Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86.614
Filtrar
1.
Braz. j. biol ; 84: e254011, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355886

RESUMO

Abstract Livestock is a fundamental part of the agriculture industry in Pakistan and contributes more than 11.53% to GDP. Among livestock species, the buffaloes are regarded as the black gold of Pakistan. Being the highest milk producers globally, Nili-Ravi buffaloes are the most famous ones. Buffaloes are affected by many endemic diseases, and "Hemorrhagic septicemia" (HS) is one of them. This study was designed to ascertain the effects of experimental exposure ofP. multocida B:2 (oral) and its immunogens, i.e., LPS (oral and intravenous) and OMP (oral and subcutaneous) on reproductive hormonal profiles in Nili-Ravi buffaloes. Repeated serum samples were collected from the jugular vein of experimental animals for 21 days (0, 02, 04, 08, 12, 16, 20, 24, 36, 48, 72, 120, 168, 216, 264, 360, 456 and 504 hours). Hormonal assays to determine the serum concentrations of Gonadotropin-releasing hormone (GnRH), Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), Estrogen (E2) and progesterone (P4) were performed using (MyBioSource) commercial Elisa kits. The hormonal profile of all treatment groups of the buffalo heifers exhibited significant (P<0.05) variations as compared to the control group (G-1). These results indicate suppression in Nili-Ravi buffaloes' reproductive hormonal profile on exposure to P. multocida B:2 and its immunogens. This influence warrants that exposure to H.S may be a possible reason for delayed puberty and poor reproduction performance in Nili-Ravi buffaloes.


Resumo A pecuária é uma parte fundamental da indústria agrícola no Paquistão e contribui com 11,53% do PIB nacional. Entre as espécies de gado, os búfalos são considerados o ouro negro do Paquistão. Sendo os maiores produtores de leite em todo o mundo, os búfalos Nili-Ravi são os mais famosos. Os búfalos são afetados por muitas doenças endêmicas, entre as quais a "septicemia hemorrágica" (SH). Este estudo busca verificar os efeitos da exposição experimental de P. multocida B:2 (oral) e seus imunógenos, ou seja, LPS (oral e intravenoso) e OMP (oral e subcutâneo), nos perfis hormonais reprodutivos em búfalos Nili-Ravi. Amostras de soro repetidas foram coletadas da veia jugular de animais experimentais por 21 dias (0, 2, 4, 8, 12, 16, 20, 24, 36, 48, 72, 120, 168, 216, 264, 360, 456 e 504 horas). Os ensaios hormonais para determinar as concentrações séricas do hormônio liberador de gonadotrofina (GnRH), hormônio foliculoestimulante (FSH), hormônio luteinizante (LH), estrogênio (E2) e progesterona (P4) foram realizados usando kits comerciais Elisa (MyBioSource). O perfil hormonal de todos os grupos de tratamento das novilhas bubalinas apresentou variações significativas (P < 0,05) em relação ao grupo controle (G-1). Esses resultados indicam supressão no perfil hormonal reprodutivo de búfalos Nili-Ravi na exposição a P. multocida B:2 e seus imunógenos. Essa influência garante que a exposição à SH possa ser uma possível razão para o atraso da puberdade e o baixo desempenho reprodutivo em búfalos Nili-Ravi.


Assuntos
Animais , Feminino , Infecções por Pasteurella/veterinária , Reprodução , Hormônios Esteroides Gonadais/sangue , Búfalos , Progesterona , Bovinos , Lipopolissacarídeos , Hormônio Liberador de Gonadotropina , Pasteurella multocida
2.
Braz. j. biol ; 83: e245202, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1285622

RESUMO

Abstract Although propolis has been reported for having anti-inflammatory activities, its effects on complement system has not been much studied. This research was conducted to find out the effects of Indonesian propolis on the expression levels of C3, C1r/s, Bf, MBL, and C6 in zebrafish larvae which were induced by lipopolysaccharide (LPS). Counting of macrophages migrating to yolk sac and liver histology were carried out. Larvae were divided into four groups: CON (cultured in E3 medium only), LPS (cultured in a medium containing 0.5 μg/L LPS), LPSIBU (cultured in a medium containing LPS, and then treated with 100 μg/L ibuprofen for 24 hours), and LPSPRO (cultured in a medium containing LPS, and then immersed in 14,000 μg/L propolis for 24 hours) groups. The results showed that complement gene expression in larvae from the LPSIBU and LPSPRO groups were generally lower than in larvae from the LPS group. The number of macrophage migrations to the yolk in the LPSPRO group was also lower than in the LPS group. Histological structure of liver in all groups were considered normal. This study shows that Indonesian propolis has the potential to be used as an alternative to the substitution of NSAIDs.


Resumo Embora a própolis tenha sido relatada por ter atividade anti-inflamatória, seus efeitos no sistema complemento, uma parte do sistema imunológico inato, não foram muito estudados. Esta pesquisa foi conduzida para descobrir os efeitos da própolis da Indonésia nos níveis de expressão de C3, C1r/s, Bf, MBL e C6 em larvas de peixe-zebra induzidas por lipopolissacarídeo (LPS). Foram realizadas contagens de macrófagos que migram para o saco vitelino e histologia do fígado. As larvas foram divididas em quatro grupos: CON (cultivadas apenas em meio E3), LPS (cultivadas em meio contendo 0,5 μg/L de LPS), LPSIBU (cultivadas em meio contendo LPS e, em seguida, tratadas com 100 μg/L de ibuprofeno por 24 horas) e LPSPRO (cultivado em meio contendo LPS, e então imerso em própolis 14,000 μg/L por 24 horas). Os resultados mostraram que a expressão do gene do complemento em larvas dos grupos LPSIBU e LPSPRO foi geralmente menor que em larvas do grupo LPS. O número de migrações de macrófagos para a gema no grupo LPSPRO também foi menor que no grupo LPS. A estrutura histológica do fígado em todos os grupos foi considerada normal. Este estudo mostra que a própolis indonésia tem potencial para ser utilizada como alternativa na substituição dos AINEs (anti-inflamatórios não esteroides).


Assuntos
Animais , Própole/farmacologia , Peixe-Zebra/genética , Regulação para Baixo , Lipopolissacarídeos/farmacologia , Indonésia , Larva/genética
3.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(6): 661-665, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35924527

RESUMO

Sepsis is a systemic reaction syndrome caused by various infectious factors,and its core mechanism is immue disorder. Macrophages, known as the most important component of innate immunity, play an important role in the occurrence and development of sepsis. Macrophage polarization has been shown to be closely related to inflammation and immunity. In the occurrence and development of sepsis,the mechanisms are complex and unclearly. The release of inflammatory factors and the occurrence of inflammatory responses will be regulated by changes in macrophage polarization phenotype. Multiple signaling pathways such as Toll-like receptor 4/nuclear transcription factor-κB (TLR4/NF-κB), phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), Janus kinase/signal transduction and transcription activator (JAK/STAT), adenosine-activated protein kinase-peroxisome proliferation-activated receptor γ (AMPK-PPARγ), Notch, C-Jun amino terminal kinase (JNK), nuclear factor E2-related factor 2 (Nrf2), etc. are involved in the regulation of macrophage polarization,and interact with each other.Regulation of macrophage polarization will be a new target for the prevention and treatment of the occurrence, development and prognosis of sepsis. This paper summarized the latest progress of macrophage polarization phenotype in the occurrence and development of sepsis, aiming to provide new ideas and methods for clinical prevention and treatment of sepsis.


Assuntos
Fosfatidilinositol 3-Quinases , Sepse , Humanos , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sepse/metabolismo
4.
Biomed Res Int ; 2022: 6871269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915804

RESUMO

Macrophages play an essential role in the pathogenesis of most inflammatory diseases. Recent studies have shown that mechanical load can influence macrophage function, leading to excessive and uncontrolled inflammation and even systemic damage, including cardiovascular disease and knee osteoarthritis. However, the molecular mechanism remains unclear. In this study, murine RAW264.7 cells were treated with mechanical stretch (MS) using the Flexcell-5000T Tension System. The expression of inflammatory factors and cytokine release were measured by RT-qPCR, ELISA, and Western blotting. The protein expression of NF-κB p65, Iκb-α, p-Iκb-α, RhoA, ROCK1, and ROCK2 was also detected by Western blotting. Then, Flow cytometry was used to detect the proportion of macrophage subsets. Meanwhile, Y-27632 dihydrochloride, a ROCK inhibitor, was added to knockdown ROCK signal transduction in cells. Our results demonstrated that MS upregulated mRNA expression and increased the secretion levels of proinflammatory factors iNOS, IL-1ß, TNF-α, and IL-6. Additionally, MS significantly increased the proportion of CD11b+CD86+ and CD11b+CD206+ subsets in RAW264.7 macrophages. Furthermore, the protein expression of RhoA, ROCK1, ROCK2, NF-κB p65, and IκB-α increased in MS-treated RAW264.7 cells, as well as the IL-6 and iNOS. In contrast, ROCK inhibitor significantly blocked the activation of RhoA-ROCK and NF-κB pathway, decreased the protein expression of IL-6 and iNOS, reduced the proportion of CD11b+CD86+ cells subpopulation, and increased the proportion of CD11b+CD206+ cell subpopulation after MS. These data indicate that mechanical stretch can regulate the RAW264.7 macrophage polarization and enhance inflammatory responses in vitro, which may contribute to activation the RhoA-ROCK/NF-κB pathway.


Assuntos
NF-kappa B , Quinases Associadas a rho , Animais , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Comput Math Methods Med ; 2022: 9088727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912153

RESUMO

Objective: Acute inflammation and oxidative stress are present in large numbers in patients with acute lung injury (ALI). This investigation probed miR-135a-5p/TBK1 axis within ALI together with its new therapeutic target. Methods: MLE-12 cultures were treated with lipopolysaccharide (LPS) and transfected with miR-135a-5p mimics or TBK1 vector. An ALI mouse model was also established. Analysis was done on the relationships between TBK1 and miR-135a-5p. Inflammatory components, SOD, MDA, and ROS content were all assessed. Results: Obvious inflammatory lesions were observed in lung tissues of ALI mice. Overexpression of miR-135a-5p or TBK1 knockdown remarkably decreased IL-1ß, IL-6, and TNF-α serum concentrations and increased IL-10 level within lung tissues. Activated NRF2/TXNIP pathway and oxidative stress were additionally found within ALI murines, which were regulated by miR-315a-5p and TBK1. Further research revealed that miR-135a-5p negatively regulated TBK1 expression to mediate proinflammatory response and oxidative stress. Conclusion: miR-135a-5p targeted TBK1 to regulate inflammatory/oxidative stress responses in ALI. Such results might bring a new potential target for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Antioxidantes , Proteínas de Transporte , Lipopolissacarídeos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas Serina-Treonina Quinases/genética , Tiorredoxinas/metabolismo
6.
Nat Commun ; 13(1): 4576, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931690

RESUMO

Lipopolysaccharide (LPS) is an essential glycolipid and forms a protective permeability barrier for most Gram-negative bacteria. In E. coli, LPS levels are under feedback control, achieved by FtsH-mediated degradation of LpxC, which catalyzes the first committed step in LPS synthesis. FtsH is a membrane-bound AAA+ protease, and its protease activity toward LpxC is regulated by essential membrane proteins LapB and YejM. However, the regulatory mechanisms are elusive. We establish an in vitro assay to analyze the kinetics of LpxC degradation and demonstrate that LapB is an adaptor protein that utilizes its transmembrane helix to interact with FtsH and its cytoplasmic domains to recruit LpxC. Our YejM/LapB complex structure reveals that YejM is an anti-adaptor protein, competing with FtsH for LapB to inhibit LpxC degradation. Structural analysis unravels that LapB and LPS have overlapping binding sites in YejM. Thus, LPS levels control formation of the YejM/LapB complex to determine LpxC protein levels.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Amidoidrolases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
7.
Biomater Adv ; 137: 212814, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929253

RESUMO

In order to increase the bioavailability of mountain ginseng (MG), gold nanoparticles (MG-AuNPs) were biologically synthesized from MG extract, and an oil-in-water (O/W) nanoemulsion (SMG-AuNEs) was prepared from MG-AuNPs and a phytochemical silydianin. The physical stability of SMG-AuNEs were monitored and optimized in terms of particle size, pH value, zeta potential, and polydispersity index. The chemicostructural properties of the prepared MG-AuNPs and SMG-AuNEs were characterized using various spectrometric and microscopic analyses, such as EDX spectroscopy, FT-IR spectroscopy, and TEM. The effect of both nanomaterial samples on the anti-inflammatory activity and their underlying mechanism was compared in LPS-stimulated RAW 264.7 cells. SMG-AuNEs did not show toxic effects against RAW 264.7 macrophages, HaCaT keratinocytes, and normal dermal fibroblasts. SMG-AuNEs exhibited significantly higher inhibition of pro-inflammatory genes and proteins, including IL-1ß, IL-6, and TNF-α, compared with those of MG-AuNPs and silydianin. Western blotting analysis revealed that the MAPK and NF-κB signalings were highly inhibited by SMG-AuNEs treatment. Hence, this study shows that nano-emulsification of gold nanoparticles prepared from MG is a useful method for augmenting the anti-inflammatory potential of MG. This study may serve as a foundation for using MG as a functional ingredient in anti-inflammatory agents. Our results may implicate the use of nanoemulsions to develop new anti-inflammatory products using MG.


Assuntos
Nanopartículas Metálicas , Panax , Anti-Inflamatórios/farmacologia , Ouro/farmacologia , Lipopolissacarídeos/farmacologia , Nanopartículas Metálicas/química , NF-kappa B , Panax/metabolismo , Transdução de Sinais , Silimarina , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Biomater Adv ; 136: 212774, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929313

RESUMO

Graphene oxide quantum dots (GOQDs) have attracted substantial attention in numerous fields due to their unique physicochemical properties. However, their nanotoxicity and potential for use in biomedicine still require further study. In this work, the effects of GOQD and trans- 10-hydroxy-2-decenoic acid (10-HDA) cotreatment on the immune function of macrophages (RAW264.7 cells) were investigated. In particular, LC/MS-based metabolomics was performed to evaluate the effects of GOQDs on the metabolism of LPS-stimulated macrophages. Herein, we fabricated GOQDs with good dispersibility and a uniform size distribution of approximately 7 nm using a polyimide-pyrolyzed carbon film as the working electrode, a high-voltage graphite electrode as the cathode, and H2O2 as the oxidant. The GOQDs entered the macrophages and emitted green fluorescence under UV irradiation. Cotreatment with GOQDs and 10-HDA induced RAW 264.7 cell proliferation. GOQDs promoted the anti-inflammatory effect of 10-HDA on LPS-stimulated RAW264.7 cells and attenuated the secretion of TNF-α, IL-6, and IL-1ß. The metabolites in RAW264.7 cells treated with GOQDs were significantly different from those in RAW264.7 cells treated with LPS. The enrichment analysis showed that treatment with GOQDs interfered with amino acid metabolism, and lipid metabolism. Our results demonstrate the role of GOQDs in macrophages and provide a basis for their further application in biomedical fields.


Assuntos
Grafite , Pontos Quânticos , Anti-Inflamatórios/farmacologia , Ácidos Graxos Monoinsaturados , Grafite/farmacologia , Peróxido de Hidrogênio/química , Lipopolissacarídeos/farmacologia , Macrófagos , Pontos Quânticos/química
9.
Microbiology (Reading) ; 168(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920812

RESUMO

Paeoniflorin (PF) has been proven to possess a protective effect in some inflammatory diseases, but the underlying mechanism remains unclear. Macrophages play central roles in inflammatory responses and LPS-stimulated RAW264.7 macrophage is an ideal model for studying the anti-inflammatory effects and mechanisms of drugs. Thus, it was used to explore the anti-inflammatory mechanism of PF in this study. The results showed that PF markedly attenuated the activation of NF-κB, extracellular signal-regulated kinase (ERK1/2) and p38 mitogen activated protein kinase (p38) signalling pathways induced by LPS exposure. In addition, PF pretreatment dose-dependently suppressed the production of cytokines and the expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Concomitantly, PF pretreatment dramatically inhibited the accumulation of intracellular reactive oxygen species (ROS) without affecting the phagocytosis of macrophages. Furthermore, it has proved the scavenging effect of PF on ROS was involved in the anti-inflammatory process. This study provides a novel aspect to the understanding of the anti-inflammatory mechanism of PF.


Assuntos
Lipopolissacarídeos , NF-kappa B , Anti-Inflamatórios/farmacologia , Glucosídeos , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Monoterpenos , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Pharm Biol ; 60(1): 1542-1555, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35944284

RESUMO

CONTEXT: Jiedutongluotiaogan formula (JTTF), a traditional Chinese medicine (TCM), could promote islet function. However, the potential effect of JTTF on endoplasmic reticulum stress (ERS) and autophagy have not been reported. OBJECTIVE: This study explores the potential effect of JTTF on ERS and autophagy in the pancreas. MATERIALS AND METHODS: The Zucker diabetic fatty (ZDF) rats were randomised into five groups, control, model, JTTF (1, 3, 5 g/kg/day for 12 weeks). LPS induced pancreatic ß-cells were treated with JTTF (50, 100, 200 µg/mL). LPS was used to induce pancreatic ß-cell injury, with cell viability and insulin secretion evaluated using MTT, glucose-stimulated insulin secretion (GSIS) assays, and PCR. Intracellular Ca2+ concentration was measured using flow cytometry, while ERS and autophagy levels were monitored via Western blotting and/or immunostaining. RESULTS: Compared with the model group, body weight, FGB, HbA1c, IPGTT, FINs, and HOMA-IR in JTTF treatment groups were significantly reduced. In islets cells treated with JTTF, the pancreatic islet cells in the JTTF group were increased, lipid droplets were reduced, and there was a decrease in Ca2+ (16.67%). After JTTF intervention, PERK, p-PERK, IRE1α, p- IRE1α, ATF6, eIF2α, GRP78, p-ULK1, LC3 and p62 expression decreased, whereas Beclin1and p-mTOR expression increased. In addition, the expression of proteins related to apoptosis in the JTTF groups were lower than those in the control group. DISCUSSION AND CONCLUSIONS: JTTF may alleviate pancreatic ß-cell injury by inhibiting ER stress and excessive autophagy in diabetic rats. This provides a new direction for treating diabetes and restoring pancreatic dysfunction by TCM.


Assuntos
Diabetes Mellitus Experimental , Estresse do Retículo Endoplasmático , Animais , Apoptose , Autofagia , Endorribonucleases , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases , Ratos , Ratos Zucker
11.
BMC Oral Health ; 22(1): 345, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953782

RESUMO

BACKGROUND: Phosphoinositide 3-kinase (PI3K) is located within cells, and is involved in regulating cell survival, proliferation, apoptosis and angiogenesis. The purpose of this study was to investigate the role of PI3K in the process of bone destruction in apical periodontitis, and provide reference data for the treatment of this disease. METHODS: The relative mRNA expression of PI3K, Acp5 and NFATc1 in the normal human periodontal ligament and in chronic apical periodontitis were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). A mouse model of apical periodontitis was established by root canal exposure to the oral cavity, and HE staining was used to observe the progress of apical periodontitis. Immunohistochemical staining was used to detect the expression of PI3K and AKT in different stages of apical periodontitis, while enzymatic histochemical staining was used for detection of osteoclasts. An Escherichia coli lipopolysaccharide (LPS)-mediated inflammatory environment was also established at the osteoclast and osteoblast level, and osteoclasts or osteoblasts were treated with the PI3K inhibitor LY294002 to examine the role of PI3K in bone resorption. RESULTS: The expression of PI3K, Acp5 and NFATc1 genes in chronic apical periodontitis sample groups was significantly increased relative to healthy periodontal ligament tissue (P < 0.05). Mouse apical periodontitis was successfully established and bone resorption peaked between 2 and 3 weeks (P < 0.05). The expression of PI3K and Akt increased with the progression of inflammation, and reached a peak at 14 days (P < 0.05). The gene and protein expression of PI3K, TRAP and NFATc1 in osteoclasts were significantly increased (P < 0.05) in the E. coli LPS-mediated inflammatory microenvironment compared to the normal control group. Meanwhile in osteoblasts, the gene and protein expression of PI3K, BMP-2 and Runx2 were significantly reduced (P < 0.05) in the inflammatory microenvironment. With the addition of LY294002, expressions of bone resorption-related factors (TRAP, NFATc1) and bone formation-related factors (BMP-2, Runx2) significantly decreased (P < 0.05). CONCLUSIONS: Under the inflammatory environment induced by LPS, PI3K participates in the occurrence and development of chronic apical periodontitis by regulating the proliferation and differentiation of osteoclasts and osteoblasts.


Assuntos
Reabsorção Óssea , Periodontite Periapical , Periodontite , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Escherichia coli , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Osteoclastos , Periodontite/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
BMC Vet Res ; 18(1): 307, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953831

RESUMO

BACKGROUND: Aside respiratory diseases, beef cattle may also suffer from serious kidney diseases after transportation. Hyperglycemia and gram-negative bacterial infection may be the main reasons why bovine is prone to severe kidney disease during transportation stress, however, the precise mechanism is still unclear. The purpose of the current study is to explore whether the combined treatment of high glucose (HG) and lipopolysaccharide (LPS) could induce madin-darby bovine kidney (MDBK) cells injury and autophagy, as well as investigate the potential molecular mechanisms involved. RESULTS: As we discovered, the combined effect of HG and LPS decreased MDBK cells viability. And, HG and LPS combination also induced autophagy in MDBK cells, which was characterized by increasing the expression of LC3-II/I and Beclin1 and decreasing p62 expression. LC3 fluorescence signal formation was also significantly increased by HG and LPS combination treatment. Furthermore, we measured whether the mammalian target of rapamycin (mTOR) and the Notch3 signaling pathways were involved in HG and LPS-induced autophagy. The results showed that the combination of HG and LPS significantly increased the protein expression of Notch3 and decreased protein expression of p-mTOR, indicating that Notch3 and mTOR signaling pathways were activated. However, co-treatment with the Notch3 inhibitor (DAPT) could reverse the induction of autophagy, and increased the protein expression of p-mTOR. CONCLUSIONS: This study demonstrated that the combination effect of HG and LPS could induce autophagy in MDBK cells, and the Notch3/mTOR signaling pathway was involved in HG and LPS-induced autophagy.


Assuntos
Autofagia , Lipopolissacarídeos , Animais , Bovinos , Células Epiteliais/metabolismo , Glucose/farmacologia , Rim/metabolismo , Lipopolissacarídeos/toxicidade , Mamíferos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
Cells ; 11(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954253

RESUMO

The high mobility group box 1 (HMGB1), a well-known danger-associated molecule pattern (DAMP) molecule, is a non-histone chromosomal protein localized in the nucleus under normal physiological conditions. HMGB1 exhibits diverse functions depending on its subcellular location. In the present study, we investigated the role of HMGB1-induced autophagy in the lipopolysaccharide (LPS)-treated BV2 microglial cell line in mediating the transition between the inflammatory and autophagic function of the nucleotide-binding oligomerization domain-containing 2 (NOD2), a cytoplasmic pattern-recognition receptor. The induction of the microtubule-associated protein 1 light chain 3 (LC3), an autophagy biomarker, was detected slowly in BV2 cells after the LPS treatment, and peak induction was detected at 12 h. Under these conditions, NOD2 level was significantly increased and the binding between HMGB1 and NOD2 and between HMGB1 and ATG16L1 was markedly enhanced and the temporal profiles of the LC3II induction and HMGB1-NOD2 and HMGB1-ATG16L1 complex formation coincided with the cytosolic accumulation of HMGB1. The LPS-mediated autophagy induction was significantly suppressed in BV2 cells after HMGB1 or NOD2 knock-down (KD), indicating that HMGB1 contributes to NOD2-mediated autophagy induction in microglia. Moreover, NOD2-RIP2 interaction-mediated pro-inflammatory cytokine induction and NF-κB activity were significantly enhanced in BV2 cells after HMGB1 KD, indicating that HMGB1 plays a critical role in the modulation of NOD2 function between pro-inflammation and pro-autophagy in microglia. The effects of the cell-autonomous pro-autophagic pathway operated by cytoplasmic HMGB1 may be beneficial, whereas those from the paracrine pro-inflammatory pathway executed by extracellularly secreted HMGB1 can be detrimental. Thus, the overall functional significance of HMGB1-induced autophagy is different, depending on its temporal activity.


Assuntos
Proteína HMGB1 , Microglia , Alarminas/metabolismo , Autofagia , Proteína HMGB1/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo
14.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955441

RESUMO

BACKGROUND: Pyroptosis is a catabolic process relevant to periodontal disorders for which interleukin-1ß (IL-1ß) inflammation is central to the pathophysiology of the disease. Despite platelet-rich fibrin (PRF) anti-inflammatory properties and its application to support periodontal regeneration, the capacity of PRF to modulate pyroptosis, specifically the production and release of IL-1ß, remains unknown. The question arises whether PRF could regulate IL-1ß release from macrophages in vitro. METHODS: To answer this question, RAW 264.7 macrophages and primary macrophages obtained from murine bone marrow were primed with PRF before being challenged by lipopolysaccharide (LPS). Cells were then analysed for the pyroptosis signalling components by gene expression analyses and IL-1ß secretion at the protein level. The release of mitochondrial reactive oxygen species (ROS) was also detected. RESULTS: PRF lowered the LPS-induced expression of IL-1ß and NLRP3 inflammasome, caspase-11 and IL-18 in primary macrophages, and IL-1ß and caspase-11 in RAW 264.7 cells. Additionally, PRF diminished the secretion of IL-1ß at the protein level in LPS-induced RAW 264.7 cells. This was shown through immunoassays performed with the supernatant and further confirmed by analysing the lysates of permeabilised cells. Furthermore, PRF reduced the ROS release provoked by LPS in RAW 264.7 cells. Finally, to enhance IL-1ß release from the LPS-primed macrophages, we introduced a second signal with adenosine triphosphate (ATP). In this setting, PRF significantly reduced IL-1ß release in RAW 264.7 cells and a trend to diminish IL-1ß release in primary macrophages. CONCLUSION: These findings suggest that PRF can reduce IL-1ß release and, at least in part, inhibit pyroptosis-related factors in LPS-challenged macrophages.


Assuntos
Fibrina Rica em Plaquetas , Piroptose , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955448

RESUMO

Inflammation and hypoxia impair alveolar barrier tightness, inhibit Na- and fluid reabsorption, and cause edema. We tested whether stimulated alveolar macrophages affect alveolar Na-transport and whether hypoxia aggravates the effects of inflammation, and tested for involved signaling pathways. Primary rat alveolar type II cells (rA2) were co-cultured with rat alveolar macrophages (NR8383) or treated with NR8383-conditioned media after stimulation with lipopolysaccharide (LPS; 1 µg/mL) and exposed to normoxia and hypoxia (1.5% O2). LPS caused a fast, transient increase in TNFα and IL-6 mRNA in macrophages and a sustained increase in inducible nitric oxide synthase (NOS2) mRNA in macrophages and in rA2 cells resulting in elevated nitrite levels and secretion of TNF-α and IL-6 into culture media. In normoxia, 24 h of LPS treated NR8383 decreased the transepithelial electrical resistance (TEER) of co-cultures, of amiloride-sensitive short circuit current (ISCΔamil); whereas Na/K-ATPase activity was not affected. Inhibition was also seen with conditioned media from LPS-stimulated NR8383 on rA2, but was less pronounced after dialysis to remove small molecules and nitrite. The effect of LPS-stimulated macrophages on TEER and Na-transport was fully prevented by the iNOS-inhibitor L-NMMA applied to co-cultures and to rA2 mono-cultures. Hypoxia in combination with LPS-stimulated NR8383 totally abolished TEER and ISCΔamil. These results indicate that the LPS-stimulation of alveolar macrophages impairs alveolar epithelial Na-transport by NO-dependent mechanisms, where part of the NO is produced by rA2 induced by signals from LPS stimulated alveolar macrophages.


Assuntos
Lipopolissacarídeos , Macrófagos Alveolares , Animais , Meios de Cultivo Condicionados/farmacologia , Hipóxia/metabolismo , Inflamação , Interleucina-6/genética , Interleucina-6/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos Alveolares/metabolismo , Nitritos/farmacologia , RNA Mensageiro , Ratos , Sódio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
16.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955520

RESUMO

Naegleria fowleri is a ubiquitous protozoa parasite that can cause primary amoebic meningoencephalitis (PAM), a fatal brain infection in humans. Cathepsin Bs of N. fowleri (NfCBs) are multifamily enzymes. Although their pathogenic mechanism in PAM is not clearly understood yet, NfCBs have been proposed as pathogenic factors involved in the pathogenicity of amoeba. In this study, the immune response of BV-2 microglial cells induced by NfCB was analyzed. Recombinant NfCB (rNfCB) evoked enhanced expressions of TLR-2, TLR-4, and MyD88 in BV-2 microglial cells. This enzyme also induced an elevated production of several pro-inflammatory cytokines such as TNF-α, IL-1α, IL-1ß, and IL-6 and iNOS in cells. The inhibition of mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK, effectively reduced the production of these pro-inflammatory cytokines. The rNfCB-induced production of pro-inflammatory cytokines in BV-2 microglial cells was suppressed by inhibiting NF-kB and AP-1. Phosphorylation and nuclear translocation of p65 in cells were also enhanced by rNfCB. These results suggest that NfCB can induce a pro-inflammatory immune response in BV-2 microglial cells via the NF-κB- and AP-1-dependent MAPK signaling pathways. Such a NfCB-induced pro-inflammatory immune response in BV-2 microglial cells might contribute to the pathogenesis of PAM caused by amoeba, by exacerbating deleterious immune responses and tissue damages in N. fowleri-infected foci of the brain.


Assuntos
Naegleria fowleri , Catepsina B/metabolismo , Citocinas/metabolismo , Humanos , Imunidade , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Naegleria fowleri/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955552

RESUMO

Chronic inflammation caused by liver damage or infection plays an important role in the development and progression of hepatocellular carcinoma (HCC). The activation of Toll-like receptors 4 (TLR4) is involved in HCC tumorigenesis. Moreover, high TLR4 expression in HCC has been linked to poor prognosis. Although the expression of TLR4 in HCC is relatively low compared to hematopoietic cells, it is important to explore the molecular mechanism leading to the elevation of TLR4 in HCC. In this study, we aimed to investigate the positive regulating loop for TLR4 expression in HCC in response to chronic inflammation. Our results confirm that the mRNA expression of TLR4 and proinflammatory cytokines, including interleukin 6 (IL6) and C-C motif chemokine ligand 2 (CCL2), positively correlate in human HCC samples. High TLR4 expression in HCC is more susceptible to lipopolysaccharide (LPS); TLR4 activation in HCC provides growth and survival advantages and thus promotes tumorigenesis. It has been shown that the LIN28/let-7 microRNA (miRNA) axis is a downstream effector of the TLR4 signal pathway, and let-7 miRNA is a potential post-transcriptional regulator for TLR4. Thus, we investigated the correlation between TLR4 and LIN28A mRNA and let-7g miRNA in HCC clinical samples and found that the expression of TLR4 was positively correlated with LIN28A and negatively correlated with let-7g miRNA. Moreover, by culturing PLC/PRF5 (PLC5) HCC cells in low-dose LPS-containing medium to mimic chronic inflammation for persistent TLR4 activation, the mRNA and protein levels of TLR4 and LIN28A were elevated, and let-7g miRNA was decreased. Furthermore, the 3' untranslated region (3'UTR) of TLR4 mRNA was shown to be the target of let-7g miRNA, suggesting that inhibition of let-7g miRNA is able to increase TLR4 mRNA. While parental PLC5 cells have a low susceptibility to LPS-induced cell growth, long-term LPS exposure for PLC5 cells leads to increased proliferation, cytokine expression and stemness properties. In conclusion, our studies demonstrate positive feedback regulation for chronic TLR4 activation in the modulation of TLR4 expression level through the LIN28A/let-7g pathway in HCC and suggest a connection between chronic inflammation and TLR4 expression level in HCC for promoting tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Retroalimentação , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955562

RESUMO

Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory-a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent ß-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Animais , Endocanabinoides/farmacologia , Hiperalgesia/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Camundongos , Doenças Neuroinflamatórias , Medula Espinal
19.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955576

RESUMO

The tumor microenvironment of colon carcinoma, the site at which tumor cells and the host immune system interact, is influenced by signals from tumor cells, immunocompetent cells, and bacterial components, including LPS. A large amount of LPS is available in the colon, and this could promote inflammation and metastasis by enhancing tumor cell adhesion to the endothelium. Polydatin (PD), the 3-ß-D-glucoside of trans-resveratrol, is a polyphenol with anti-cancer, anti-inflammatory, and immunoregulatory effects. This study was designed to explore whether PD is able to produce antiproliferative effects on three colon cancer lines, to reduce the expression of adhesion molecules that are upregulated by LPS on endothelial cells, and to decrease the proinflammatory cytokines released in culture supernatants. Actually, we investigated the effects of PD on tumor growth in a coculture model with human mononuclear cells (MNCs) that mimics, at least in part, an in vitro tumor microenvironment. The results showed that PD alone or in combination with MNC exerts antiproliferative and proapoptotic effects on cancer cells, inhibits the production of the immunosuppressive cytokine IL-10 and of the proinflammatory cytokines upregulated by LPS, and reduces E-selectin and VCAM-1 on endothelial cells. These data provide preclinical support to the hypothesis that PD could be of potential benefit as a therapeutic adjuvant in colon cancer treatment and prevention.


Assuntos
Neoplasias do Colo , Microambiente Tumoral , Neoplasias do Colo/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Glucosídeos/uso terapêutico , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Estilbenos
20.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955707

RESUMO

SLC25A39/40, involved in mitochondrial GSH (mGSH) import from the cytoplasm, is essential for protection against oxidative stress and mitochondrial dysfunction. We examined the effects of cholestasis, through bile duct ligation (BDL) and lipopolysaccharide (LPS)-induced inflammation in mice, on Slc25a39/40 expression. Additionally, we used human clear cell renal carcinoma (KMRC-1) cells to elucidate the mechanism of regulation of SLC25A39/40 expression in the kidneys after LPS treatment. BDL resulted in a decrease in Slc25a39 mRNA in the liver and a decrease in Slc25a39/40 mRNA and protein in the kidneys. Consequently, there was a significant decrease in mGSH levels in the kidneys of BDL mice compared with those in sham mice. LPS treatment resulted in increased Slc25a40 expression in the kidneys. In KMRC-1 cells, the combination treatment of LPS-RS or FPS-ZM1 with LPS suppressed the LPS-induced increase in SLC25A40, suggesting that SLC25A40 expression could be regulated by the signaling pathway via toll-like receptor 4 and the receptor for advanced glycation end products, respectively. Our findings contribute to understanding the role of mGSH in the maintenance of the mitochondrial redox state. To the best of our knowledge, this is the first study that demonstrates the changes in Slc25a39/40 expression in mice with cholestasis-associated renal injury and LPS-induced inflammation.


Assuntos
Colestase , Lipopolissacarídeos , Animais , Ductos Biliares/metabolismo , Colestase/metabolismo , Glutationa/metabolismo , Humanos , Inflamação/patologia , Ligadura , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...