RESUMO
Background: Tumor-infiltrating lymphocytes (TILs) have demonstrated potential as prognostic biomarkers across various cancer types. However, their prognostic implications in non-small cell lung cancer (NSCLC) remain ambiguous. Methods: An exhaustive electronic search was executed across the Pubmed, EMBASE, Web of Science, and Cochrane Library databases to locate relevant studies published up until December 19, 2023. Studies were eligible if they assessed the association between TILs and overall survival (OS) and disease-free survival (DFS) in NSCLC patients. The OS and DFS were subsequently extracted for analysis. The prognostic significance of TILs was evaluated by calculating the Pooled Hazard Ratios (HRs) and their corresponding 95% Confidence Intervals (CIs). Results: The meta-analysis incorporated 60 studies, which collectively included 15829 NSCLC patients. The collective analysis indicated that NSCLC patients exhibiting TILs infiltration demonstrated a significantly improved OS(HR: 0.67; 95%CI: 0.55-0.81). Subgroup analyses, based on TIL subtypes (CD8+, CD3+ and CD4+), consistently revealed a favorable prognostic impact on OS. However, it was observed that FOXP3+ was correlated with a poor OS (HR: 1.35; 95% CI: 0.87-2.11). Conclusion: This comprehensive systematic review and meta-analysis substantiate the prognostic significance of TILs in patients diagnosed with NSCLC. Notably, elevated TILs infiltration correlates with a favorable prognosis, particularly among CD8+, CD3+ and CD4+ subtypes. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023468089 PROSPERO, identifier CRD42023468089.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores TumoraisRESUMO
Tertiary Lymphoid Structures (TLS) are lymphoid structures commonly associated with improved survival of cancer patients and response to immunotherapies. However, conflicting reports underscore the need to consider TLS heterogeneity and multiple features such as TLS size, composition, and maturation status, when assessing their functional impact. With the aim of gaining insights into TLS biology and evaluating the prognostic impact of TLS maturity in Non-Small Cell Lung Carcinoma (NSCLC), we developed a multiplex immunofluorescent (mIF) panel including T cell (CD3, CD8), B cell (CD20), Follicular Dendritic cell (FDC) (CD21, CD23) and mature dendritic cell (DC-LAMP) markers. We deployed this panel across a cohort of primary tumor resections from NSCLC patients (N=406) and established a mIF image analysis workstream to specifically detect TLS structures and evaluate the density of each cell phenotype. We assessed the prognostic significance of TLS size, number, and composition, to develop a TLS scoring system representative of TLS biology within a tumor. TLS relative area, (total TLS area divided by the total tumor area), was the most prognostic TLS feature (C-index: 0.54, p = 0.04). CD21 positivity was a marker driving the favorable prognostic impact, where CD21+ CD23- B cells (C-index: 0.57, p = 0.04) and CD21+ CD23- FDC (C-index: 0.58, p = 0.01) were the only prognostic cell phenotypes in TLS. Combining the three most robust prognostic TLS features: TLS relative area, the density of B cells, and FDC CD21+ CD23- we generated a TLS scoring system that demonstrated strong prognostic value in NSCLC when considering the effect of age, sex, histology, and smoking status. This TLS Score also demonstrated significant association with Immunoscore, EGFR mutational status and gene expression-based B-cell and TLS signature scores. It was not correlated with PD-L1 status in tumor cells or immune cells. In conclusion, we generated a prognostic TLS Score representative of the TLS heterogeneity and maturity undergoing within NSCLC tissues. This score could be used as a tool to explore how TLS presence and maturity impact the organization of the tumor microenvironment and support the discovery of spatial biomarker surrogates of TLS maturity, that could be used in the clinic.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Prognóstico , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Adulto , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Idoso de 80 Anos ou maisRESUMO
Background: Intrahepatic cholangiocarcinoma (ICC) is a disease with poor prognosis and limited therapeutic options. We investigated the tumor immune microenvironment (TIME) to identify predictors of disease outcome and to explore targets for therapeutic modulation. Methods: Liver tissue samples were collected during 2008-2019 from patients (n = 139) diagnosed with ICC who underwent curative intent surgery without neoadjuvant chemotherapy. Samples from the discovery cohort (n = 86) were immunohistochemically analyzed on tissue microarrays (TMAs) for the expression of CD68, CD3, CD4, CD8, Foxp3, PD-L1, STAT1, and p-STAT1 in tumor core and stroma areas. Results were digitally analyzed using QuPath software and correlated with clinicopathological characteristics. For validation of TIME-related biomarkers, we performed multiplex imaging mass cytometry (IMC) in a validation cohort (n = 53). Results: CD68+ cells were the predominant immune cell type in the TIME of ICC. CD4+high T cell density correlated with better overall survival (OS). Prediction modeling together with validation cohort confirmed relevance of CD4+ cells, PD-L1 expression by immune cells in the stroma and N-stage on overall disease outcome. In turn, IMC analyses revealed that silent CD3+CD4+ clusters inversely impacted survival. Among annotated immune cell clusters, PD-L1 was most relevantly expressed by CD4+FoxP3+ cells. A subset of tumors with high density of immune cells ("hot" cluster) correlated with PD-L1 expression and could identify a group of candidates for immune checkpoint inhibition (ICI). Ultimately, higher levels of STAT1 expression were associated with higher lymphocyte infiltration and PD-L1 expression. Conclusions: These results highlight the importance of CD4+ T cells in immune response against ICC. Secondly, a subset of tumors with "hot" TIME represents potential candidates for ICI, while stimulation of STAT1 pathway could be a potential target to turn "cold" into "hot" TIME in ICC.
The tumor immune microenvironment (TIME) plays a critical role in the immune response In many cancers, including intrahepatic cholangiocarcinoma (ICC). Molecular subtyping of the ICC microenvironment already revealed inter-tumoral heterogeneity with variant profiles of immune cell infiltrates. A recent study created an in-depth immune cell atlas of the TIME in biliary tract cancers and could demonstrate the relevance of specific immune cell subpopulations on patient outcome. We are able to provide a distinctive characterization of TIME, separating tumor epithelial- and stroma areas, in a large and representative ICC cohort using digitalized image analysis on tissue microarrays (TMA) as well as multiplex imaging mass cytometry (IMC). The study was designed for identification of immune cell prognosticators allocating institutional ICC patients into a discovery (200815) and a validation (201019) cohort. Immune cell subpopulations were correlated with clinicopathological characteristics and patient outcome. Our results highlight: i. The important role of CD4+ T cell infiltration in ICC patients; ii. ICC tumors with high density of immune cells associated with PD-L1 expression identifies a subset of patients with variant tumor biology; iii. Stimulation of STAT1 pathway may be a relevant target to turn "cold" into "hot" tumors.
Assuntos
Antígeno B7-H1 , Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Colangiocarcinoma , Microambiente Tumoral , Humanos , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Microambiente Tumoral/imunologia , Masculino , Feminino , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Pessoa de Meia-Idade , Prognóstico , Idoso , Biomarcadores Tumorais/metabolismo , Antígeno B7-H1/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígenos CD/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Molécula CD68RESUMO
BACKGROUND: Locally advanced oral cavity squamous cell carcinoma (OCSCC) presents a significant clinical challenge despite being partially responsive to standard treatment modalities. This study investigates the prognostic implications of programmed death-ligand 1 (PD-L1) expression in these tumors, focusing on its association with treatment outcomes and the immune microenvironment. METHODS: We assessed tumor-infiltrating lymphocytes (TILs) in 132 patients with OCSCC to evaluate their impact on survival. Multiplex immunohistochemistry staining for CD3, CD68, CD11c, PD-L1, and P40 was used to explore correlations with clinical outcomes in patients with early-stage (n=22) and locally advanced (n=36) OCSCC. These initial findings were validated through differential gene expression analysis, gene set enrichment, and immune cell deconvolution in a The Cancer Genome Atlas cohort of 163 locally advanced OCSCC tumors. Additionally, single-cell RNA sequencing (scRNA-seq) on a smaller cohort (n=10) further characterized the PD-L1hi or PD-L1lo cancer cells in these tumors. RESULTS: Elevated PD-L1 expression was associated with poor outcomes in patients with locally advanced OCSCC undergoing standard adjuvant therapy, irrespective of "hot" or "cold" classification based on TILs assessment. PD-L1hi tumors exhibited an active immune response phenotype, enriched with M1 macrophages, CD8+ T cells and T regulatory cells in the tumor microenvironment. Notably, the negative impact of PD-L1 expression on outcomes was primarily attributed to its expression by cancer cells, rather than immune cells. Furthermore, scRNA-seq revealed that immune interactions were not essential for PD-L1 upregulation in cancer cells, instead, complex regulatory networks were involved. Additionally, PD-L1lo locally advanced tumors exhibited more complex pathway enrichment and diverse T-cell populations compared with those in the early-stage. CONCLUSION: Our findings underscore the prognostic significance of PD-L1 expression in locally advanced OCSCC, and unveil the complex interplay between PD-L1 expression, immune responses, and molecular pathways in the tumor microenvironment. This study provides insights that may inform future therapeutic strategies, including the possibility of tailored immunotherapeutic approaches for patients with PD-L1hi locally advanced OCSCC.
Assuntos
Antígeno B7-H1 , Linfócitos do Interstício Tumoral , Neoplasias Bucais , Microambiente Tumoral , Humanos , Antígeno B7-H1/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/imunologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Idoso , Prognóstico , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Adulto , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidadeRESUMO
BACKGROUND: With the rapid advancement of optical image diagnostic technology, researchers are delving into the potential applications in the field of cancer diagnosis and treatment. The exact link between the SEZ6L2 gene and cancer immune infiltration remains elusive. MATERIALS AND METHODS: This study aims to investigate the relationship between SEZ6L2 gene overexpression and cancer immune infiltration using optical image diagnostic technology, thereby presenting novel insights for enhancing cancer diagnosis and treatment strategies. Tissue samples obtained from cancer patients were meticulously analyzed to quantitatively assess the expression of the SEZ6L2 gene through light image diagnostic technology. Additionally, immunohistochemical techniques were employed to assess the nature and quantity of immune infiltrating cells within the cancerous tissues. RESULTS: The enrichment pathways were found to include complement activation, circulating immunoglobulin mediated humoral immune response, protein activation cascade, immunoglobulin complex, and immunoglobulin. In addition, the expression of SEZ6L2 is closely related to the infiltration level of tumor infiltrating immune cells (TIICs), and there is a potential relationship between the expression of SEZ6L2 and different marker genes of TIIC. CONCLUSION: Increased SEZ6L2 mRNA expression in breast invasive carcinoma was significantly associated with negative prognosis and immune invasion. SEZ6L2 may be a novel prognostic biomarker and a potential immunotherapeutic target in BRCA.
Assuntos
Biomarcadores Tumorais , Humanos , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias/imunologia , Neoplasias/genética , Pessoa de Meia-Idade , Masculino , Imagem Óptica/métodos , Linfócitos do Interstício Tumoral/imunologia , Regulação Neoplásica da Expressão GênicaRESUMO
Lung adenocarcinoma (LUAD), characterized by a low 5-year survival rate, is the most common and aggressive type of lung cancer. Recent studies have shown that tertiary lymphoid structures (TLS), which resemble lymphoid structures, are closely linked to the immune response and tumor prognosis. The functions of the tertiary lymphoid structure-related genes (TLS-RGs) in the tumor microenvironment (TME) are poorly understood. Based on publicly available data, we conducted a comprehensive study of the function of TLS-RGs in LUAD. Initially, we categorized LUAD patients into two TLS and two gene subtypes. Subsequently, risk scores were calculated, and prognostic models were constructed using seven genes (CIITA, FCRL2, GBP1, BIRC3, SCGB1A1, CLDN18, and S100P). To enhance the clinical application of TLS scores, we have developed a precise nomogram. Furthermore, drug sensitivity, tumor mutational burden (TMB), and the cancer stem cell (CSC) index were found to be substantially correlated with the TLS scores. Single-cell sequencing results reflected the distribution of TLS-RGs in cells. Finally, we took the intersection of overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) prognosis-related genes and then further validated the expression of these genes by qRT-PCR. Our in-depth investigation of TLS-RGs in LUAD revealed their possible contributions to the clinicopathological features, prognosis, and characteristics of TME. These findings underscore the potential of TLS-RGs as prognostic biomarkers and therapeutic targets for LUAD, thereby paving the way for personalized treatment strategies.
Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Prognóstico , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Feminino , Masculino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Nomogramas , Idoso , MultiômicaAssuntos
Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Feminino , Prognóstico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Background: Ovarian cancer (OC) is a global malignancy characterized by metastatic invasiveness and recurrence. Long non-coding RNAs (lncRNAs) and Telomeres are closely connected with several cancers, but their potential as practical prognostic markers in OC is less well-defined. Methods: Relevant mRNA and clinical data for OC were sourced from The Cancer Genome Atlas (TCGA) database. The telomere-related lncRNAs (TRLs) prognostic model was established by univariate/LASSO/multivariate regression analyses. The effectiveness of the TRLs model was evaluated and measured via the nomogram. Additionally, immune infiltration, tumor mutational load (TMB), and drug sensitivity were evaluated. We validated the expression levels of prognostic genes. Subsequently, PTPRD-AS1 knockdown was utilized to perform the CCK8 assay, colony formation assay, transwell assay, and wound healing assay of CAOV3 cells. Results: A six-TRLs prognostic model (PTPRD-AS1, SPAG5-AS1, CHRM3-AS2, AC074286.1, FAM27E3, and AC018647.3) was established, which can effectively predict patient survival rates and was successfully validated using external datasets. According to the nomogram, the model could effectively predict prognosis. Furthermore, we detected the levels of regulatory T cells and M2 macrophages were comparatively higher in the high-risk TRLs group, but the levels of activated CD8 T cells and monocytes were the opposite. Finally, the low-risk group was more sensitive to anti-cancer drugs. The mRNA levels of PTPRD-AS1, SPAG5-AS1, FAM27E3, and AC018647.3 were significantly over-expressed in OC cell lines (SKOV3, A2780, CAOV3) in comparison to normal IOSE-80 cells. AC074286.1 were over-expressed in A2780 and CAOV3 cells and CHRM3-AS2 only in A2780 cells. PTPRD-AS1 knockdown decreased the proliferation, cloning, and migration of CAOV3 cells. Conclusion: Our study identified potential biomarkers for the six-TRLs model related to the prognosis of OC.
Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas , RNA Longo não Codificante , Telômero , Humanos , RNA Longo não Codificante/genética , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/mortalidade , Prognóstico , Biomarcadores Tumorais/genética , Telômero/genética , Linhagem Celular Tumoral , Nomogramas , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismoRESUMO
Tumor draining lymph nodes (TDLN) represent a key component of the tumor-immunity cycle. There are few studies describing how TDLNs impact lymphocyte infiltration into tumors. Here we directly compare tumor-free TDLNs draining "cold" and "hot" human triple negative breast cancers (TDLNCold and TDLNHot). Using machine-learning-based self-correlation analysis of immune gene expression, we find unbalanced intranodal regulations within TDLNCold. Two gene pairs (TBX21/GATA3-CXCR1) with opposite correlations suggest preferential priming of T helper 2 (Th2) cells by mature dendritic cells (DC) within TDLNCold. This is validated by multiplex immunofluorescent staining, identifying more mature-DC-Th2 spatial clusters within TDLNCold versus TDLNHot. Associated with this Th2 priming preference, more IL4 producing mast cells (MC) are found within sinus regions of TDLNCold. Downstream, Th2-associated fibrotic TME is found in paired cold tumors with increased Th2/T-helper-1-cell (Th1) ratio, upregulated fibrosis growth factors, and stromal enrichment of cancer associated fibroblasts. These findings are further confirmed in a validation cohort and public genomic data. Our results reveal a potential role of IL4+ MCs within TDLNs, associated with Th2 polarization and reduced immune infiltration into tumors.
Assuntos
Linfonodos , Células Th2 , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Humanos , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células Th2/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Feminino , Linfonodos/imunologia , Linfonodos/patologia , Células Dendríticas/imunologia , Regulação Neoplásica da Expressão Gênica , Mastócitos/imunologia , Mastócitos/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Células Th1/imunologiaRESUMO
BACKGROUND: Although advances in immune checkpoint inhibitor (ICI) research have provided a new treatment approach for lung adenocarcinoma (LUAD) patients, their survival is still unsatisfactory, and there are issues in the era of response prediction to immunotherapy. METHODS: Using bioinformatics methods, a prognostic signature was constructed, and its predictive ability was validated both in the internal and external datasets (GSE68465). We also explored the tumor-infiltrating immune cells, mutation profiles, and immunophenoscore (IPS) in the low-and high-risk groups. RESULTS: As far as we are aware, this is the first study which introduces a novel prognostic signature model using BIRC5, CBLC, S100P, SHC3, ANOS1, VIPR1, LGR4, PGC, and IGKV4.1. According to multivariate analysis, the 9-immune-related genes (IRGs) signature provided an independent prognostic factor for the overall survival (OS). The low-risk group had better OS, and the tumor mutation burden (TMB) was significantly lower in this group. Moreover, the risk scores were negatively associated with the tumor-infiltrating immune cells, like CD8+ T cells, macrophages, dendritic cells, and NK cells. In addition, the IPS were significantly higher in the low-risk group as they had higher gene expression of immune checkpoints, suggesting that ICIs could be a promising treatment option for low-risk LUAD patients. CONCLUSION: The combination of these 9-IRGs not only could efficiently predict overall survival of LUAD patients but also show a powerful association with the expression of immune checkpoints and response to ICIs based on IPS; hoping this model paves the way for better stratification and management of patients in clinical practice.
Assuntos
Adenocarcinoma de Pulmão , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Prognóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Linfócitos do Interstício Tumoral/imunologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Idoso , Transcriptoma , Mutação , Biologia Computacional/métodosRESUMO
Introduction: AXL receptor expression is proposed to confer immune-checkpoint inhibitor (ICI)-resistance in non-small cell lung cancer (NSCLC) patients. We sought to interrogate AXL expression in conjunction with mutational and tumor-microenvironmental features to uncover predictive mechanisms of resistance in ICI-treated NSCLC patients. Methods: Tumor samples from 111 NSCLC patients treated with ICI-monotherapy were analyzed by immunohistochemistry for tumor- and immune-AXL expression. Subsets of patients were analyzed by whole-exome sequencing (n = 44) and imaging mass cytometry (n = 14). Results were related to ICI-outcome measurements. Results: Tumor-cell AXL expression correlated with aggressive phenotypic features including reduced OS in patients treated with ICIs (P = 0.04) after chemotherapy progression, but conversely associated with improved disease control (P = 0.045) in ICI-treated, PD-L1 high first-line patients. AXL+ immune-cell infiltration correlated with total immune-cell infiltration and improved overall outcomes (PFS: P = 0.044, OS: P = 0.054). Tumor-cell AXL-upregulation showed enrichment in mutations associated with PD-L1-upregulation and ICI-response such as MUC4 and ZNF469, as well as adverse mutations including CSMD1 and LRP1B which associated with an immune-suppressed tumor phenotype and poor ICI prognosis particularly within chemotherapy-treated patients. Tumor mutational burden had no effect on ICI-outcomes and was associated with a lack of tumor-infiltrating immune cells. Spatial-immunophenotyping provided evidence that tumor-cell AXL-upregulation and adverse mutations modulate the tumor microenvironment in favor of infiltrating, activated neutrophils over anti-tumor immune-subsets including CD4 and CD8 T-cells. Conclusion: Tumor-cell AXL-upregulation correlated with distinct oncotypes and microenvironmental immune-profiles that define chemotherapy-induced mechanisms of ICI-resistance, which suggests the combination of AXL inhibitors with current chemoimmunotherapy regimens can benefit NSCLC patients.
Assuntos
Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Microambiente Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Receptores Proteína Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Feminino , Microambiente Tumoral/imunologia , Idoso , Pessoa de Meia-Idade , Biomarcadores Tumorais , Mutação , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Resultado do Tratamento , Idoso de 80 Anos ou mais , Resistencia a Medicamentos Antineoplásicos/genética , AdultoRESUMO
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Imunoterapia , Humanos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologiaRESUMO
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their differentiation and migration, and optimise T cell-based immunotherapies accordingly.
Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Neoplasias , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Fenótipo , Microambiente Tumoral/imunologia , Imunoterapia/métodosRESUMO
BACKGROUND: Cervical cancer, encompassing squamous cell carcinoma and endocervical adenocarcinoma (CESC), presents a considerable risk to the well-being of women. Recent studies have reported that squalene epoxidase (SQLE) is overexpressed in several cancers, which contributes to cancer development. METHODS: RNA sequencing data for SQLE were obtained from The Cancer Genome Atlas. In vitro experiments, including colorimetry, colony formation, Transwell, RT-qPCR, and Western blotting were performed. Furthermore, a transplanted CESC nude mouse model was constructed to validate the tumorigenic activity of SQLE in vivo. Associations among the SQLE expression profiles, differentially expressed genes (DEGs), immune infiltration, and chemosensitivity were examined. The prognostic value of genetic changes and DNA methylation in SQLE were also assessed. RESULTS: SQLE mRNA expression was significantly increased in CESC. ROC analysis revealed the strong diagnostic ability of SQLE toward CESC. Patients with high SQLE expression experienced shorter overall survival. The promotional effects of SQLE on cancer cell proliferation, metastasis, cholesterol synthesis, and EMT were emphasized. DEGs functional enrichment analysis revealed the signaling pathways and biological processes. Notably, a connection existed between the SQLE expression and the presence of immune cells as well as the activation of immune checkpoints. Increased SQLE expressions exhibited increased chemotherapeutic responses. SQLE methylation status was significantly associated with CESC prognosis. CONCLUSION: SQLE significantly affects CESC prognosis, malignant behavior, cholesterol synthesis, EMT, and immune infiltration; thereby offering diagnostic and indicator roles in CESC. Thus, SQLE can be a novel therapeutic target in CESC treatment.
Assuntos
Biomarcadores Tumorais , Colesterol , Transição Epitelial-Mesenquimal , Esqualeno Mono-Oxigenase , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/mortalidade , Feminino , Transição Epitelial-Mesenquimal/genética , Animais , Prognóstico , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colesterol/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismoRESUMO
Tumor-infiltrating lymphocyte (TIL) therapy represents a groundbreaking advancement in the solid cancer treatment, offering new hope to patients and their families with high response rates and long overall survival. TIL therapy involves extracting immune cells from a patient's tumor tissue, expanding them ex vivo, and infusing them back into the patient to target and eliminate cancer cells. This revolutionary approach harnesses the power of the immune system to combat cancers, ushering in a new era of T cell-based therapies along with CAR-T and TCR-therapies. In this comprehensive review, we aim to elucidate the remarkable potential of TIL therapy by delving into recent advancements in basic and clinical researches. We highlight on the evolving landscape of TIL therapy as a prominent immunotherapeutic strategy, its multifaceted applications, and the promising outcomes. Additionally, we explore the future horizons of TIL therapy, next-generation TILs, and combination therapy, to overcome the limitations and improve clinical efficacy of TIL therapy.
Assuntos
Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Neoplasias , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Animais , Terapia Combinada/métodosRESUMO
BACKGROUND: Hepatocellular carcinoma (LIHC) has severe consequences due to late diagnosis and the lack of effective therapies. Currently, potential biomarkers for the diagnosis and prognosis of LIHC have not been systematically evaluated. Previous studies have reported that RAC1 is associated with the B cell receptor signaling pathway in various tumor microenvironments, but its relationship with LIHC remains unclear. We investigated the relationship between RAC1 and the prognosis and immune infiltration microenvironment of LIHC, exploring its potential as a prognostic biomarker for this type of cancer. METHODS: In this study, we analyzed data from The Cancer Genome Atlas (TCGA) using the Wilcoxon signed-rank test and logistic regression to assess the association between RAC1 expression and clinical characteristics in LIHC patients. Additionally, Kaplan-Meier and Cox regression methods were employed to confirm the impact of RAC1 expression levels on overall survival. Immunohistochemistry was used to validate RAC1 protein expression in LIHC. We constructed RAC1 knockdown LIHC cells and studied the effects of RAC1 protein on cell proliferation and migration at both cellular and animal levels. RESULTS: RAC1 expression levels were significantly elevated in LIHC tissues compared to normal tissues. High RAC1 expression was strongly associated with advanced pathological stages and was identified as an independent factor negatively affecting overall survival. At both cellular and animal levels, RAC1 knockdown significantly inhibited the proliferation and migration of LIHC cells. Furthermore, RAC1 expression was positively correlated with the infiltration of Th2 cells and macrophages in the tumor microenvironment, suggesting that RAC1 may contribute to the deterioration of the tumor immunosuppressive microenvironment and potentially lead to reduced patient survival. CONCLUSION: These findings indicate that RAC1 expression promotes LIHC proliferation and migration and influences the landscape of immune cell infiltration in the tumor microenvironment. Based on these results, RAC1 is proposed as a potential prognostic biomarker for LIHC, associated with both cancer progression and tumor immune cell infiltration.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Prognóstico , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/imunologia , Animais , Pessoa de Meia-Idade , Camundongos , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Camundongos NusRESUMO
Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-γ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.
Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Luteolina , Linfócitos do Interstício Tumoral , Luteolina/farmacologia , Luteolina/uso terapêutico , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Citocinas/metabolismo , Masculino , Granzimas/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos Endogâmicos C57BLRESUMO
The tumour immune microenvironment (TIME) in breast cancer is acknowledged with an increasing role in treatment response and prognosis. With a growing number of immune markers analysed, digital image analysis may facilitate broader TIME understanding, even in single-plex IHC data. To facilitate analyses of the latter an open-source image analysis pipeline, Tissue microarray MArker Quantification (TMArQ), was developed and applied to single-plex stainings for p53, CD3, CD4, CD8, CD20, CD68, FOXP3, and PD-L1 (SP142 antibody) in a 218-patient triple negative breast cancer (TNBC) cohort with complementary pathology scorings, clinicopathological, whole genome sequencing, and RNA-sequencing data. TMArQ's cell counts for analysed immune markers were on par with results from alternative methods and consistent with both estimates from human pathology review, different quantifications and classifications derived from RNA-sequencing as well as known prognostic patterns of immune response in TNBC. The digital cell counts demonstrated how immune markers are coexpressed in the TIME when considering TNBC molecular subtypes and DNA repair deficiency, and how combination of immune status with DNA repair deficiency status can improve the prognostic stratification in chemotherapy treated patients. These results underscore the value and potential of integrating TIME and specific tumour intrinsic alterations/phenotypes for the molecular understanding of TNBC.
Assuntos
Biomarcadores Tumorais , Imuno-Histoquímica , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Imuno-Histoquímica/métodos , Prognóstico , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Análise Serial de Tecidos/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Idoso , AdultoRESUMO
Glioblastoma (GBM) is a high malignant tumor with no effective treatment. To comprehensively characterize the landscape of immune cells in GBM and evaluate their correlation with prognosis, we developed a multispectral fluorescent imaging pipeline that included tumor-infiltrating lymphocytic markers (CD3, CD4, CD8, FOXP3, NKP46), immune checkpoint markers (PD-1, PD-L1), and markers to characterize myeloid cells (CD68, CD66b, CD163, HLA-DR), to spatially quantify 18 immune cell subsets in 21 GBM cases. We found that macrophages are the most abundant in GBM microenvironment, followed by T cells and neutrophils, while NK and NKT cells are the least. Previously unreported CD8+ Treg, PD-L1+ neutrophils, and high proportion of PD-1+ NK and PD-1+ T cells were also detected. Single high densities of PD-1+CD8+ T cells, neutrophils, and PD-L1-expressing CD68+ cells were associated with longer survival. Moreover, closer proximity of T cells to PD-L1+ macrophages or PD-L1+ neutrophils were associated with poor prognosis. Correlative analysis revealed circulating PMN-MDSC and e-MDSC were positively correlated with intratumoral M2 macrophages, while circulating NK cells were inversely associated with infiltrating CD4+ Treg cells in GBM patients. Our findings highlighted the potential roles of infiltrating immune cells in prognosis prediction and developing novel immunotherapeutic strategies for GBM patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Linfócitos do Interstício Tumoral , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Macrófagos/imunologia , Adulto , Neutrófilos/imunologia , Células Matadoras Naturais/imunologiaRESUMO
BACKGROUND: Immunotherapy represents a groundbreaking and monumental achievement in the field of cancer therapy, marking a significant advancement in fighting against this devastating disease. Lung cancer has showed consistent clinical improvements in response to immunotherapy treatments, yet, it is undeniable that challenges such as limited response rates acquire resistance, and the unclear fundamental mechanisms were inevitable problems. METHODS: The cellular composition was defined and distinguished through single-cell RNA sequencing (scRNA-seq) analysis of MPR (major pathologic response) and NMPR (non-major pathologic response) samples in GSE207422, including four primary MPR samples and eight primary NMPR samples. RESULTS: We found obvious difference in CD8+ T cell population between MPR and NMPR samples, with high expression of TYMS, RRM2, and BIRC5 in NPMR samples. Meanwhile, the proportion of macrophages and tumor epithelial cells infiltration increased in the NMPR samples. We discovered biomarkers (ACTN4, ATF3, BRD2, CDKN1A, and CHMP4B) in epithelial cells which were potentially represented worse outcomes. CONCLUSIONS: By exploring the difference of tumor microenvironment (TME) in samples with different corresponding degrees of neoadjuvant immunotherapy, this research introduces a number of novel biomarkers for predicting the response of treatment and a theoretical basis for overcoming immunotherapy resistance.