Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 464, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157973

RESUMO

BACKGROUND: Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. RESULTS: Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. CONCLUSIONS: The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


Assuntos
Alcaloides , Burkholderiales/enzimologia , Manganês , Oxirredutases , Pseudomonas/enzimologia , Burkholderiales/genética , Genoma Bacteriano , Leptothrix , Oxirredução , Oxirredutases/metabolismo , Pseudomonas/genética
2.
Arch Oral Biol ; 121: 104986, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33246246

RESUMO

OBJECTIVES: The aim of this study was to obtain greater insight into the environmental and genetic factors affecting the oral microbiome. DESIGN: To this end, we investigated the oral microbiome composition in Han and Zang populations living at different altitudes. The saliva microbiome in 115 individuals from Zang and Han populations living at different altitudes was analyzed using the 16 s rRNA gene sequencing method on the Illumina MiSeq platform. The dominant species in the oral microbiome were verified by quantitative real-time polymerase chain reaction (qPCR) analysis. RESULTS: The Han population, living at an altitude of 500 m, had higher microbiome diversity than the Zang population living at altitudes of 3000-4000 m. People living at 3000 m had a higher relative abundance of Leptothrix genus, but people living at 500 m had a higher relative abundance of Capnocytophaga genus according to Lefse difference analysis (P < 0.05). Compared to the Zang population, the Han population had higher relative abundances of Porphyromonas and Treponema genus organisms, especially Porphyromonas (P < 0.001). qPCR analysis confirmed that people living at high altitudes had the highest relative abundance of Porphyromonas gingivalis (P < 0.01). CONCLUSIONS: This study showed that both genetics and the environment had significant influences on the oral microbiome composition. The study proposed a meaningful research direction to explore the relationship between different ethnic and altitude groups and oral diseases, such as periodontal diseases.


Assuntos
Altitude , Microbiota , Boca/microbiologia , Capnocytophaga/genética , Capnocytophaga/isolamento & purificação , China , Humanos , Leptothrix/genética , Leptothrix/isolamento & purificação , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação , RNA Ribossômico 16S/genética , Saliva , Treponema/genética , Treponema/isolamento & purificação
3.
Ecotoxicol Environ Saf ; 206: 111189, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858328

RESUMO

In this study, a highly effective combined biochar and metal-immobilizing bacteria (Bacillus megaterium H3 and Serratia liquefaciens CL-1) (BHC) was characterized for its effects on solution Pb and Cd immobilization and edible tissue biomass and Pb and Cd accumulation in Chinese cabbages and radishes and the mechanisms involved in metal-polluted soils. In the metal-containing solution treated with BHC, the Pb and Cd concentrations decreased, while the pH and cell numbers of strains H3 and CL-1 increased over time. BHC significantly increased the edible tissue dry weight by 17-34% and reduced the edible tissue Pb (0.32-0.46 mg kg-1) and Cd (0.16 mg kg-1) contents of the vegetables by 24-45%. In the vegetable rhizosphere soils, BHC significantly decreased the acid-soluble Pb (1.81-2.21 mg kg-1) and Cd (0.40-0.48 mg kg-1) contents by 26-47% and increased the reducible Pb (18.2-18.8 mg kg-1) and Cd (0.38-0.39 mg kg-1) contents by 10-111%; while BHC also significantly increased the pH, urease activity by 115-169%, amorphous Fe oxides content by 12-19%, and relative abundance of gene copy numbers of Fe- and Mn-oxidising Leptothrix species by 28-73% compared with the controls. These results suggested that BHC decreased edible tissue metal uptake of the vegetables by increasing pH, urease activity, amorphous Fe oxides, and Leptothrix species abundance in polluted soil. These results may provide an effective and eco-friendly way for metal remediation and reducing metal uptake in vegetables by using combined biochar and metal-immobilizing bacteria in polluted soils.


Assuntos
Carvão Vegetal/química , Compostos Férricos/análise , Leptothrix/crescimento & desenvolvimento , Metais Pesados/análise , Serratia liquefaciens/crescimento & desenvolvimento , Poluentes do Solo/análise , Verduras/química , Cádmio/análise , Chumbo/análise , Leptothrix/genética , Leptothrix/metabolismo , Metais Pesados/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Verduras/metabolismo
4.
Environ Technol ; 41(2): 260-266, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29993337

RESUMO

Biogenic iron oxides (BioFeO) formed by Leptothrix sp. and Gallionella sp. were compared with chemically formed iron oxides (ChFeO) for their suitability to remove and recover phosphate from solutions. The ChFeO used for comparison included a commercial iron-based adsorbent (GEH) and chemically oxidized iron precipitates from groundwater. Despite contrary observations in earlier studies, the batch experiments showed that BioFeO do not have superior phosphate adsorption capacities compared to ChFeO. However, it seems multiple mechanisms are involved in phosphate removal by BioFeO which make their overall phosphate removal capacity higher than that of ChFeO. The overall phosphate removal capacity of Leptothrix sp. deposits was 26.3 mg P/g d.s., which could be attributed to multiple mechanisms. This included adsorption on the solid phase (6.4 mg P/g d.s.) as well as removal via precipitation and/or adsorption onto suspended complexes released from the BioFeO of Leptothrix sp. (19.6 mg P/g d.s.). Only a very small part of phosphorus (0.3 mg P/g d.s.) was retained in the Leptothrix sp. sheats during bacterial growth. Deposits of Gallionella sp. had an overall phosphate removal capacity of 39.6 mg P/g d.s. Significant amounts of phosphate were apparently incorporated into the Gallionella sp. stalks during their growth (31.0 mg P/g d.s.) and only one-fifth of the total phosphate removal can be related to adsorption (8.6 mg P/g d.s.). Their overall ability to immobilize large quantities of phosphate from solutions indicates that BioFeO could play an important role in environmental and engineered systems for removal of contaminants.


Assuntos
Leptothrix , Fosfatos , Adsorção , Compostos Férricos , Concentração de Íons de Hidrogênio , Ferro , Óxidos
5.
ACS Nano ; 14(5): 5288-5297, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-31804801

RESUMO

Leptothrix is a species of Fe/Mn-oxidizing bacteria known to form long filaments composed of chains of cells that eventually produce a rigid tube surrounding the filament. Prior to the formation of this brittle microtube, Leptothrix cells secrete hair-like structures from the cell surface, called nanofibrils, which develop into a soft sheath that surrounds the filament. To clarify the role of nanofibrils in filament formation in L. cholodnii SP-6, we analyze the behavior of individual cells and multicellular filaments in high-aspect ratio microfluidic chambers using time-lapse and intermittent in situ fluorescent staining of nanofibrils, complemented with atmospheric scanning electron microscopy. We show that in SP-6 nanofibrils are important for attachment and their distribution on young filaments post-attachment is correlated to the directionality of filament elongation. Elongating filaments demonstrate a surprising ability to adapt to their physical environment by changing direction when they encounter obstacles: they bend or reverse direction depending on the angle of the collision. We show that the forces involved in the collision can be used to predict the behavior of filament. Finally, we show that as filaments grow in length, the older region becomes confined by the sheath, while the newly secreted nanofibrils at the leading edge of the filament form a loose, divergent, structure from which cells periodically escape.


Assuntos
Leptothrix , Membrana Celular , Citoesqueleto , Microscopia Eletrônica de Varredura
6.
Sci Rep ; 9(1): 17070, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745164

RESUMO

Red mineral pigment use is recognized as a fundamental component of a series of traits associated with human evolutionary development, social interaction, and behavioral complexity. Iron-enriched mineral deposits have been collected and prepared as pigment for use in rock art, personal adornment, and mortuary practices for millennia, yet little is known about early developments in mineral processing techniques in North America. Microanalysis of rock art pigments from the North American Pacific Northwest reveals a sophisticated use of iron oxide produced by the biomineralizing bacterium Leptothrix ochracea; a keystone species of chemolithotroph recognized in recent advances in the development of thermostable, colorfast biomaterial pigments. Here we show evidence for human engagement with this bacterium, including nanostructural and magnetic properties evident of thermal enhancement, indicating that controlled use of pyrotechnology was a key feature of how biogenic iron oxides were prepared into paint. Our results demonstrate that hunter-gatherers in this area of study prepared pigments by harvesting aquatic microbial iron mats dominated by iron-oxidizing bacteria, which were subsequently heated in large open hearths at a controlled range of 750 °C to 850 °C. This technical gesture was performed to enhance color properties, and increase colorfastness and resistance to degradation. This skilled production of highly thermostable and long-lasting rock art paint represents a specialized technological innovation. Our results contribute to a growing body of knowledge on historical-ecological resource use practices in the Pacific Northwest during the Late Holocene.Figshare link to figures: https://figshare.com/s/9392a0081632c20e9484.


Assuntos
Corantes/química , Compostos Férricos/análise , Ferro/análise , Leptothrix/metabolismo , Paleontologia/métodos , Arte , Humanos , América do Norte , Oxirredução , Pintura/microbiologia
7.
Sci Rep ; 9(1): 4018, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858553

RESUMO

Differentiating biotic and abiotic processes in nature remains a persistent challenge, specifically in evaluating microbial contributions to geochemical processes through time. Building on previous work reporting that biologically-influenced systems exhibit stronger long-range correlation than abiotic systems, this study evaluated the relationship between long-range correlation of redox potential and oxidation rates of circumneutral microaerophilic bacterial Fe(II) oxidation using a series of batch microcosms with bacteriogenic iron oxides (BIOS). Initial detrended fluctuation analysis (DFA) scaling exponents of the abiotic microcosms were lower (ca. 1.20) than those of the biotic microcosms (ca. 1.80). As Fe(II) oxidation proceeded, correlation strength decayed as a logistic function of elapsed reaction time, exhibiting direct dependence on the free energy of reaction. Correlation strength for all microcosms decayed sharply from strong correlation to uncorrelated fluctuations. The decay rates are greater for abiotic microcosms than biotic microcosms. The ΔGm relaxation edges for biotic microcosms were lower, indicating less remaining free energy for Fe(II) oxidation than abiotic systems, with the implication that biologically-catalyzed reactions are likely more energetically efficient than abiotic reactions. These results strengthen the case for employing novel DFA techniques to distinguish in situ microbial metabolic activity from abiotic processes, as well as to potentially differentiate metabolisms among different chemoautotrophs.


Assuntos
Crescimento Quimioautotrófico , Compostos Ferrosos/metabolismo , Água Doce/microbiologia , Gallionellaceae/metabolismo , Leptothrix/metabolismo , Rios/microbiologia , Microbiota , Modelos Biológicos , Ontário , Oxirredução
8.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453262

RESUMO

Leptothrix ochracea is known for producing large volumes of iron oxyhydroxide sheaths that alter wetland biogeochemistry. For over a century, these delicate structures have fascinated microbiologists and geoscientists. Because L. ochracea still resists long-term in vitro culture, the debate regarding its metabolic classification dates back to 1885. We developed a novel culturing technique for L. ochracea using in situ natural waters and coupled this with single-cell genomics and nanoscale secondary-ion mass spectrophotometry (nanoSIMS) to probe L. ochracea's physiology. In microslide cultures L. ochracea doubled every 5.7 h and had an absolute growth requirement for ferrous iron, the genomic capacity for iron oxidation, and a branched electron transport chain with cytochromes putatively involved in lithotrophic iron oxidation. Additionally, its genome encoded several electron transport chain proteins, including a molybdopterin alternative complex III (ACIII), a cytochrome bd oxidase reductase, and several terminal oxidase genes. L. ochracea contained two key autotrophic proteins in the Calvin-Benson-Bassham cycle, a form II ribulose bisphosphate carboxylase, and a phosphoribulose kinase. L. ochracea also assimilated bicarbonate, although calculations suggest that bicarbonate assimilation is a small fraction of its total carbon assimilation. Finally, L. ochracea's fundamental physiology is a hybrid of those of the chemolithotrophic Gallionella-type iron-oxidizing bacteria and the sheathed, heterotrophic filamentous metal-oxidizing bacteria of the Leptothrix-Sphaerotilus genera. This allows L. ochracea to inhabit a unique niche within the neutrophilic iron seeps.IMPORTANCE Leptothrix ochracea was one of three groups of organisms that Sergei Winogradsky used in the 1880s to develop his hypothesis on chemolithotrophy. L. ochracea continues to resist cultivation and appears to have an absolute requirement for organic-rich waters, suggesting that its true physiology remains unknown. Further, L. ochracea is an ecological engineer; a few L. ochracea cells can generate prodigious volumes of iron oxyhydroxides, changing the ecosystem's geochemistry and ecology. Therefore, to determine L. ochracea's basic physiology, we employed new single-cell techniques to demonstrate that L. ochracea oxidizes iron to generate energy and, despite having predicted genes for autotrophic growth, assimilates a fraction of the total CO2 that autotrophs do. Although not a true chemolithoautotroph, L. ochracea's physiological strategy allows it to be flexible and to extensively colonize iron-rich wetlands.


Assuntos
Técnicas Bacteriológicas/métodos , Ferro/metabolismo , Leptothrix/fisiologia , Compostos Férricos/metabolismo , Oxirredução
9.
Artigo em Inglês | MEDLINE | ID: mdl-30596323

RESUMO

Treatment efficiency and electricity generation were evaluated using a solid plain-graphite plate microbial fuel cell (MFC) anoxic/oxic (A/O) process that treated pharmaceutical sewage using different hydraulic retention times (HRT). Short HRTs increased the volumetric organic loading rate, thereby reducing the MFC performance due to rapid depletion of the substrate (carbon/nitrogen source). The COD removal efficiency decreased from 96.28% at a HRT of 8 h to 90.67% at a HRT of 5 h. The removal efficiency of total nitrogen was reduced from 74.16% at a HRT of 8 h to 53.42% at a HRT of 5 h. A shorter HRT decreased the efficiency in treatment of the pharmaceutical products (PPs), which included acetaminophen, ibuprofen and sulfamethoxazole in an aerobic reactor because these antibiotic compounds inhibited the microbial activity of the aerobic activated sludge in the MFC A/O system. The average power density and coulombic efficiency values were 162.74 mW m-2 and 7.09% at a HRT of 8 h and 29.12 mW m-2 and 2.23% at a HRT of 5 h, respectively. The dominant bacterial species including Hydrogenophaga spp., Rubrivivax spp. and Leptothrix spp., which seem to be involved in PP biodegradation; these were identified in the MFC A/O system under all HRT conditions for the first time using next generation sequencing. Bacterial nanowires were involved in accelerating the transfer of electrons and served as mediators in the SPGRP biofilm. In conclusion, a SPGRP MFC A/O system at a HRT of 8 h gave better removal of COD, T-N and PPs, as well as generated more electricity.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Resíduos Industriais , Esgotos/química , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Carbono/química , Comamonadaceae/isolamento & purificação , Comamonadaceae/metabolismo , Indústria Farmacêutica , Grafite/química , Leptothrix/isolamento & purificação , Leptothrix/metabolismo , Nanofios/química , Nitrogênio/química
10.
Sci Rep ; 7(1): 6498, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747653

RESUMO

Leptothrix species produce microtubular organic-inorganic materials that encase the bacterial cells. The skeleton of an immature sheath, consisting of organic exopolymer fibrils of bacterial origin, is formed first, then the sheath becomes encrusted with inorganic material. Functional carboxyl groups of polysaccharides in these fibrils are considered to attract and bind metal cations, including Fe(III) and Fe(III)-mineral phases onto the fibrils, but the detailed mechanism remains elusive. Here we show that NH2 of the amino-sugar-enriched exopolymer fibrils is involved in interactions with abiotically generated Fe(III) minerals. NH2-specific staining of L. cholodnii OUMS1 detected a terminal NH2 on its sheath skeleton. Masking NH2 with specific reagents abrogated deposition of Fe(III) minerals onto fibrils. Fe(III) minerals were adsorbed on chitosan and NH2-coated polystyrene beads but not on cellulose and beads coated with an acetamide group. X-ray photoelectron spectroscopy at the N1s edge revealed that the terminal NH2 of OUMS1 sheaths, chitosan and NH2-coated beads binds to Fe(III)-mineral phases, indicating interaction between the Fe(III) minerals and terminal NH2. Thus, the terminal NH2 in the exopolymer fibrils seems critical for Fe encrustation of Leptothrix sheaths. These insights should inform artificial synthesis of highly reactive NH2-rich polymers for use as absorbents, catalysts and so on.


Assuntos
Amino Açúcares/metabolismo , Estruturas Bacterianas/metabolismo , Compostos Férricos/metabolismo , Leptothrix/metabolismo , Substâncias Macromoleculares/metabolismo , Polissacarídeos Bacterianos/metabolismo
11.
Water Res ; 122: 139-147, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599159

RESUMO

Leptothrix species, aquatic Fe-oxidizing bacteria, excrete nano-scaled exopolymer fibrils. Once excreted, the fibrils weave together and coalesce to form extracellular, microtubular, immature sheaths encasing catenulate cells of Leptothrix. The immature sheaths, composed of aggregated nanofibrils with a homogeneous-looking matrix, attract and bind aqueous-phase inorganics, especially Fe, P, and Si, to form seemingly solid, mature sheaths of a hybrid organic-inorganic nature. To verify our assumption that the organic skeleton of the sheaths might sorb a broad range of other metallic and nonmetallic elements, we examined the sorption potential of chemically and enzymatically prepared protein-free organic sheath remnants for 47 available elements. The sheath remnants were found by XRF to sorb each of the 47 elements, although their sorption degree varied among the elements: >35% atomic percentages for Ti, Y, Zr, Ru, Rh, Ag, and Au. Electron microscopy, energy dispersive x-ray spectroscopy, electron and x-ray diffractions, and Fourier transform infrared spectroscopy analyses of sheath remnants that had sorbed Ag, Cu, and Pt revealed that (i) the sheath remnants comprised a 5-10 nm thick aggregation of fibrils, (ii) the test elements were distributed almost homogeneously throughout the fibrillar aggregate, (iii) the nanofibril matrix sorbing the elements was nearly amorphous, and (iv) these elements plausibly were bound to the matrix by ionic binding, especially via OH. The present results show that the constitutive protein-free exopolymer nanofibrils of the sheaths can contribute to creating novel filtering materials for recovering and recycling useful and/or hazardous elements from the environment.


Assuntos
Leptothrix , Metais , Ferro , Espectrometria por Raios X , Difração de Raios X
12.
Appl Biochem Biotechnol ; 181(3): 867-883, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27696336

RESUMO

The biogenic iron oxide/hydroxide materials possess useful combination of physicochemical properties and are considered for application in various areas. Their production does not require special investments because these compounds are formed during cultivation of neurophilic iron bacteria. Bacteria from genus Leptothrix develop intensively in the Sphaerotilus-Leptothrix group of bacteria isolation medium and feeding media of Fedorov and Lieske. These media are different in their composition which determined the present study as an attempt to clear up the reasons that define the differences in the composition of the laboratory-obtained biomasses and the natural biomass finds. FTIRS, Mössbauer spectroscopy, and XRD were used in the research. Comparative analysis showed that the biomass and control samples contain iron compounds (α-FeOOH, γ-FeOOH, ß-FeOOH, γ-Fe2O3) in different ratios. The biomass samples were enriched in oxyhydroxides of higher dispersion. Organic residuals of bacterial origin, SO4, CO3, and PO4 groups were registered in the biogenic materials.


Assuntos
Biomassa , Meios de Cultura/química , Compostos de Ferro/química , Ferro/química , Leptothrix/crescimento & desenvolvimento , Minerais/química
13.
Mater Sci Eng C Mater Biol Appl ; 71: 1342-1346, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987689

RESUMO

Smart materials of biological origin are attracting a lot of attention nowadays, especially as catalysts, carriers or adsorbents. Among them, magnetically modified biomaterials are especially important due to their response to external magnetic field. This report demonstrates that naturally occurring micrometer sized, high aspect ratio material (native and autoclaved Leptothrix sp. sheaths) efficiently bind synthetically prepared magnetite and maghemite nanoparticles and their aggregates. Magnetic modification of Leptothrix sheaths enables to prepare a promising material for advanced biotechnology and environmental technology applications. The prepared magnetically responsive sheaths were tested as inexpensive adsorbent for crystal violet removal from aqueous solutions. The observed maximum adsorption capacity was 243.1mg of dye per 1g of adsorbent.


Assuntos
Violeta Genciana/química , Leptothrix/química , Nanopartículas de Magnetita/química
14.
J Biol Phys ; 42(4): 587-600, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27572254

RESUMO

A detailed investigation of nanostructured iron oxides/(oxy)hydroxides gathered after cultivation of bacteria from the genus Leptothrix as iron (II) oxidizers is presented. A specific type of medium is selected for the cultivation of the bacteria. Results for sediment powder and bio-film on glass substrate samples from the same media are discussed. XRD, Raman spectroscopy, SEM, and TEM images and PPMS measurements are used to prove the exact composition of the biogenic products and to interpret the oxidation process. Analysis of the data collected shows that around 80 % of the iron (II) from the growth medium has been transformed into iron (III) in the form of different (oxy)hydroxides, with the rest found to be in a mixed 2,5 valence in magnetite. Our investigation shows that the bio-film sample has a phase content different from that of the powdered biomass and that lepidocrocite (γ-FeOOH) is the predominant and the initial biogenic phase in both samples. Magnetite nanoparticles are a secondary product in the bio-film, part of which possesses a defective quasi-maghemite surface layer. In the powdered biomass, the oxidation steps are not fully completed. The initial products are non-stoichiometric and due to the mixed ferric and ferrous ions present, they develop into: (i) lepidocrocite (γ-FeOOH) as a basic sediment, (ii) magnetite (Fe3O4) and (iii) goethite (α-FeOOH) in small quantities. The average size of all iron-bearing particles is found to be below 30 nm. The magnetic measurements performed show a superparamagnetic behavior of the material at room temperature.


Assuntos
Compostos Férricos/química , Compostos Férricos/metabolismo , Leptothrix/crescimento & desenvolvimento , Leptothrix/metabolismo , Nanoestruturas , Oxirredução
15.
Biochemistry ; 55(29): 4055-64, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27362840

RESUMO

A stereochemical analysis has been carried out on two vinylpyruvate hydratases (VPH), which convert 2-hydroxy-2,4-pentadienoate to 2-keto-4S-hydroxypentanoate in meta-fission pathways. Bacterial strains with this pathway can use aromatic compounds as sole sources of energy and carbon. The analysis was carried out using the 5-methyl and 5-chloro derivatives of 2-hydroxy-2,4-pentadienoate with the enzymes from Pseudomonas putida mt-2 (Pp) and Leptothrix cholodnii SP-6 (Lc). In both organisms, VPH is in a complex with the preceding enzyme in the pathway, 4-oxalocrotonate decarboxylase (4-OD). In D2O, a deuteron is incorporated stereospecifically at the C-3 and C-5 positions of product by both Pp and Lc enzymes. Accordingly, the complexes generate (3S,5S)-3,5-[di-D]-2-keto-4S-hydroxyhexanoate and (3S,5R)-3,5-[di-D]-2-keto-4R-hydroxy-5-chloropentanoate (4R and 5R due to a priority numbering change). The substitution at C-5 (CH3 or Cl) or the source of the enzyme (Pp or Lc) does not change the stereochemical outcome. One mechanism that can account for the results is the ketonization of the 5-substituted dienol to the α,ß-unsaturated ketone (placing a deuteron at C-5 in D2O), followed by the conjugate addition of water (placing a deuteron at C-3). The stereochemical outcome for VPH (from Pp and Lc) is the same as that reported for a related enzyme, 2-oxo-hept-4-ene-1,7-dioate hydratase, from Escherichia coli C. The combined observations suggest similar mechanisms for these three enzymes that could possibly be common to this group of enzymes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Carboxiliases/química , Carboxiliases/genética , Carboxiliases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Hidroliases/genética , Leptothrix/enzimologia , Leptothrix/genética , Ressonância Magnética Nuclear Biomolecular , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
16.
Environ Sci Pollut Res Int ; 23(9): 9019-35, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825521

RESUMO

Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of ß-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.


Assuntos
Azoarcus/fisiologia , Gasolina/análise , Água Subterrânea/química , Leptothrix/fisiologia , Aço Inoxidável/química , Poluentes Químicos da Água/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Biofilmes , Carbono-Carbono Liases , Gasolina/microbiologia , Hidrocarbonetos/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Filogenia
18.
J Biol Phys ; 41(4): 367-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25724989

RESUMO

Bacterial biomass collected from sheath-forming bacteria of the genera Sphaerotilus and Leptothrix was collected from a high-mountain natural stream water source. The elemental constitution and oxide phases of the products after selective cultivation of the bacteria on two different elective media using neutron activation analysis (NAA), electron microscopy (SEM, TEM), and X-ray diffraction (XRD) were studied. A high enrichment level of iron was revealed by the NAA technique in cultivated isolates as compared to the reference sample from nature. Three types of iron oxide compounds were established after cultivation in Adler's medium: lepidocrocite (γ-FeOOH), magnetite (Fe3O4), and goethite (α-FeOOH). The cultivation in the Isolation medium yielded a single phase, that of goethite, excluding one sample with a distinguishable amount of lepidocrocite. XRD and EM investigations show that the biogenic oxides are nanosized. Our study exemplifies the possibilities of the biotechnology approach for obtaining, under artificial conditions, large quantities of iron-containing by-products that could be of further used in appropriate nano- and biotechnologies.


Assuntos
Biomassa , Ferro/química , Laboratórios , Leptothrix/química , Leptothrix/crescimento & desenvolvimento , Sphaerotilus/química , Sphaerotilus/crescimento & desenvolvimento , Técnicas de Cultura
19.
Microbiology (Reading) ; 160(Pt 11): 2396-2405, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25149187

RESUMO

Understanding the molecular underpinnings of manganese oxidation in Leptothrix discophora SS1 has been hampered by the lack of a genetic system. In this report, we describe the development of a genetic system for L. discophora SS1. The antibiotic sensitivity was characterized, and a procedure for transformation with exogenous DNA via conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2×10(-1) and a typical transfer frequency of the order of 1×10(-3) transconjugants per donor. Genetic manipulation of L. discophora SS1 was demonstrated by disrupting pyrF via chromosomal integration with a plasmid containing a R6Kγ origin of replication through homologous recombination. This resulted in resistance to 5-fluoroorotidine, which was abolished by complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS. This system is expected to be amenable to a systematic genetic analysis of L. discophora SS1, including those genes responsible for manganese oxidation.


Assuntos
Técnicas Genéticas , Leptothrix/genética , Manganês/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Conjugação Genética , Leptothrix/efeitos dos fármacos , Leptothrix/metabolismo , Oxirredução , Recombinação Genética , Origem de Replicação
20.
FEMS Microbiol Ecol ; 90(2): 454-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25098830

RESUMO

Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies.


Assuntos
Água Doce/microbiologia , Ferro/metabolismo , Leptothrix/isolamento & purificação , Microbiologia do Solo , Sphaerotilus/isolamento & purificação , Áreas Alagadas , Argentina , DNA Bacteriano/genética , Leptothrix/classificação , Leptothrix/genética , Leptothrix/metabolismo , Manganês/metabolismo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Sphaerotilus/classificação , Sphaerotilus/genética , Sphaerotilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...