Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 641
Filtrar
1.
J Biol Inorg Chem ; 29(5): 519-529, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009790

RESUMO

Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl2].4H2O (1), [In(lap)2Cl(Et3N)] (2), [In(lap)3]·2H2O (3) [In(lap)(bipy)Cl2] bipy = 2,2'-bipyridine (4) and [In(lap)(phen)Cl2] phen = 1,10-phenanthroline (5) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (4) and (5) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2'-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (4) and (5) interacted with CT-DNA in vitro by an intercalative mode, only 5 exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (5) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (5) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (5) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (5) are of utmost relevance.


Assuntos
Antineoplásicos , Neoplasias da Mama , DNA , Índio , Naftoquinonas , Humanos , Naftoquinonas/química , Naftoquinonas/farmacologia , Índio/química , Índio/farmacologia , DNA/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Cristalografia por Raios X , Células MCF-7 , Modelos Moleculares , Estrutura Molecular
2.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000394

RESUMO

A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone ß-carbon with the furanyl moiety and structural modification of the α,ß-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VII-X), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays.


Assuntos
Antineoplásicos , Hidroquinonas , Simulação de Acoplamento Molecular , Pirazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Hidroquinonas/química , Hidroquinonas/farmacologia , Hidroquinonas/síntese química , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Chalcona/farmacologia , Células HT29 , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Animais
3.
Chem Biol Drug Des ; 104(1): e14596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054402

RESUMO

We have conducted an experimental and computational evaluation of new doxorubicin (4a-c) and ß-lapachone (5a-c) analogs. These novel anticancer analogs were previously synthesized, but had not been tested or characterized until now. We have evaluated their antiproliferative and DNA cleavage inhibition properties using breast (MCF-7 and MDA-MB-231) and prostate (PC3) cancer cell lines. Additionally, cell cycle analysis was performed using flow cytometry. Computational studies, including molecular docking, pharmacokinetic properties, and an analysis of DFT and QTAIM chemical descriptors, were performed to gain insights into the electronic structure and elucidate the molecular binding of the new ß-lapachone and doxorubicin analogs with a DNA sequence and Topoisomerase II (Topo II)α. Our results show that 4a analog displays the highest antiproliferative activity in cancer cell lines by inducing cell death. We observed that stacking interactions and hydrogen bonding are essential to stabilize the molecule-DNA-Topo IIα complex. Moreover, 4a and 5a analogs inhibited Topo's DNA cleavage activity. Pharmacodynamic results indicated that studied molecules have favorable adsorption and permeability properties. The calculated chemical descriptors indicate that electron accumulation in quinone rings is relevant to the reactivity and biological activity. Based on our results, 4a is a strong candidate for becoming an anticancer drug.


Assuntos
Antineoplásicos , Proliferação de Células , DNA Topoisomerases Tipo II , Doxorrubicina , Simulação de Acoplamento Molecular , Naftoquinonas , Naftoquinonas/química , Naftoquinonas/farmacologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , DNA Topoisomerases Tipo II/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo , Clivagem do DNA/efeitos dos fármacos
4.
Breast Cancer Res Treat ; 208(1): 79-88, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38896333

RESUMO

PURPOSE: The insulin-like growth factor (IGF) system includes IGF-I, IGF-II insulin and their membrane receptors. IGF system also includes a family of proteins namely insulin-like growth factor-binding proteins (IGFBPs) composed for six major members (IGFBP-1 to IGFBP6), which capture, transport and prolonging half-life of IGFs. However, it has been described that IGFBPs can also have other functions. METHODS: IGFBP5 expression was inhibited by shRNAs, migration was analyzed by scratch-wound assays, invasion assays were performed by the Boyden chamber method, spheroids formation assays were performed on ultra-low attachment surfaces, expression and phosphorylation of proteins were analyzed by Western blot. RESULTS: IGFBP5 is a repressor of IGF-IR expression, but it is not a repressor of IR in MCF-7 breast cancer cells. In addition, IGFBP5 is a suppressor of migration and MMP-9 secretion induced by IGF-I and insulin, but it does not regulate invasion in MCF-7 cells. IGFBP5 also is a repressor of MCF-7 spheroids formation. However treatment with 340 nM rescues the inhibitory effect of IGFBP in the MCF-7 spheroids formation. CONCLUSION: IGFBP5 regulates IGF-IR expression, migration and MMP-9 secretion induced by IGF-I and/or insulin, and the spheroids formation in MCF-7 breast cancer cells.


Assuntos
Neoplasias da Mama , Movimento Celular , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina , Fator de Crescimento Insulin-Like I , Insulina , Invasividade Neoplásica , Esferoides Celulares , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Células MCF-7 , Insulina/metabolismo , Feminino , Metaloproteinase 9 da Matriz/metabolismo , Receptor IGF Tipo 1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosforilação
5.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928197

RESUMO

Breast cancer stands as one of the foremost cause of cancer-related deaths globally, characterized by its varied molecular subtypes. Each subtype requires a distinct therapeutic strategy. Although advancements in treatment have enhanced patient outcomes, significant hurdles remain, including treatment toxicity and restricted effectiveness. Here, we explore the anticancer potential of novel 1,4-naphthoquinone/4-quinolone hybrids on breast cancer cell lines. The synthesized compounds demonstrated selective cytotoxicity against Luminal and triple-negative breast cancer (TNBC) cells, which represent the two main molecular types of breast cancer that depend most on cytotoxic chemotherapy, with potency comparable to doxorubicin, a standard chemotherapeutic widely used in breast cancer treatment. Notably, these derivatives exhibited superior selectivity indices (SI) when compared to doxorubicin, indicating lower toxicity towards non-tumor MCF10A cells. Compounds 11a and 11b displayed an improvement in IC50 values when compared to their precursor, 1,4-naphthoquinone, for both MCF-7 and MDA-MB-231 and a comparable value to doxorubicin for MCF-7 cells. Also, their SI values were superior to those seen for the two reference compounds for both cell lines tested. Mechanistic studies revealed the ability of the compounds to induce apoptosis and inhibit clonogenic potential. Additionally, the irreversibility of their effects on cell viability underscores their promising therapeutic utility. In 3D-cell culture models, the compounds induced morphological changes indicative of reduced viability, supporting their efficacy in a more physiologically relevant model of study. The pharmacokinetics of the synthesized compounds were predicted using the SwissADME webserver, indicating that these compounds exhibit favorable drug-likeness properties and potential as antitumor agents. Overall, our findings underscore the promise of these hybrid compounds as potential candidates for breast cancer chemotherapy, emphasizing their selectivity and efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Naftoquinonas/farmacologia , Naftoquinonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células MCF-7 , Quinolonas/farmacologia , Quinolonas/química , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Doxorrubicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
6.
Molecules ; 29(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38930825

RESUMO

The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.


Assuntos
Antineoplásicos , Complexos de Coordenação , Simulação de Acoplamento Molecular , Níquel , Humanos , Níquel/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Cristalografia por Raios X , Células MCF-7 , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos
7.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38832821

RESUMO

LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Biologia Computacional/métodos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Células MCF-7 , Prognóstico , RNA Longo não Codificante/genética
8.
Biofabrication ; 16(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38866003

RESUMO

Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.


Assuntos
Antineoplásicos , Neoplasias da Mama , Impressão Tridimensional , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Células MCF-7 , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Dextranos/química , Gelatina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sobrevivência Celular/efeitos dos fármacos , Metacrilatos
9.
Braz J Med Biol Res ; 57: e13250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808886

RESUMO

Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/REF-1) is a multifunctional protein acting on cellular signaling pathways, including DNA repair and redox activities. APE1/REF-1 has emerged as a target for cancer therapy, and its role in breast cancer models would reveal new strategies for cancer therapy. APX2009 is a specific APE1/REF-1 redox inhibitor whose anticancer properties have not been described in breast cancer cells. Here, we investigated the effect of the APX2009 treatment in the breast cancer cell lines MDA-MB-231 and MCF-7. Breast cancer cell lines were cultured, and WST1 and colony formation assays were performed to evaluate cell proliferation. Annexin V-FITC/7-AAD and LDH-Glo™ assays were performed to evaluate cell death. The wound healing assay and Matrigel transwell assay were performed after APX2009 treatment to evaluate the cellular migration and invasion processes, respectively. Our findings demonstrated that APX2009 treatment decreased breast cancer cell proliferative, migratory, and invasive properties. Furthermore, it induced apoptosis in both cell lines. Our study is the first to show the effects of APX2009 treatment on apoptosis in a breast cancer cell. Therefore, this study suggested that APX2009 treatment is a promising anticancer molecule for breast cancer.


Assuntos
Apoptose , Neoplasias da Mama , Movimento Celular , Proliferação de Células , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Oxirredução , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Feminino , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fenótipo , Células MCF-7 , Antineoplásicos/farmacologia
10.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732206

RESUMO

Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin's benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 µM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs' therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells.


Assuntos
Neoplasias da Mama , Pontos de Checagem do Ciclo Celular , Curcumina , Inibidor de Quinase Dependente de Ciclina p21 , Regulação Neoplásica da Expressão Gênica , Humanos , Curcumina/farmacologia , Curcumina/análogos & derivados , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células MCF-7 , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Antineoplásicos/farmacologia , Proteínas GADD45
11.
Breast Cancer ; 31(5): 754-768, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38780752

RESUMO

BACKGROUND: Resveratrol, a natural compound, may be an alternative to improving conventional breast cancer therapy. Thus, we assessed the capability of resveratrol at a low dose to enhance the in vitro effect of conventional theray in estrogen receptor (ER) and human epidermal growth factor receptor type 2 (HER2)-positive breast cancer cells. METHODS: Cell viability of breast cancer cells was measured with neutral red uptake assay. Apoptosis, autophagy, cell cycle progression and cell proliferation were detected through hypotonic fluorescent solution assay, formation of acidic vesicular organelles, flow cytometry, and bromodeoxyuridine assay, respectively. Western blotting was performed to study the expression of pro-apoptotic, anti-apoptotic and autophagic proteins, and estrogen receptors. RESULTS: Resveratrol combined with tamoxifen metabolites or trastuzumab reduced cell viability of ER- and HER2-positive breast cancer cells, respectively. This effect was mainly associated with induction of apoptosis due to a greater formation of hypodiploid nuclei, reduced protein expression of procaspase-7, Bcl-2, Bcl-xL, and PARP; and increased expression of cleaved PARP. Resveratrol decreased the expression of ERα and increased that of ERß, contributing to the reduced viability on breast cancer cells. Combined treatments induced autophagy, evidenced by increased levels of acidic vesicular organelles and degradation of p62/SQSTM1 protein. Nevertheless, on inhibiting autophagy with 3-methyladenine, cell viability was further reduced and apoptosis was induced, suggesting a pro-survival role of autophagy, impairing apoptosis. CONCLUSIONS: Resveratrol increasead the in vitro cytotoxic effect of conventional therapy in breast cancer cells. However, it was necessary to block resveratrol-induced autophagy to improve the therapeutic response.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Autofagia , Neoplasias da Mama , Proliferação de Células , Receptor ErbB-2 , Resveratrol , Tamoxifeno , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Apoptose/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Autofagia/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Receptores de Estrogênio/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células MCF-7 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
12.
Chem Biol Interact ; 396: 111039, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719171

RESUMO

In this work, two neolignans - dehydrodieugenol (1) and dehydrodieugenol B (2) - were isolated from leaves of Ocotea cymbarum (H. B. K.) Ness. (Lauraceae). When tested against two human breast cancer cell lines (MCF7 and MDA-MB-231), compound 1 was inactive (IC50 > 500 µM) whereas compound 2 displayed IC50 values of 169 and 174 µM, respectively. To evaluate, for the first time in the literature, the synergic cytotoxic effects of compounds 1 and 2 with ion Cu2+, both cell lines were incubated with equimolar solutions of these neolignans and Cu(ClO4)2·6H2O. Obtained results revealed no differences in cytotoxicity upon the co-administration of compound 2 and Cu2+. However, the combination of compound 1 and Cu2+ increases the cytotoxicity against MCF7 and MDA-MB-231 cells, with IC50 values of 165 and 204 µM, respectively. The activity of compound 1 and Cu2+ in MCF7 spheroids regarding the causes/effects considering the tumoral microenvironment were accessed using fluorescence staining and imaging by fluorescence microscopy. This analysis enabled the observation of a higher red filter fluorescence intensity in the quiescence zone and the necrotic core, indicating a greater presence of dead cells, suggesting that the combination permeates the spheroid. Finally, using ICP-MS analysis, the intracellular copper disbalance caused by mixing compound 1 and Cu2+ was determined quantitatively. The findings showcased a 50-fold surge in the concentration of Cu2+ compared with untreated cells (p > 0.0001) - 18.7 ng of Cu2+/mg of proteins and 0.37 ng of Cu2+/mg of protein, respectively. Conversely, the concentration of Cu2+ in cells treated with compound 1 was similar to values of the negative control group (0.29 ng of Cu2+/mg of protein). This alteration allowed us to infer that compound 1 combined with Cu2+ induces cell death through copper homeostasis dysregulation.


Assuntos
Neoplasias da Mama , Cobre , Humanos , Cobre/química , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Morte Celular/efeitos dos fármacos , Eugenol/análogos & derivados , Eugenol/farmacologia , Eugenol/química , Folhas de Planta/química , Células MCF-7 , Lignanas/farmacologia , Lignanas/química
13.
Lasers Med Sci ; 39(1): 135, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787412

RESUMO

In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.


Assuntos
Neoplasias da Mama , Sobrevivência Celular , Citocinas , Indóis , Compostos Organometálicos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fotoquimioterapia/métodos , Células MCF-7 , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Indóis/farmacologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ensaio de Imunoadsorção Enzimática
14.
PeerJ ; 12: e17360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737746

RESUMO

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Assuntos
Benzopiranos , Neoplasias da Mama , Caderinas , Transição Epitelial-Mesenquimal , Feminino , Humanos , Benzopiranos/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Células MCF-7 , Invasividade Neoplásica/genética , Proteínas Nucleares , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Vimentina/metabolismo , Vimentina/genética
15.
Acta Cir Bras ; 39: e391624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808816

RESUMO

PURPOSE: To evaluate the chemotherapeutic activity of temozolomide counter to mammary carcinoma. METHODS: In-vitro anticancer activity has been conducted on MCF7 cells, and mammary carcinoma has been induced in Wistar rats by introduction of 7, 12-Dimethylbenz(a)anthracene (DMBA), which was sustained for 24 weeks. Histopathology, immunohistochemistry, cell proliferation study and apoptosis assay via TUNEL method was conducted to evaluate an antineoplastic activity of temozolomide in rat breast tissue. RESULTS: IC50 value of temozolomide in MCF7 cell has been obtained as 103 µM, which demonstrated an initiation of apoptosis. The temozolomide treatment facilitated cell cycle arrest in G2/M and S phase dose dependently. The treatment with temozolomide suggested decrease of the hyperplastic abrasions and renovation of the typical histological features of mammary tissue. Moreover, temozolomide therapy caused the downregulation of epidermal growth factor receptor, extracellular signal-regulated kinase, and metalloproteinase-1 expression and upstream of p53 and caspase-3 proliferation to indicate an initiation of apoptotic events. CONCLUSIONS: The occurrence of mammary carcinoma has been significantly decreased by activation of apoptotic pathway and abrogation of cellular propagation that allowable for developing a suitable mechanistic pathway of temozolomide in order to facilitate chemotherapeutic approach.


Assuntos
Antineoplásicos Alquilantes , Apoptose , Receptores ErbB , Ratos Wistar , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Feminino , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metaloproteinase 1 da Matriz/efeitos dos fármacos , Metaloproteinase 1 da Matriz/metabolismo , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Células MCF-7 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Imuno-Histoquímica , Reprodutibilidade dos Testes , Ratos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia
16.
Int. j. morphol ; 42(2): 362-367, abr. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1558145

RESUMO

SUMMARY: This study evaluated the phytochemical screening, antioxidant capacity, and in vitro anticancer activities of four plants namely, Gypsophila capillaris, Anabasis lachnantha, Haloxylon salicornicum, and Horwoodia dicksoniae which belong to four different families: Caryophyllaceae, Amaranthaceae, Chenopodiaceae, Brassicaceae, respectively. The total phenolics, anthocyanins, saponins, total antioxidant capacity (TAC), and DPPH assays were determined by spectrophotometer. In vitro anticancer activity was assessed using two human cancer cell lines; hepatocellular carcinoma (HepG-2) and breast adenocarcinoma (MCF-7) to estimate the inhibition concentration 50 % (IC50). The results showed that H. dicksoniae has the highest concentrations of phenolics and saponins, while H. salicornicum has the highest DPPH. The highest concentration of TAC was found in G. capillaries. Among the tested extracts, G. capillaries and H. salicornicum have the potential activity against MCF-7 and HepG-2 cell lines in vitro. The content of polyphenols in G. capillaries was profiled by high-performance liquid chromatography (HPLC). The highest concentration among the phenolic compounds was chlorogenic (60.8 µg/ml) while the highest concentration among the flavonoid compounds was hesperidin (1444.92 µg/ml). In summary, G. capillaries and H. salicornicum extracts have potent anticancer activity against HepG-2 and MCF-7 cell lines.


Este estudio evaluó la detección fitoquímica, la capacidad antioxidante y las actividades anticancerígenas in vitro de cuatro plantas, Gypsophila capillaris, Anabasis lachnantha, Haloxylon salicornicum y Horwoodia dicksoniae, que pertenecen a cuatro familias diferentes: Caryophyllaceae, Amaranthaceae, Chenopodiaceae y Brassicaceae, respectivamente. Los ensayos de fenólicos totales, antocianinas, saponinas, capacidad antioxidante total (TAC) y DPPH se determinaron mediante espectrofotómetro. La actividad anticancerígena in vitro se evaluó utilizando dos líneas celulares de cáncer humano; carcinoma hepatocelular (HepG-2) y adenocarcinoma de mama (MCF- 7) para estimar la concentración de inhibición del 50 % (IC50). Los resultados indicaron que H. dicksoniae tiene las concentraciones más altas de fenólicos y saponinas, mientras que H. salicornicum tiene el DPPH más alto. La mayor concentración de TAC se encontró en G. capillaries. Entre los extractos probados, G. capillaries y H. salicornicum tienen actividad potencial contra líneas celulares MCF-7 y HepG-2 in vitro. El contenido de polifenoles en G. capillaries se perfiló mediante cromatografía líquida de alta resolución (HPLC). La concentración más alta entre los compuestos fenólicos fue clorogénica (60,8 µg/ml), mientras que la concentración más alta entre los compuestos flavonoides fue la hesperidina (1444,92 µg/ml). En resumen, los extractos de Gypsophila capillaris y H. salicornicum tienen una potente actividad anticancerígena contra las líneas celulares HepG-2 y MCF-7.


Assuntos
Humanos , Plantas Medicinais/química , Antineoplásicos/química , Antioxidantes/química , Fenóis/análise , Saponinas/análise , Arábia Saudita , Técnicas In Vitro , Cromatografia Líquida de Alta Pressão , Metabolômica , Células Hep G2/efeitos dos fármacos , Células MCF-7/efeitos dos fármacos , Compostos Fitoquímicos , Antocianinas/análise , Antineoplásicos/farmacologia , Antioxidantes/farmacologia
17.
J Toxicol Environ Health A ; 87(12): 516-531, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619152

RESUMO

The bark extract from Endopleura uchi has been widely used in traditional medicine to treat gynecological-related disorders, diabetes, and dyslipidemias albeit without scientific proof. In addition, E. uchi bark extract safety, especially regarding mutagenic activities, is not known. The aim of this study was to determine the chemical composition, antitumor, and toxicological parameters attributed to an E. uchi bark aqueous extract. The phytochemical constitution was assessed by colorimetric and chromatographic analyzes. The antiproliferative effect was determined using sulforhodamine B (SRB) assay using 4 cancer cell lines. Cytotoxic and genotoxic activities were assessed utilizing MTT and comet assays, respectively, while mutagenicity was determined through micronucleus and Salmonella/microsome assays. The chromatographic analysis detected predominantly the presence of gallic acid and isoquercitrin. The antiproliferative effect was more pronounced in human colon adenocarcinoma (HT-29) and human breast cancer (MCF-7) cell lines. In the MTT assay, the extract presented an IC50 = 39.1 µg/ml and exhibited genotoxic (comet assay) and mutagenic (micronucleus test) activities at 20 and 40 µg/ml in mouse fibroblast cell line (L929) and mutagenicity in the TA102 and TA97a strains in the absence of S9 mix. Data demonstrated that E. uchi bark possesses bioactive compounds which exert cytotoxic and genotoxic effects that might be associated with its antitumor potential. Therefore, E. uchi bark aqueous extract consumption needs to be approached with caution in therapeutic applications.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias do Colo , Humanos , Camundongos , Animais , Extratos Vegetais/química , Casca de Planta/química , Dano ao DNA , Água , Mutagênicos , Células MCF-7
18.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675620

RESUMO

Breast cancer is a major global health issue, causing high incidence and mortality rates as well as psychological stress for patients. Chemotherapy resistance is a common challenge, and the Aldo-keto reductase family one-member C3 enzyme is associated with resistance to anthracyclines like doxorubicin. Recent studies have identified celecoxib as a potential treatment for breast cancer. Virtual screening was conducted using a quantitative structure-activity relationship model to develop similar drugs; this involved backpropagation of artificial neural networks and structure-based virtual screening. The screening revealed that the C-6 molecule had a higher affinity for the enzyme (-11.4 kcal/mol), a lower half-maximal inhibitory concentration value (1.7 µM), and a safer toxicological profile than celecoxib. The compound C-6 was synthesized with an 82% yield, and its biological activity was evaluated. The results showed that C-6 had a more substantial cytotoxic effect on MCF-7 cells (62%) compared to DOX (63%) and celecoxib (79.5%). Additionally, C-6 had a less harmful impact on healthy L929 cells than DOX and celecoxib. These findings suggest that C-6 has promising potential as a breast cancer treatment.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Anti-Inflamatórios não Esteroides , Neoplasias da Mama , Desenho de Fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Células MCF-7 , Desenho Assistido por Computador , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Celecoxib/farmacologia , Celecoxib/química , Proliferação de Células/efeitos dos fármacos
19.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612643

RESUMO

Breast cancer is a leading cause of cancer-related deaths among women. Cisplatin is used for treatment, but the development of resistance in cancer cells is a significant concern. This study aimed to investigate changes in the transcriptomes of cisplatin-resistant MCF7 cells. We conducted RNA sequencing of cisplatin-resistant MCF7 cells, followed by differential expression analysis and bioinformatic investigations to identify changes in gene expression and modified signal transduction pathways. We examined the size and quantity of extracellular vesicles. A total of 724 genes exhibited differential expression, predominantly consisting of protein-coding RNAs. Notably, two long non-coding RNAs (lncRNAs), NEAT1 and MALAT, were found to be dysregulated. Bioinformatic analysis unveiled dysregulation in processes related to DNA synthesis and repair, cell cycle regulation, immune response, and cellular communication. Additionally, modifications were observed in events associated with extracellular vesicles. Conditioned media from resistant cells conferred resistance to wild-type cells in vitro. Furthermore, there was an increase in the number of vesicles in cisplatin-resistant cells. Cisplatin-resistant MCF7 cells displayed differential RNA expression, including the dysregulation of NEAT1 and MALAT long non-coding RNAs. Key processes related to DNA and extracellular vesicles were found to be altered. The increased number of extracellular vesicles in resistant cells may contribute to acquired resistance in wild-type cells.


Assuntos
Cisplatino , Transcriptoma , Feminino , Humanos , Cisplatino/farmacologia , Células MCF-7 , Perfilação da Expressão Gênica , DNA
20.
J Ethnopharmacol ; 330: 118206, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636572

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.


Assuntos
Croton , Óleos Voláteis , Folhas de Planta , Animais , Croton/química , Óleos Voláteis/toxicidade , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Chlorocebus aethiops , Camundongos , Células Vero , Testes de Mutagenicidade , Administração Oral , Células HeLa , Células HT29 , Células MCF-7 , Masculino , Feminino , Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA