Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.396
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337394

RESUMO

The aging ovary in mammals leads to the reduced production of sex hormones and a deterioration in follicle quality. The interstitial gland originates from the hypertrophy of the theca cells of atretic follicles and represents an accumulative structure of the ovary that may contribute to its aging. Here, reproductive and mature rabbit ovaries are used to determine whether the interstitial gland plays a crucial role in ovarian aging. We demonstrate that, in the mature ovary, interstitial gland cells accumulate lipid droplets and show ultrastructural characteristics of lipophagy. Furthermore, they undergo modifications and present a foamy appearance, do not express the pan-leukocyte CD-45 marker, and express CYP11A1. These cells are the first to present an increase in lipofuscin accumulation. In foamy cells, the expression of p21 remains low, PCNA expression is maintained at mature ages, and their nuclei do not show positivity for H2AX. The interstitial gland shows a significant increase in lipofuscin accumulation compared with the ovaries of younger rabbits, but lipofuscin accumulation remains constant at mature ages. Surprisingly, no accumulation of cells with DNA damage is evident, and an increase in proliferative cells is observed at the age of 36 months. We suggest that the interstitial gland initially uses lipophagy to maintain steroidogenic homeostasis and prevent cellular senescence.


Assuntos
Envelhecimento , Senescência Celular , Lipofuscina , Ovário , Animais , Feminino , Coelhos , Envelhecimento/metabolismo , Ovário/metabolismo , Ovário/citologia , Lipofuscina/metabolismo , Chinchila , Células Tecais/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Dano ao DNA
2.
Invest Ophthalmol Vis Sci ; 65(11): 31, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39297806

RESUMO

Purpose: The retinal pigment epithelium (RPE) is a monolayer of epithelial cells essential for photoreceptor function and viability. Quail Coturnix japonica is a convenient experimental animal model for the study of age and pathological retina processes to an accelerated time regime. The three main types of pigment granules present in the RPE are melanin-containing melanosomes, lipofuscin-containing lipofuscin granules, and mixed melanolipofuscin granules containing both melanin and lipofuscin. The purpose of this work was to study the process of melanolipofuscinogenesis during aging and under light exposure. Methods: We examined melanolipofuscin granules in "macular" areas, the area of the retina containing oxycarotenoids, as a function of the macula in humans, of the quail retina by transmission electron microscopy in young, middle-aged, and old birds, and in middle-aged birds irradiated with blue LED light (450 nm, 4 J/cm2). Results: It has been shown that during photo-oxidative stress caused by the action of blue light on the quail eye, active fusion of melanosomes and lipofuscin granules occurs with formation of various types, including giant, mixed melanolipofuscin-like granules. Increased accumulation of melanolipofuscin-like granules was also observed in non-irradiated old birds. Conclusions: It is assumed that the decrease in the number of melanosomes in the RPE during aging and photo-oxidative stress is associated with their fusion with lipofuscin granules and subsequent degradation of melanin by reactive oxygen species formed in melanolipofuscin-like granules. The disappearance of melanin deprives the RPE cells of light-filtering and antioxidant protection, and significantly increases the risk of their oxidative stress.


Assuntos
Coturnix , Luz , Lipofuscina , Melaninas , Melanossomas , Epitélio Pigmentado da Retina , Animais , Epitélio Pigmentado da Retina/efeitos da radiação , Epitélio Pigmentado da Retina/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Lipofuscina/metabolismo , Melanossomas/ultraestrutura , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Luz/efeitos adversos , Melaninas/metabolismo , Envelhecimento , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Luz Azul
3.
Reprod Toxicol ; 129: 108683, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39121978

RESUMO

The present study investigated the effect of adding allopathic doxorubicin (DOX 0.3 µg/mL), the vehicle of ultradiluted/dynamized doxorubicin (0.2 % ethanol), different dynamizations of ultradiluted/dynamized doxorubicin (DOX 6CH, DOX 12CH and DOX 30CH), both in the absence or presence of chemical stress induced by doxorubicin at 0.3 µg/mL on follicular survival and activation, antioxidant capacity of the medium, Catalase activity (CAT), production of reactive protein thiol, maintenance of type I and III collagen fibers and accumulation of lipofuscin in porcine ovarian tissue cultured in vitro for 48 hours. To do this, part of the ovarian tissue fragments was fixed for the uncultured control and the rest were cultured in: MEM (cultured control), DOX 0.3 µg/mL, Ethanol, DOX 6CH, DOX 12CH, DOX 30CH, DOX (0.3 µg/mL) + DOX 6CH, DOX (0.3 µg/mL) + DOX 12CH, DOX (0.3 µg/mL) + DOX 30CH treatments. The results showed that, in general, ultradiluted/dynamized doxorubicin (DOX 6CH, DOX 12CH and DOX 30CH) mitigated the toxic effect of allopathic doxorubicin (0.3 µg/mL) on the morphology of preantral follicles, the content of type I and III collagen fibers, and the production of lipofuscin in the tissue. However, only DOX (0.3 µg/mL) + DOX 6CH attenuated the oxidative stress induced by DOX (0.3 µg/mL), maintaining adequate CAT activity that was similar to the uncultured control. Additionally, when the three isolated ultradiluted/dynamized doxorubicin were considered, only DOX 12CH increased the reduced thiol levels compared to the uncultured control and MEM. In conclusion, supplementing the culture medium with ultradiluted/dynamized DOX (DOX 6CH, DOX 12CH and DOX 30CH) attenuated the toxicity induced by allopathic doxorubicin during the in vitro culture of pig preantral follicles enclosed in ovarian tissue.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina , Folículo Ovariano , Animais , Doxorrubicina/toxicidade , Feminino , Suínos , Antibióticos Antineoplásicos/toxicidade , Folículo Ovariano/efeitos dos fármacos , Catalase/metabolismo , Técnicas de Cultura de Tecidos , Lipofuscina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Colágeno Tipo I/metabolismo , Ovário/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Colágeno Tipo III/metabolismo
4.
PLoS One ; 19(7): e0306275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008441

RESUMO

Lipofuscin is a yellow-brown pigment typically found in the lysosomes that contains a mixture of molecules including lipids, metals and misfolded proteins. The use of Sudan black B to detect lipofuscin accumulation, a well described marker of cellular senescence and ageing, was first described in 2013 by Georgakopoulou, et al. Here, we provide an optimisation of the original protocol. Firstly, we adjusted the staining methodology for increased ease of use on cultured cells. Secondly, we show that Sudan black B-stained lipofuscin emits strong fluorescence in the far-red channel making it suitable for fluorescence microscopy detection and quantification. Moreover, we also demonstrate that this optimised protocol can be utilised in conjunction with standard immunofluorescence staining techniques, making possible the simultaneous detection of lipofuscin and other cellular proteins of interest, like additional markers of senescence. This is a significant advantage over the most commonly used method for senescence detection, based on beta galactosidase enzymatic activity. We therefore believe that these findings and the provided optimised protocol will represent a useful tool for the scientific community in the field of cellular senescence.


Assuntos
Biomarcadores , Senescência Celular , Lipofuscina , Lipofuscina/metabolismo , Humanos , Biomarcadores/metabolismo , Biomarcadores/análise , Compostos Azo/química , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos , Naftalenos
5.
J Biomed Opt ; 29(Suppl 2): S22707, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962492

RESUMO

Significance: Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) provides a label-free approach to observe functional and molecular changes at cellular scale in vivo. Adding multispectral capabilities improves interpretation of lifetime fluctuations due to individual fluorophores in the retinal pigment epithelium (RPE). Aim: To quantify the cellular-scale changes in autofluorescence with age and eccentricity due to variations in lipofuscin, melanin, and melanolipofuscin in RPE using multispectral AOFLIO. Approach: AOFLIO was performed on six subjects at seven eccentricities. Four imaging channels ( λ ex / λ em ) were used: 473/SSC, 473/LSC, 532/LSC, and 765/NIR. Cells were segmented and the timing signals of each pixel in a cell were combined into a single histogram, which were then used to compute the lifetime and phasor parameters. An ANOVA was performed to investigate eccentricity and spectral effects on each parameter. Results: A repeatability analysis revealed < 11.8 % change in lifetime parameters in repeat visits for 532/LSC. The 765/NIR and 532/LSC had eccentricity and age effects similar to previous reports. The 473/LSC had a change in eccentricity with mean lifetime and a phasor component. Both the 473/LSC and 473/SSC had changes in eccentricity in the short lifetime component and its relative contribution. The 473/SSC had no trend in eccentricity in phasor. The comparison across the four channels showed differences in lifetime and phasor parameters. Conclusions: Multispectral AOFLIO can provide a more comprehensive picture of changes with age and eccentricity. These results indicate that cell segmentation has the potential to allow investigations in low-photon scenarios such as in older or diseased subjects with the co-capture of an NIR channel (such as 765/NIR) with the desired spectral channel. This work represents the first multispectral, cellular-scale fluorescence lifetime comparison in vivo in the human RPE and may be a useful method for tracking diseases.


Assuntos
Oftalmoscopia , Epitélio Pigmentado da Retina , Humanos , Oftalmoscopia/métodos , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/química , Adulto , Masculino , Feminino , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Imagem Óptica/métodos , Lipofuscina/metabolismo , Lipofuscina/análise , Lipofuscina/química , Estudos de Viabilidade
6.
Biomolecules ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927133

RESUMO

Lipid peroxidation plays an important role in various pathologies and aging, at least partially mediated by ferroptosis. The role of mitochondrial lipid peroxidation during ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate at submillimolar doses induces production of reactive oxygen species (ROS) and lipid peroxidation in mitochondria that precede ferroptosis in H9c2 cardiomyocytes. The mitochondria-targeted antioxidant SkQ1 and the redox mediator methylene blue, which inhibits the production of ROS in complex I of the mitochondrial electron transport chain, prevent both mitochondrial lipid peroxidation and ferroptosis. SkQ1 and methylene blue also prevented accumulation of lipofuscin observed after 24 h incubation of cardiomyocytes with ferric ammonium citrate. Using isolated cardiac mitochondria as an in vitro ferroptosis model, it was shown that rotenone (complex I inhibitor) in the presence of ferrous iron stimulates lipid peroxidation and lipofuscin accumulation. Our data indicate that ROS generated in complex I stimulate mitochondrial lipid peroxidation, lipofuscin accumulation, and ferroptosis induced by exogenous iron.


Assuntos
Ferroptose , Ferro , Peroxidação de Lipídeos , Lipofuscina , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Peroxidação de Lipídeos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Lipofuscina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Linhagem Celular , Compostos de Amônio Quaternário/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Azul de Metileno/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Compostos Férricos , Plastoquinona/análogos & derivados
7.
J Dent Res ; 103(8): 800-808, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38877743

RESUMO

Most of the elderly population is afflicted by periodontal diseases, creating a health burden worldwide. Cellular senescence is one of the hallmarks of aging and associated with several chronic comorbidities. Senescent cells produce a variety of deleterious secretions, collectively termed the senescence-associated secretory phenotype (SASP). This disrupts neighboring cells, leading to further senescence propagation and inciting chronic inflammation, known as "inflammaging." Detrimental repercussions within the tissue microenvironment can trigger senescence at a younger age, accelerate biological aging, and drive the initiation or progression of diseases. Here, we investigated the biological signatures of senescence in healthy and diseased gingival tissues by assessing the levels of key senescence markers (p16, lipofuscin, and ß-galactosidase) and inflammatory mediators (interleukin [IL]-1ß, IL-6, IL-8, matrix metalloproteinase [MMP]-1, MMP-3, and tumor necrosis factor-α). Our results showed significantly increased senescence features including p16, lipofuscin, and ß-galactosidase in both epithelial and connective tissues of periodontitis patients compared with healthy sites in all age groups, indicating that an inflammatory microenvironment can trigger senescence-like alterations in younger diseased gingival tissues as well. Subsequent analyses using double staining with specific cell markers noted the enrichment of ß-galactosidase in fibroblasts and macrophages. Concurrently, inflammatory mediators consistent with SASP were increased in the gingival biopsies obtained from periodontitis lesions. Together, our findings provide the first clinical report revealing susceptibility to elevated senescence and inflammatory milieu consistent with senescence secretome in gingival tissues, thus introducing senescence as one of the drivers of pathological events in the oral mucosa and a novel strategy for targeted interventions.


Assuntos
Senescência Celular , Gengiva , Lipofuscina , Periodontite , beta-Galactosidase , Humanos , Senescência Celular/fisiologia , beta-Galactosidase/metabolismo , beta-Galactosidase/análise , Pessoa de Meia-Idade , Adulto , Periodontite/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Lipofuscina/metabolismo , Lipofuscina/análise , Masculino , Idoso , Feminino , Metaloproteinase 3 da Matriz/análise , Fenótipo Secretor Associado à Senescência , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/análise , Metaloproteinase 1 da Matriz/análise , Metaloproteinase 1 da Matriz/metabolismo , Interleucina-1beta/análise , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/análise , Mediadores da Inflamação/metabolismo , Biomarcadores/análise , Interleucina-8/análise , Interleucina-8/metabolismo , Adulto Jovem
8.
Chemosphere ; 361: 142560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851504

RESUMO

Microplastics (MPs) are ubiquitous environmental contaminants that exert multiple toxicological effects. Current studies have mainly focused on modeled or unaged MPs, which lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging polystyrene (PS) have not been well studied, and the role of EPFRs on the toxic effects of photoaged PS is easily ignored. Photoaging primarily produces EPFRs, followed by an increase in reactive oxygen species (ROS) content and oxidative potential, which alter the physicochemical properties of photoaged PS. The mean lifespan and lipofuscin content were significantly altered after acute exposure to photoaged PS for 45 d (PS-45) and 60 d (PS-60) in Caenorhabditis elegans. Intestinal ROS and gst-4::GFP expression were enhanced, concomitant with the upregulation of associated genes. Treatment with N-acetyl-l-cysteine by radical quenching test significantly decreased EPFRs levels on the aged PS and inhibited the acceleration of the aging and oxidative stress response in nematodes. Pearson's correlation analysis also indicated that the EPFRs levels were significantly associated with these factors. Thus, the EPFRs generated on photoaged PS contribute to the acceleration of aging by oxidative stress. This study provides new insights into the potential toxicity and highlights the need to consider the role of EPFRs in the toxicity assessment of photoaged PS.


Assuntos
Caenorhabditis elegans , Longevidade , Microplásticos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Animais , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres/metabolismo , Poliestirenos/toxicidade , Lipofuscina/metabolismo , Poluentes Ambientais/toxicidade
9.
Chem Biol Interact ; 395: 111036, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705443

RESUMO

Gelsemium elegans Benth. (G. elegans) is a traditional medicinal herb that has anti-inflammatory, analgesic, sedative, and detumescence effects. However, it can also cause intestinal side effects such as abdominal pain and diarrhea. The toxicological mechanisms of gelsenicine are still unclear. The objective of this study was to assess enterotoxicity induced by gelsenicine in the nematodes Caenorhabditis elegans (C. elegans). The nematodes were treated with gelsenicine, and subsequently their growth, development, and locomotion behavior were evaluated. The targets of gelsenicine were predicted using PharmMapper. mRNA-seq was performed to verify the predicted targets. Intestinal permeability, ROS generation, and lipofuscin accumulation were measured. Additionally, the fluorescence intensities of GFP-labeled proteins involved in oxidative stress and unfolded protein response in endoplasmic reticulum (UPRER) were quantified. As a result, the treatment of gelsenicine resulted in the inhibition of nematode lifespan, as well as reductions in body length, width, and locomotion behavior. A total of 221 targets were predicted by PharmMapper, and 731 differentially expressed genes were screened out by mRNA-seq. GO and KEGG enrichment analysis revealed involvement in redox process and transmembrane transport. The permeability assay showed leakage of blue dye from the intestinal lumen into the body cavity. Abnormal mRNAs expression of gem-4, hmp-1, fil-2, and pho-1, which regulated intestinal development, absorption and catabolism, transmembrane transport, and apical junctions, was observed. Intestinal lipofuscin and ROS were increased, while sod-2 and isp-1 expressions were decreased. Multiple proteins in SKN-1/DAF-16 pathway were found to bind stably with gelsenicine in a predictive model. There was an up-regulation in the expression of SKN-1:GFP, while the nuclear translocation of DAF-16:GFP exhibited abnormality. The UPRER biomarker HSP-4:GFP was down-regulated. In conclusion, the treatment of gelsenicine resulted in the increase of nematode intestinal permeability. The toxicological mechanisms underlying this effect involved the disruption of intestinal barrier integrity, an imbalance between oxidative and antioxidant processes mediated by the SKN-1/DAF-16 pathway, and abnormal unfolded protein reaction.


Assuntos
Caenorhabditis elegans , Espécies Reativas de Oxigênio , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinoxalinas/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Estresse Oxidativo/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Gelsemium/química , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Lipofuscina/metabolismo , Locomoção/efeitos dos fármacos , Alcaloides Indólicos
10.
Free Radic Biol Med ; 221: 273-282, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38740102

RESUMO

Defective mitochondria and autophagy, as well as accumulation of lipid and iron in WDR45 mutant fibroblasts, is related to beta-propeller protein-associated neurodegeneration (BPAN). In this study, we found that enlarged lysosomes in cells derived from patients with BPAN had low enzyme activity, and most of the enlarged lysosomes had an accumulation of iron and oxidized lipid. Cryo-electron tomography revealed elongated lipid accumulation, and spectrometry-based elemental analysis showed that lysosomal iron and oxygen accumulation superimposed with lipid aggregates. Lysosomal lipid aggregates superimposed with autofluorescence as free radical generator, lipofuscin. To eliminate free radical stress by iron accumulation in cells derived from patients with BPAN, we investigated the effects of the iron chelator, 2,2'-bipyridine (bipyridyl, BIP). To study whether the defects in patient-derived cells can be rescued by an iron chelator BIP, we tested whether the level of iron and reactive oxygen species (ROS) in the cells and genes related to oxidative stress were rescued BIP treatment. Although BIP treatment decreased some iron accumulation in the cytoplasm and mitochondria, the accumulation of iron in the lysosomes and levels of cellular ROS were unaffected. In addition, the change of specific RNA levels related to free radical stress in patient fibroblasts was not rescued by BIP. To alleviate free radical stress, we investigated whether l-serine can regulate abnormal structures in cells derived from patients with BPAN through the regulation of free radical stress. l-serine treatment alleviated increase of enlarged lysosomes and iron accumulation and rescued impaired lysosomal activity by reducing oxidized lipid accumulation in the lysosomes of the cells. Lamellated lipids in the lysosomes of the cells were identified as lipofuscin through correlative light and electron microscopy, and l-serine treatment reduced the increase of lipofuscin. These data suggest that l-serine reduces oxidative stress-mediated lysosomal lipid oxidation and iron accumulation by rescuing lysosomal activity.


Assuntos
Fibroblastos , Ferro , Lipofuscina , Lisossomos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Serina , Humanos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Lipofuscina/metabolismo , Ferro/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia , Distrofias Neuroaxonais/tratamento farmacológico , Distrofias Neuroaxonais/genética , 2,2'-Dipiridil/farmacologia , 2,2'-Dipiridil/análogos & derivados , Quelantes de Ferro/farmacologia
11.
Invest Ophthalmol Vis Sci ; 65(4): 32, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648041

RESUMO

Purpose: To undertake the first ultrastructural characterization of human retinal pigment epithelial (RPE) differentiation from fetal development to adolescence. Methods: Ten fetal eyes and three eyes aged six, nine, and 17 years were examined in the temporal retina adjacent to the optic nerve head by transmission electron microscopy. The area, number, and distribution of RPE organelles were quantified and interpreted within the context of adjacent photoreceptors, Bruch's membrane, and choriocapillaris maturation. Results: Between eight to 12 weeks' gestation (WG), pseudostratified columnar epithelia with apical tight junctions differentiate to a simple cuboidal epithelium with random distribution of melanosomes and mitochondria. Between 12 to 26 WG, cells enlarge and show long apical microvilli and apicolateral junctional complexes. Coinciding with eye opening at 26 WG, melanosomes migrate apically whereas mitochondria distribute to perinuclear regions, with the first appearance of phagosomes, complex granules, and basolateral extracellular space (BES) formation. Significantly, autophagy and heterophagy, as evidenced by organelle recycling, and the gold standard of ultrastructural evidence for autophagy of double-membrane autophagosomes and mitophagosomes were evident from 32 WG, followed by basal infoldings of RPE cell membrane at 36 WG. Lipofuscin formation and deposition into the BES evident at six years increased at 17 years. Conclusions: We provide compelling ultrastructural evidence that heterophagy and autophagy begins in the third trimester of human fetal development and that deposition of cellular byproducts into the extracellular space of RPE takes place via exocytosis. Transplanted RPE cells must also demonstrate the capacity to subserve autophagic and heterophagic functions for effective disease mitigation.


Assuntos
Autofagia , Exocitose , Lipofuscina , Microscopia Eletrônica de Transmissão , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Epitélio Pigmentado da Retina/embriologia , Adolescente , Autofagia/fisiologia , Criança , Lipofuscina/metabolismo , Exocitose/fisiologia , Espaço Extracelular/metabolismo , Idade Gestacional , Feminino , Masculino , Desenvolvimento Fetal/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Diferenciação Celular/fisiologia
12.
Vet Clin Pathol ; 53(2): 168-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570895

RESUMO

BACKGROUND: Lipofuscin-like cytoplasmic inclusions have been reported in human blood neutrophils and monocytes but have not been described in dogs. In people, these "green granules of death" have been associated with moderate to severe hepatocellular injury and high mortality. OBJECTIVES: To describe clinicopathologic abnormalities, diagnoses, and outcomes of dogs with greenish inclusions in blood neutrophils or monocytes, and to determine if the inclusions have features of lipofuscin. METHODS: Clinical cases were identified prospectively through routine evaluation of CBC samples. Leukocyte inclusions were characterized with routine staining and assessed for iron and autofluorescence. Additional cases were identified by examination of archived blood smears from dogs meeting search criteria for hepatocellular injury, and clinicopathologic findings were recorded. RESULTS: All 7 prospectively identified dogs with inclusions had inflammation and moderate to marked increases in serum alanine aminotransferase (ALT) activity, as did the 4 dogs identified from the 97 meeting retrospective search criteria. The inclusions were Prussian blue-negative (5/5) with broad-spectrum autofluorescence (5/5) and the appearance of lipofuscin with and without Wright staining. Most clinical diagnoses involved hepatic disorders (5/7 prospective and 3/4 retrospective cases) or pancreatitis (3/7 prospective and 2/4 retrospective cases), and some involved both; 8 of 11 dogs died within 7 days of admission. CONCLUSIONS: Blue-green cytoplasmic inclusions uncommonly found in blood neutrophils ± monocytes of routine canine blood smears have stained and unstained properties of lipofuscin and suggest the presence of hepatocellular injury, often severe. Reporting these inclusions is recommended to guide clinical management.


Assuntos
Doenças do Cão , Corpos de Inclusão , Cães , Animais , Doenças do Cão/patologia , Doenças do Cão/sangue , Doenças do Cão/diagnóstico , Masculino , Corpos de Inclusão/patologia , Feminino , Estudos Retrospectivos , Hepatopatias/veterinária , Hepatopatias/patologia , Hepatopatias/sangue , Hepatopatias/diagnóstico , Lipofuscina/metabolismo , Estudos Prospectivos , Neutrófilos/patologia , Leucócitos/patologia , Alanina Transaminase/sangue , Monócitos/patologia , Pancreatite/veterinária , Pancreatite/patologia , Pancreatite/sangue , Pancreatite/diagnóstico
13.
Exp Eye Res ; 242: 109889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593971

RESUMO

Dry age-related macular degeneration (AMD) is a prevalent clinical condition that leads to permanent damage to central vision and poses a significant threat to patients' visual health. Although the pathogenesis of dry AMD remains unclear, there is consensus on the role of retinal pigment epithelium (RPE) damage. Oxidative stress and chronic inflammation are major contributors to RPE cell damage, and the NOD-like receptor thermoprotein structural domain-associated protein 3 (NLRP3) inflammasome mediates the inflammatory response leading to apoptosis in RPE cells. Furthermore, lipofuscin accumulation results in oxidative stress, NLRP3 activation, and the development of vitelliform lesions, a hallmark of dry AMD, all of which may contribute to RPE dysfunction. The process of autophagy, involving the encapsulation, recognition, and transport of accumulated proteins and dead cells to the lysosome for degradation, is recognized as a significant pathway for cellular self-protection and homeostasis maintenance. Recently, RPE cell autophagy has been discovered to be closely linked to the development of macular degeneration, positioning autophagy as a cutting-edge research area in the realm of dry AMD. In this review, we present an overview of how lipofuscin, oxidative stress, and the NLRP3 inflammasome damage the RPE through their respective causal mechanisms. We summarized the connection between autophagy, oxidative stress, and NLRP3 inflammatory cytokines. Our findings suggest that targeting autophagy improves RPE function and sustains visual health, offering new perspectives for understanding the pathogenesis and clinical management of dry AMD.


Assuntos
Autofagia , Estresse Oxidativo , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Autofagia/fisiologia , Estresse Oxidativo/fisiologia , Inflamassomos/metabolismo , Lipofuscina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia
14.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612421

RESUMO

The retinal pigment epithelium (RPE), which ensures the normal functioning of the neural retina, is a pigmented single-cell layer that separates the retina from the Bruch's membrane and the choroid. There are three main types of pigment granules in the RPE cells of the human eye: lipofuscin granules (LG) containing the fluorescent "age pigment" lipofuscin, melanoprotein granules (melanosomes, melanolysosomes) containing the screening pigment melanin and complex melanolipofuscin granules (MLG) containing both types of pigments simultaneously-melanin and lipofuscin. This review examines the functional role of pigment granules in the aging process and in the development of oxidative stress and associated pathologies in RPE cells. The focus is on the process of light-induced oxidative degradation of pigment granules caused by reactive oxygen species. The reasons leading to increased oxidative stress in RPE cells as a result of the oxidative degradation of pigment granules are considered. A mechanism is proposed to explain the phenomenon of age-related decline in melanin content in RPE cells. The essence of the mechanism is that when the lipofuscin part of the melanolipofuscin granule is exposed to light, reactive oxygen species are formed, which destroy the melanin part. As more melanolipofuscin granules are formed with age and the development of degenerative diseases, the melanin in pigmented epithelial cells ultimately disappears.


Assuntos
Melaninas , Epitélio Pigmentado da Retina , Humanos , Lipofuscina , Espécies Reativas de Oxigênio , Retina
15.
Food Funct ; 15(7): 3353-3364, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38481358

RESUMO

Cyclocodon lancifolius fruit is a promising commercial fruit with antioxidant activity and is rich in polyphenolic compounds. In this study, the anti-aging activity of C. lancifolius fruit extract (CF) on Caenorhabditis elegans (C. elegans) was evaluated by observing the longevity, stress response, reproduction, oscillation, lipofuscin, and antioxidant enzymes of worms. Moreover, the effects and potential mechanisms of CF on delaying C. elegans senescence at the mRNA and metabolite levels were investigated. The results showed that CF treatment significantly increased the lifespan and stress resistance, decreased the levels of lipofuscin and reactive oxygen species (ROS), and improved the antioxidant system of C. elegans. The extension of the lifespan of C. elegans was remarkably correlated with the upregulation of mtl-1 and Hsp-16.2, along with the downregulation of age-1, daf-2, and akt-1. Metabolomics analysis revealed that purine metabolism is a key regulatory pathway for CF to exert anti-aging effects. The present study suggests that C. lancifolius fruit has potential for use as a functional food to enhance antioxidant capacity and delay aging.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Longevidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Frutas/metabolismo , Lipofuscina/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Purinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo
16.
Exp Brain Res ; 242(4): 971-986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430248

RESUMO

The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Idoso , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Doenças Neurodegenerativas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia
17.
Geroscience ; 46(3): 3445-3455, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358579

RESUMO

Senescent cell number increases with age in different tissues, leading to greater senescent cell load, proinflammatory stress, and tissue dysfunction. In the current study, we tested the efficacy of senolytic drugs to reduce ovarian senescence and improve fertility in reproductive age female mice. In the first experiment, 1-month-old C57BL/6 female mice were treated every other week with D + Q (n = 24) or placebo (n = 24). At 3 and 6 months of age, female mice were mated with untreated males to evaluate pregnancy rate and litter size. In the second experiment, 6-month-old C57BL/6 female mice were treated monthly with D + Q (n = 30), fisetin (n = 30), or placebo (n = 30). Females were treated once a month until 11 months of age, then they were mated with untreated males for 30 days to evaluate pregnancy rate and litter size. In the first experiment, D + Q treatment did not affect pregnancy rate (P = 0.68), litter size (P = 0.58), or ovarian reserve (P > 0.05). Lipofuscin staining was lower in females treated with D + Q (P = 0.04), but expression of senescence genes in ovaries was similar. In the second experiment, D + Q or fisetin treatment also did not affect pregnancy rate (P = 0.37), litter size (P = 0.20), or ovarian reserve (P > 0.05). Lipofuscin staining (P = 0.008) and macrophage infiltration (P = 0.002) was lower in fisetin treated females. Overall, treatment with D + Q or fisetin did not affect ovarian reserve or fertility but did decrease some senescence markers in the ovary.


Assuntos
Reserva Ovariana , Gravidez , Masculino , Camundongos , Feminino , Animais , Senoterapia , Lipofuscina , Camundongos Endogâmicos C57BL , Fertilidade
18.
Genes (Basel) ; 15(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397235

RESUMO

A progressive neurological disorder was observed in a male neutered Weimaraner. Clinical signs included fecal incontinence, lethargy, moderate paraparesis, proprioceptive pelvic limb ataxia, falling, cognitive decline, incoordination, decreased interest in food, changes in posture, and episodes of trance-like behavior. Neurologic signs were first observed at approximately 4 years, 10 months of age and progressed slowly. Magnetic resonance imaging showed generalized brain atrophy with areas of white matter pathology. Humane euthanasia was elected at 6 years, 7 months of age due to increasing severity of the neurological signs. Autofluorescent intracellular granules were observed in the cerebral and cerebellar cortexes, optic nerve, and cardiac muscle of the affected dog. These abnormal inclusions in the cerebral cortex and cardiac muscle immunolabeled with antibodies to mitochondrial ATP synthase subunit c protein, like that observed in the neuronal ceroid lipofuscinosis group of lysosomal storage diseases. Immunolabeling also demonstrated pronounced neuroinflammation in brain tissues. The ultrastructural appearances of the disease-related inclusion bodies in the brain and optic nerve were quite variable. The ultrastructure and locations of many of the inclusions in the nervous tissues suggested that they were derived, at least in part, from the myelin surrounding axons. The storage bodies in the cardiac muscle were located in mitochondria-rich regions and consisted of parallel arrays of membrane-like components interspersed with electron-dense flocculent material. The disease was characterized by pronounced abnormalities in the myelin of the brain and optic nerve consisting of distinctive areas of ballooning between the layers of myelin. The whole genome sequence generated from the affected dog contained a homozygous G-to-A missense mutation in CNP, which encodes proteins with CNPase enzyme activity and a structural role in myelin. The mutation predicts a Thr42Met amino acid sequence substitution. Genotyping of archived Weimaraner DNA samples identified an additional G > A variant homozygote with a clinical history and brain lesions similar to those of the proband. Of 304 Weimaraners and over 4000 other dogs of various breeds, the proband and the other Weimaraner that exhibited similar signs were the only two that were homozygous for the CNP missense variant. CNPase immunolabeling was widespread in brain tissues from normal dogs but was undetectable in the same tissues from the proband. Based on the clinical history, fluorescence and electron-microscopy, immunohistochemistry, and molecular genetic findings, the late-onset Weimaraner disorder likely results from the missense mutation that results in CNPase deficiency, leading to myelin abnormalities, accumulation of lysosomal storage bodies, and brain atrophy. Similar disorders have been associated with different CNP variants in Dalmatians and in human subjects.


Assuntos
Lipofuscina , Bainha de Mielina , Humanos , Masculino , Animais , Cães , Bainha de Mielina/genética , Homozigoto , Mutação , 2',3'-Nucleotídeo Cíclico Fosfodiesterases , Atrofia
19.
Gerontology ; 70(4): 408-417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228128

RESUMO

INTRODUCTION: While several antidepressants have been identified as potential geroprotectors, the effect and mechanism of sertraline on healthspan remain to be elucidated. Here, we explored the role of sertraline in the lifespan and healthspan of Caenorhabditis elegans. METHODS: The optimal effect concentration of sertraline was first screened in wild-type N2 worms under heat stress conditions. Then, we examined the effects of sertraline on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the expression of serotonin signaling and aging-related genes was investigated to explore the underlying mechanism, and the lifespan assays were performed in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. RESULTS: Sertraline extended the lifespan in C. elegans with concomitant extension of healthspan as indicated by increasing mobility and reducing fertility and lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanistically, ser-7 orchestrated sertraline-induced longevity via the regulation of insulin and AMPK pathways, and sertraline-induced lifespan extension in nematodes was abolished in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. CONCLUSION: Sertraline promotes health and longevity in C. elegans through ser-7-insulin/AMPK pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Longevidade/fisiologia , Sertralina/farmacologia , Sertralina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Insulina , Fatores de Transcrição Forkhead/genética
20.
Neurotoxicol Teratol ; 101: 107320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199312

RESUMO

INTRODUCTION: Methylmercury (MeHg) is an environmental contaminant that is of particular concern in Northern Arctic Canadian populations. Specifically, organic mercury compounds such as MeHg are potent toxicants that affect multiple bodily systems including the nervous system. Developmental exposure to MeHg is a major concern, as the developing fetus and neonate are thought to be especially vulnerable to the toxic effects of MeHg. The objective of this study was to examine developmental exposure to low doses of MeHg and effects upon the adult central nervous system (CNS). The doses of MeHg chosen were scaled to be proportional to the concentrations of MeHg that have been reported in human maternal blood samples in Northern Arctic Canadian populations. METHOD: Offspring were exposed to MeHg maternally where pregnant Sprague Dawley rats were fed cookies that contained MeHg or vehicle (vehicle corn oil; MeHg 0.02 mg/kg/body weight or 2.0 mg/kg/body weight) daily, throughout gestation (21 days) and lactation (21 days). Offspring were not exposed to MeHg after the lactation period and were euthanized on postnatal day 450. Brains were extracted, fixed, frozen, and sectioned for immunohistochemical analysis. A battery of markers of brain structure and function were selected including neuronal GABAergic enzymatic marker glutamic acid decarboxylase-67 (GAD67), apoptotic/necrotic marker cleaved caspase-3 (CC3), catecholamine marker tyrosine hydroxylase (TH), immune inflammatory marker microglia (Cd11b), endothelial cell marker rat endothelial cell antigen-1 (RECA-1), doublecortin (DCX), Bergmann glia (glial fibrillary acidic protein (GFAP)), and general nucleic acid and cellular stains Hoechst, and cresyl violet, respectively. Oxidative stress marker lipofuscin (autofluorescence) was also assessed. Both male and female offspring were included in analysis. Two-way analysis of variance (ANOVA) was utilized where sex and treatment were considered as between-subject factors (p* <0.05). ImageJ was used to assess immunohistochemical results. RESULTS: In comparison with controls, adult rat offspring exposed to both doses of MeHg were observed to have (1) increased GAD67 in the cerebellum; (2) decreased lipofuscin in the locus coeruleus; and (3) decreased GAD67 in the anterior CA1 region. Furthermore, in the substantia nigra and periaqueductal gray, adult male offspring consistently had a larger endothelial cell and capillary perimeter in comparison to females. The maternal high dose of MeHg influenced RECA-1 immunoreactivity in both the substantia nigra and periaqueductal gray of adult rat offspring, where the latter neuronal region also showed statistically significant decreases in RECA-1 immunoreactivity at the maternal low dose exposure level. Lastly, males exposed to high doses of MeHg during development exhibited a statistically significant increase in the perimeter of endothelial cells and capillaries (RECA-1) in the cerebellum, in comparison to male controls. CONCLUSION: Findings suggest that in utero and early postnatal exposure to MeHg at environmentally relevant doses leads to long-lasting and selective changes in the CNS. Exposure to MeHg at low doses may affect GABAergic homeostasis and vascular integrity of the CNS. Such changes may contribute to neurological disturbances in learning, cognition, and memory that have been reported in epidemiological studies.


Assuntos
Compostos de Metilmercúrio , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Animais , Masculino , Feminino , Humanos , Compostos de Metilmercúrio/toxicidade , Ratos Sprague-Dawley , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Capilares/metabolismo , Células Endoteliais/metabolismo , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Canadá , Cerebelo , Mesencéfalo/metabolismo , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA