological assays indicated that soybean derivatives are safe for consumption. These results reinforce that these wastes contain bioactive compounds of interest with great potential to generate high value added products.


Assuntos
Leite de Soja , Soja , Antioxidantes/análise , Farinha , Manipulação de Alimentos
20.
J Sci Food Agric ; 102(12): 5086-5097, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33792053

RESUMO

BACKGROUND: Plant-based milk alternatives are becoming more popular. However, many are low in nutrients, particularly protein. More attention is being given to plant protein isolates / concentrates as potential ingredients in high-protein milk alternative formulations. RESULTS: The effect of lupin protein source on the physicochemical, functional, and nutritional characteristics of model milk alternatives was investigated. Milk alternatives were produced with either blue lupin or white lupin protein isolate, formulated to contain similar levels of protein and fat as low-fat cow's milk. Nutritional composition and predicted glycemic properties were measured. The effect of homogenization pressure on the physicochemical properties and storage stability was also assessed, with cow's milk and soy milk alternative analyzed for comparison. Both blue and white lupin milk alternatives were high in protein, low in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs), and had a low predicted glycemic index. White lupin milk alternatives had smaller particle size as well as greater stability, with less creaming compared to blue lupin milk alternatives, although the former showed slightly higher sediment layers. Increasing homogenization pressure from 180 to 780 bar resulted in smaller particle size, lower separation rate, and greater foamability for both blue and white lupin milk alternatives. White lupin milk alternative homogenized at 780 bar was found to be the most stable product, with a similar separation rate to cow's milk. CONCLUSIONS: These results indicate that protein source and processing can influence functional properties significantly along with product stability, and this is an important consideration when formulating high-protein milk alternatives. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Lupinus , Hipersensibilidade a Leite , Substitutos do Leite , Leite de Soja , Animais , Bovinos , Emulsões/análise , Feminino , Leite/química , Substitutos do Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...