Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.309
Filtrar
1.
Multimedia | Recursos Multimídia | ID: multimedia-11094

RESUMO

Venha participar da nossa Live no You tube "Homeopatia e sua aplicação na agricultura'', no dia 30 de Agosto de 2023 às 20h00. Onde teremos a honra de receber o Eng. Guilherme Jorge Giorgi como Palestrante e Apresentação Dr. Oscar Taylor. Na live sobre homeopatia na agricultura, mergulhamos na fascinante aplicação dos princípios homeopáticos para promover a saúde das plantas e do solo. Começamos com uma introdução esclarecedora à homeopatia, destacando a base da Lei dos Semelhantes e da diluição/agitação.


Assuntos
Agricultura , Homeopatia , Produção de Alimentos , Controle de Insetos , Agricultura Orgânica
2.
J Insect Sci ; 23(4)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527467

RESUMO

Xylosandrus spp. ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are important wood-boring pests of nursery trees weakened by abiotic and biotic stressors. Acibenzolar-S-methyl (ASM), a plant defense elicitor, was tested for inhibiting Xylosandrus spp. tunneling (i.e., attacks) into flood-stressed flowering dogwoods (Cornus florida L. (Cornales: Cornaceae)). Container-grown dogwoods were treated with ASM substrate drench + flooding, ASM foliar spray + flooding, ASM drench + no flooding, ASM foliar + no flooding, no ASM + flooding, or no ASM + no flooding at 3 days before flood stress in a completely randomized design under field conditions. Trees were flooded for 14 days and then drained and watered as needed. Attacks were counted every 2 days for 28 days. Plant tissue samples were collected at 7 and 14 days after flooding to determine ethanol content using solid-phase microextraction-gas chromatography-mass spectrometry. Trees were dissected to determine gallery formation and depth, fungal colonization, and the presence of eggs, larvae, and adults. The highest number of Xylosandrus beetle species attacks were recorded from plants exposed to no ASM + flooding, but attacks were reduced in ASM treated trees (drench or foliar) + flooding. Trees treated with drenches had fewer attacks than foliar sprays. Plants assigned to no flood had the fewest beetle attacks. Moreover, ASM reduced Xylosandrus spp. gallery formation and depth, fungal colonization, and presence of eggs, larvae, and adults. All flooded trees produced ethanol. In conclusion, ASM induced a plant defense response to Xylosandrus spp. tunneling in dogwoods under flood stress conditions.


Assuntos
Besouros , Cornus , Gorgulhos , Animais , Gorgulhos/fisiologia , Controle de Insetos/métodos , Ambrosia , Óvulo , Árvores , Larva , Etanol/farmacologia
3.
Arch Insect Biochem Physiol ; 114(2): 1-19, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37497800

RESUMO

Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.


Assuntos
Antimaláricos , Inseticidas , Metarhizium , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/química , Controle de Insetos , Insetos , Controle Biológico de Vetores/métodos
4.
Acta Trop ; 246: 106993, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37516421

RESUMO

Chagas disease is a vector-borne disease caused by Trypanosoma cruzi, which is transmitted by triatomine insects. Triatoma infestans is one of the main vectors. Efforts to eliminate T. infestans have often failed in the Gran Chaco, the largest endemic area of this species. Known methods for assessing triatomine house infestation include timed-manual collections by skilled personnel, bug notifications by householders' and/or non-baited detection devices. However, the detection sensitivity of those methods needs to be improved, especially when the bugs are present at low densities. In this work we design and evaluate the performance of two types of sticky traps (pitfall and climbing traps), when baited with a synthetic host odor lure, to capture T. infestans nymphs within an experimental box under semi-controlled laboratory conditions. Nine assays were conducted for each type of trap using a different experimental box per type of trap design and per treatment. These treatments were: test (T, trap baited with the synthetic lure), positive control (C+, trap baited with a mouse) and negative control (C-, empty trap). One hundred percent of the sticky pitfall and 89% of the climbing traps baited with the synthetic lure captured at least one insect. Moreover, the sticky pitfall trap and the sticky climbing trap, both baited with the synthetic lure, captured 30% and 40% of the insects in a single night, respectively. In both cases, the trap with the synthetic lure captured significantly more insects than the non-baited trap. However, the synthetic lure could be improved, as the traps with this lure captured significantly less insects than the traps with a live host. In summary, the two types of synthetically-baited traps tested were able to capture T. infestans nymphs, indicating that both designs are effective under the laboratory experimental conditions and insect abundance used in this work. These traps deserve to be tested in a field setting.


Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Camundongos , Odorantes , Controle de Insetos/métodos
5.
Fly (Austin) ; 17(1): 2234265, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37471037

RESUMO

Three Stigmatomyces species were detected on five drosophilid species from Japan. We report Stigmatomyces majewskii on Drosophila rufa and Drosophila suzukii, Stigmatomyces scaptodrosophilae on Scaptodrosophila coracina and Scaptodrosophila subtilis, and Stigmatomyces sacaptomyzae on Scaptomyza graminum. Except for Scaptomyza graminum, each of these species is a newly identified Stigmatomyces host. Our discovery that D. suzukii is a host of S. majewskii may provide new pest management approaches for this global agricultural pest insect.


Assuntos
Ascomicetos , Drosophila , Animais , Japão , Controle de Insetos
6.
J Insect Sci ; 23(4)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418248

RESUMO

Exotic ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), such as Xylosandrus crassiusculus (Motschulsky), Xylosandrus germanus (Blandford), and Xylosandrus compactus (Eichoff) are serious pests in southeastern ornamental nurseries. Preventative pyrethroid trunk sprays effectively reduce boring damage. However, it is unclear how pyrethroids such as permethrin prevent attack. Thus, the objective was to determine how permethrin-treated bolts interact with invading ambrosia beetles. In 2022, a study with 2 independent trials was conducted in a nursery on red maple (Acer rubrum L.), bolts during March and April, respectively. The treatments were (i) nonbaited, nontreated bolt, (ii) ethanol baited bolt, (iii) nonbaited bolt + glue [painted on bolt], (iv) ethanol baited bolt + glue, (v) ethanol baited bolt + glue + permethrin, (vi) ethanol baited bolt + glue + permethrin + verbenone, and (vii) ethanol baited bolt + glue + verbenone. Ambrosia beetles trapped on glue, beetles which fell into the pail with soap solution under the bolts, and entry holes on bolts were quantified. Permethrin prevented beetle attacks but did not reduce the number of ambrosia beetles landing on the treated bolts. Verbenone reduced ambrosia beetles from landing on the bolts but did not prevent boring into bolts. The numbers of ambrosia beetles in soapy water were not significantly different among treatments. Ambrosia beetles are landing on permethrin-treated bolts but not boring into the bolts, implying that fresh permethrin residues may not be necessary for ambrosia beetle management.


Assuntos
Besouros , Piretrinas , Gorgulhos , Animais , Permetrina/farmacologia , Ambrosia , Controle de Insetos , Árvores , Etanol/farmacologia
7.
Pest Manag Sci ; 79(10): 4004-4010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37288874

RESUMO

BACKGROUND: The Asian needle ant, Brachyponera chinensis, is an invasive ant currently spreading in urban and natural habitats throughout the eastern United States. Recent studies have documented the negative impact of B. chinensis on native ecosystems and human health, yet effective control strategies are lacking. Control difficulties are, in part, due to the unique biology of B. chinensis, which is a predatory ant and a termite specialist. Given that subterranean termites are an important nutritional resource for B. chinensis, the current study evaluated the potential of termite cuticular extract to improve the target-specificity and efficacy of commercial bait used for B. chinensis control. RESULTS: The efficacy of bait augmented with termite cuticular extracts was evaluated in laboratory and field trials. In laboratory assays, B. chinensis colonies were offered granular bait treated with termite cuticular extract. Results demonstrated that the acceptance of commercial bait is significantly increased by the addition of termite cuticular extract or synthetic (Z)-9-pentacosene, a major component of termite cuticular extract. Foraging activity of Asian needle ants was significantly greater on baits augmented with termite cuticular extract or (Z)-9-pentacosene relative to standard bait. Furthermore, bait augmented with termite cuticular extract worked substantially faster relative to standard bait. To evaluate population effects, field studies were conducted in forested areas invaded by B. chinensis. Bait treated with termite cuticular extract scattered on the forest floor provided rapid control of B. chinensis and ant densities throughout the treated plots declined by 98% within 14 days. CONCLUSION: The incorporation of termite cuticular extracts and individual cuticular hydrocarbons such as (Z)-9-pentacosene into traditional baits used for B. chinensis control may offer a novel tool to manage this increasingly problematic invasive ant. © 2023 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Formigas , Inseticidas , Isópteros , Animais , Humanos , Inseticidas/farmacologia , Controle de Insetos/métodos , Ecossistema
8.
Plant J ; 116(1): 23-37, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309832

RESUMO

The non-seed plants (e.g., charophyte algae, bryophytes, and ferns) have multiple human uses, but their contributions to agriculture and research have lagged behind seed plants. While sharing broadly conserved biology with seed plants and the major crops, non-seed plants sometimes possess alternative molecular and physiological adaptations. These adaptations may guide crop improvements. One such area is the presence of multiple classes of insecticidal proteins found in non-seed plant genomes which are either absent or widely diverged in seed plants. There are documented uses of non-seed plants, and ferns for example have been used in human diets. Among the occasional identifiable toxins or antinutritive components present in non-seed plants, none include these insecticidal proteins. Apart from these discrete risk factors which can be addressed in the safety assessment, there should be no general safety concern about sourcing genes from non-seed plant species.


Assuntos
Gleiquênias , Plantas , Humanos , Plantas/genética , Sementes , Gleiquênias/genética , Controle de Insetos , Agricultura
9.
Environ Entomol ; 52(4): 627-631, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37284820

RESUMO

Jujube gall midge (Dasineura jujubifolia Jiao & Bu) (Diptera: Cecidomyiidae) is an important pest in jujube (Ziziphus jujuba Mill.) orchards in Aksu, Xinjiang, China. Yellow sticky traps are the main device used for monitoring jujube gall midge adults, but their efficacy is low. Here, we compared the effectiveness of yellow sticky traps with water pan traps (are commonly used for trapping Diptera insects) to monitor jujube gall midge adults. Yellow sticky traps and pan traps were deployed for 2 consecutive years in jujube orchards in Aksu, Xinjiang, China. The midge's population dynamics as revealed by these 2 trap types were consistent, but the effectiveness of pan traps was about 5 times greater than that of the yellow sticky traps. In addition, pan traps captured fewer non-target species (e.g., parasitic wasps, lacewings, and lady beetles) than yellow sticky traps. Our study suggests that pan trap is an effective device to monitor jujube gall midge adults with minimal harm to natural enemies.


Assuntos
Dípteros , Ziziphus , Animais , Controle de Insetos/métodos , Nematóceros , Frutas
10.
PLoS Negl Trop Dis ; 17(6): e0011398, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276209

RESUMO

Controlling tsetse flies is critical for effective management of African trypanosomiasis in Sub-Saharan Africa. To enhance timely and targeted deployment of tsetse control strategies a better understanding of their temporal dynamics is paramount. A few empirical studies have explained and predicted tsetse numbers across space and time, but the resulting models may not easily scale to other areas. We used tsetse catches from 160 traps monitored between 2017 and 2019 around Shimba Hills National Reserve in Kenya, a known tsetse and trypanosomiasis hotspot. Traps were divided into two groups: proximal (<1.0 km)) to and distant (> 1.0 km) from the outer edge of the reserve boundary. We fitted zero-inflated Poisson and generalized linear regression models for each group using as temporal predictors rainfall, NDVI (Normalized Difference Vegetation Index), and LST (land surface temperature). For each predictor, we assessed their relationship with tsetse abundance using time lags from 10 days up to 60 days before the last tsetse collection date of each trap. Tsetse numbers decreased as distance from the outside of reserve increased. Proximity to croplands, grasslands, woodlands, and the reserve boundary were the key predictors for proximal traps. Tsetse numbers rose after a month of increased rainfall and the following increase in NDVI values but started to decline if the rains persisted beyond a month for distant traps. Specifically, tsetse flies were more abundant in areas with NDVI values greater than 0.7 for the distant group. The study suggests that tsetse control efforts beyond 1.0 km of the reserve boundary should be implemented after a month of increased rains in areas having NDVI values greater than 0.7. To manage tsetse flies effectively within a 1.0 km radius of the reserve boundary, continuous measures such as establishing an insecticide-treated trap or target barrier around the reserve boundary are needed.


Assuntos
Tripanossomíase Africana , Tripanossomíase , Moscas Tsé-Tsé , Animais , Quênia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Florestas , Controle de Insetos
11.
Proc Biol Sci ; 290(2001): 20230463, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357856

RESUMO

Diurnal biting flies are strongly attracted to blue objects. This behaviour is widely exploited for fly control, but its functional significance is debated. It is hypothesized that blue objects resemble animal hosts; blue surfaces resemble shaded resting places; and blue attraction is a by-product of attraction to polarized light. We computed the fly photoreceptor signals elicited by a large sample of leaf and animal integument reflectance spectra, viewed under open/cloudy illumination and under woodland shade. We then trained artificial neural networks (ANNs) to distinguish animals from leaf backgrounds, and shaded from unshaded surfaces, in order to find the optimal means of doing so based upon the sensory information available to a fly. After training, we challenged ANNs to classify blue objects used in fly control. Trained ANNs could make both discriminations with high accuracy. They discriminated animals from leaves based upon blue-green photoreceptor opponency and commonly misclassified blue objects as animals. Meanwhile, they discriminated shaded from unshaded stimuli using achromatic cues and never misclassified blue objects as shaded. We conclude that blue-green opponency is the most effective means of discriminating animals from leaf backgrounds using a fly's sensory information, and that blue objects resemble animal hosts through such mechanisms.


Assuntos
Mordeduras e Picadas de Insetos , Moscas Tsé-Tsé , Animais , Cor , Controle de Insetos , Estimulação Luminosa , Comportamento Animal
12.
J Econ Entomol ; 116(4): 1391-1397, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300369

RESUMO

Spotted-wing Drosophila, Drosophila suzukii, is an economically important pest of small fruits worldwide. Currently, the timing of management strategies relies on detection of adult flies captured in baited monitoring traps; however, identifying D. suzukii in trap catch based on morphology can be challenging for growers. DNA-based diagnostic methods such as loop-mediated isothermal amplification (LAMP) have the potential to improve D. suzukii detection. This study evaluated a LAMP assay as a diagnostic tool to discriminate between D. suzukii and closely related drosophilid species found commonly in monitoring traps in the Midwestern United States. Targeting the mitochondrial cytochrome oxidase I (COI) gene, we found the LAMP assay accurately detected D. suzukii with as little as 0.1 ng/µl of DNA at 63 °C for 50 min. Under these optimal incubation conditions, D. suzukii could be discriminated from D. affinis and D. simulans consistently, when specimens collected from liquid monitoring traps were tested independently. Compared to other DNA-based diagnostic tools for D. suzukii, LAMP offers unique benefits: DNA extraction is not required, testing occurs at one temperature in less than 1 h, and positive results are visible as a colorimetric change from pink to yellow. The LAMP assay for D. suzukii can reduce reliance on morphological identification, enhance the adoption of monitoring tools, and improve accuracy of detection. Further optimization can be conducted to evaluate the accuracy and sensitivity of results when a mixture of DNA from both D. suzukii and congener flies are tested in a single LAMP reaction.


Assuntos
Drosophila , Controle de Insetos , Estados Unidos , Animais , Meio-Oeste dos Estados Unidos , Frutas
13.
J Econ Entomol ; 116(4): 1296-1306, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312603

RESUMO

Pest insect surveillance using lures is widely used to support market access requirements for traded articles that are hosts or carriers of quarantine pests. Modeling has been used extensively to guide the design of surveillance to support pest free area claims but is less commonly applied to provide confidence in pest freedom or low pest prevalence within sites registered for trade. Site-based surveillance typically needs to detect pests that are already present in the site or that may be entering the site from surrounding areas. We assessed the ability of site-based surveillance strategies to detect pests originating from within or outside the registered site using a probabilistic trapping network simulation model with random-walk insect movement and biologically realistic parameters. For a given release size, time-dependent detection probability was primarily determined by trap density and lure attractiveness, whereas mean step size (daily dispersal) had limited effect. Results were robust to site shape and size. For pests already within the site, detection was most sensitive using regularly spaced traps. Perimeter traps performed best for detecting pests moving into the site, although the importance of trap arrangement decreased with time from release, and random trap placement performed relatively well compared to regularly spaced traps. High detection probabilities were achievable within 7 days using realistic values for lure attractiveness and trap density. These findings, together with the modeling approach, can guide the development of internationally agreed principles for designing site-based surveillance of lure-attractant pests that is calibrated against the risk of non-detection.


Assuntos
Controle de Insetos , Mariposas , Animais , Controle de Insetos/métodos , Modelos Estatísticos , Feromônios
14.
J Econ Entomol ; 116(4): 1171-1177, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37318334

RESUMO

In commercial apple orchards, the odor-baited trap tree approach involving the synergistic lure composed of benzaldehyde (BEN) and the PC aggregation pheromone grandisoic acid (GA) serves as an effective monitoring tool as well as an attract-and-kill strategy for plum curculio (PC), Conotrachelus nenuphar Herbst. (Coleoptera: Curculionidae), management. However, the relatively high cost of the lure and the degradation of commercial BEN lures by UV light and heat discourage its adoption by growers. Over a 3-yr period, we compared the attractiveness of methyl salicylate (MeSA), either alone or in combination with GA, to plum curculio (PC) with that of the standard combination of BEN + GA. Our main goal was to identify a potential replacement for BEN. Treatment performance was quantified using 2 approaches: (i) unbaited black pyramid traps (2020, 2021) to capture PC adults and (ii) PC oviposition injury (2021, 2022) on apple fruitlets of trap trees and of neighboring trees to assess potential spillover effects. Traps baited with MeSA captured significantly more PCs than unbaited traps. Trap trees baited with a single MeSA lure and 1 GA dispenser attracted a similar number of PCs as trap trees baited with the standard lure composed of 4 BEN lures and 1 GA dispenser based on PC injury. Trap trees baited with MeSA + GA received significantly more PC fruit injury than neighboring trees suggesting no or limited spill-over effects. Our collective findings suggest that MeSA is a replacement for BEN thereby cutting costs of lures by ca. 50% while maintaining trap tree effectiveness.


Assuntos
Besouros , Malus , Prunus domestica , Gorgulhos , Feminino , Animais , Árvores , Odorantes , Feromônios/farmacologia , Controle de Insetos
15.
J Econ Entomol ; 116(4): 1317-1320, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329262

RESUMO

Many nuisance arthropods occur in homes. In this study, nuisance arthropods are defined as any arthropod other than cockroaches and bed bugs. We examined nuisance arthropods found on sticky traps in 1,581 low-income apartments in four cities in New Jersey during 2018-2019 as part of a study for monitoring cockroach infestations. Four sticky traps (three in the kitchen, one in the bathroom) were placed in each apartment for approximately two weeks. Forty two percent of the apartments had nuisance arthropods on sticky traps. The relative abundance of different groups of arthropods were flies-36%, beetles-23%, spiders-14%, ants-10%, booklice-5%, and others-12%. The flies were further grouped into the following subgroups and their relative abundance were fungus gnats-42%, phorid flies-18%, moth flies-17%, fruit flies-10%, midges-8%, and others-5%. Among the beetles, 82% were stored product beetles (including spider beetles). Summer months (May-July) had a much higher frequency of nuisance arthropods occurrence than winter months (November-January). In addition to installing sticky traps, we also conducted interviews with 1,020 residents. Only 13% of the interviewed residents indicated sightings of nuisance arthropods. Resident interviews revealed a much higher relative frequency of sightings for flies (58%), much lower frequency for beetles (4%), and much higher frequency for mosquitoes compared to those captured on sticky traps. We conclude that sticky traps provide much more accurate information on indoor nuisance arthropod abundance and diversity than resident interviews and are a valuable tool for monitoring indoor nuisance arthropods.


Assuntos
Artrópodes , Besouros , Aranhas , Animais , Controle de Insetos , New Jersey , Prevalência , Drosophila
16.
J Econ Entomol ; 116(4): 1432-1446, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352550

RESUMO

Certain lures are marketed toward particular pests or classes of pests, while others might be multi-species lures. Investigative aims for this study included both which trap was most sensitive and whether different combinations of traps and attractants were delivering novel information about the stored product insect community. Comparisons were made for all combinations of 3 commercial traps and 4 different attractants plus an untreated control on the capture of stored-product insects for 2 consecutive years in 3 food processing facilities in Central Greece. The traps used in the experiments were Dome Trap (Trécé Inc., USA), Wall Trap (Trécé) and Box Trap (Insects Limited, Ltd., USA). The attractants that were evaluated were 0.13 g of (i) PantryPatrol gel (Insects Limited), (ii) Storgard kairomone food attractant oil (Trécé), (iii) wheat germ (Honeyville, USA), and (iv) Dermestid tablet attractant (Insects Limited). The traps were inspected approximately every 15 days and rotated. A total of 34,000+ individuals were captured belonging to 26 families and at least 48 species. The results indicated that Indian meal moth, Plodia interpunctella (Hübner), red flour beetle, Tribolium castaneum (Herbst), and cigarette beetle, Lasioderma serricorne (F.) were the most abundant. Although there were noticeable differences among the different traps and attractants for specific species, all combinations provided similar information on population dynamics. Generally, Dome traps baited with either the oil or the gel, were found to be the most sensitive. The results of the present study demonstrate the importance of long-term trapping protocols, as a keystone in IPM-based control strategies in food processing facilities.


Assuntos
Besouros , Lepidópteros , Animais , Grécia , Controle de Insetos/métodos , Insetos , Manipulação de Alimentos , Feromônios
17.
Environ Sci Pollut Res Int ; 30(35): 83760-83770, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37347326

RESUMO

The increasing demand for food has required intensive use of pesticides which are hazardous to the ecosystem. A valid alternative is represented by biopesticides; however, these molecules are often insoluble in water, and poorly bioavailable. Nanopesticides can be engineered to reach a selected target with controlled release of the active principle. In this work, capsaicin, an irritant alkaloid from hot chili peppers, and hydroxytyrosol, a phenolic compound obtained from extra-virgin olive oil by-products, were loaded into innovative nanocarriers. These were designed ad hoc combining exopolysaccharides from the cyanobacteria Neocyanospira capsulata, and a lipid component, i.e., egg phosphatidylcholine. The polysaccharide was chosen for chemical affinity with the chitin of insect exoskeleton, while the lipids were introduced to modulate the carrier rigidity. The newly formed nanosystems were characterized by physico-chemical techniques and tested for their possible use in pest control programs. The Mediterranean Fruit Fly Ceratitis capitata Wiedemann, 1824 (Diptera, Tephriditae), a pest of the Mediterranean Region causing high economic losses, was used as a model insect. We found that the nanoformulations nanocarriers prepared in this work, were able to increase the ovicidal effect of hydroxytyrosol. Moreover, the formulation encapsulating either hydroxytyrosol or capsaicin were able to reduce the number of females landing on treated apricots.


Assuntos
Ceratitis capitata , Animais , Feminino , Capsaicina/farmacologia , Ecossistema , Controle de Insetos/métodos
18.
Pest Manag Sci ; 79(10): 3486-3492, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37139847

RESUMO

BACKGROUND: Spotted lanternfly, an invasive planthopper which was first found in 2014 in the eastern USA, has become a significant pest to vineyards. Sap-feeding by this pest has been associated with plant stress and yield declines, and current management depends entirely on the prophylactic use of insecticides. Our study explored two new integrated pest management (IPM) tactics against spotted lanternfly to reduce the negative effects of frequent chemical applications: the use of exclusion netting and the use of perimeter applications of insecticides. RESULTS: Exclusion netting was installed across five vineyards in 2020 and compared to adjacent vines without exclusion netting. The netting reduced spotted lanternfly on vines by 99.8% and had no effect on air temperature, humidity, fungal disease pressure, or fruit quality. Perimeter applications of insecticides were compared against full-cover applications for both in-season and late-season control of spotted lanternfly in 2020. Residual efficacy with adult spotted lanternfly was evaluated within the vineyard plots, revealing that insecticide efficacy declined after 8 m into the vineyard in the perimeter application. However, there was no difference in the level of control achieved using a perimeter spray compared to a full-cover spray. Additionally, the perimeter spray reduced the area treated with insecticide by 31% in a 1 ha block and took 66% less time to spray. CONCLUSION: Both methods, exclusion netting and perimeter spraying, offer new strategies to alleviate the invasion of spotted lanternfly into vineyards, reducing chemical input and rebuilding IPM in vineyards after invasion by spotted lanternfly. © 2023 Society of Chemical Industry.


Assuntos
Inseticidas , Fazendas , Controle de Insetos/métodos , Frutas
19.
J Sci Food Agric ; 103(13): 6373-6382, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37205787

RESUMO

BACKGROUND: The application of allyl isothiocyanate (AITC) has been proposed as an alternative to control stored-grain insects. However, AITC is a compound with a low diffusion coefficient, making its distribution throughout the grain mass difficult. Therefore, the objective of the present study was to evaluate the effectiveness of AITC applied in systems with or without recirculation for controlling Sitophilus zeamais (Mots. 1855) (Coleoptera: Curculionidae), Rhyzopertha dominica (Fabr.) (Coleoptera: Bostrichidae), and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) infesting a corn grain mass. The assays used a polyvinyl chloride (PVC) prototype, dimensioned 1.60 m in length, 0.30 m in diameter, and a static capacity of 60 kg of grains. AITC toxicity to insects was evaluated at the base, 0.5 m from the base, and top of the grain column (1.0 m). Different concentrations of AITC were tested for an exposure period of 48 h. RESULTS: In the system without AITC recirculation, insect mortality was verified only at the base of the grain column. However, insect mortality was considered uniform at the different positions of the column when the AITC recirculation system was adopted. In this system, there was also a marked reduction in the instantaneous population growth rate of S. zeamais, T. castaneum, and R. dominica, and a decrease in the dry matter loss of the grains, when the AITC concentrations were increased. CONCLUSION: AITC recirculation proved to be a viable strategy for protecting grains against the species S. zeamais, R. dominica, and T. castaneum. AITC fumigation ultimately did not cause changes in grain quality. © 2023 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Tribolium , Gorgulhos , Animais , Zea mays , Controle de Insetos , Insetos , Grão Comestível
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...