RESUMO
In the absence of real-time surveillance data, it is difficult to derive an early warning system and potential outbreak locations with the existing epidemiological models, especially in resource-constrained countries. We proposed a contagion risk index (CR-Index)-based on publicly available national statistics-founded on communicable disease spreadability vectors. Utilizing the daily COVID-19 data (positive cases and deaths) from 2020 to 2022, we developed country-specific and sub-national CR-Index for South Asia (India, Pakistan, and Bangladesh) and identified potential infection hotspots-aiding policymakers with efficient mitigation planning. Across the study period, the week-by-week and fixed-effects regression estimates demonstrate a strong correlation between the proposed CR-Index and sub-national (district-level) COVID-19 statistics. We validated the CR-Index using machine learning methods by evaluating the out-of-sample predictive performance. Machine learning driven validation showed that the CR-Index can correctly predict districts with high incidents of COVID-19 cases and deaths more than 85% of the time. This proposed CR-Index is a simple, replicable, and easily interpretable tool that can help low-income countries prioritize resource mobilization to contain the disease spread and associated crisis management with global relevance and applicability. This index can also help to contain future pandemics (and epidemics) and manage their far-reaching adverse consequences.
Assuntos
COVID-19 , Humanos , Ásia Meridional , COVID-19/epidemiologia , Aprendizado de Máquina , Pandemias/prevenção & controle , Gestão de RiscosRESUMO
Optoelectric biosensors measure the conformational changes of biomolecules and their molecular interactions, allowing researchers to use them in different biomedical diagnostics and analysis activities. Among different biosensors, surface plasmon resonance (SPR)-based biosensors utilize label-free and gold-based plasmonic principles with high precision and accuracy, allowing these gold-based biosensors as one of the preferred methods. The dataset generated from these biosensors are being used in different machine learning (ML) models for disease diagnosis and prognosis, but there is a scarcity of models to develop or assess the accuracy of SPR-based biosensors and ensure a reliable dataset for downstream model development. Current study proposed innovative ML-based DNA detection and classification models from the reflective light angles on different gold surfaces of biosensors and associated properties. We have conducted several statistical analyses and different visualization techniques to evaluate the SPR-based dataset and applied t-SNE feature extraction and min-max normalization to differentiate classifiers of low-variances. We experimented with several ML classifiers, namely support vector machine (SVM), decision tree (DT), multi-layer perceptron (MLP), k-nearest neighbors (KNN), logistic regression (LR) and random forest (RF) and evaluated our findings in terms of different evaluation metrics. Our analysis showed the best accuracy of 0.94 by RF, DT and KNN for DNA classification and 0.96 by RF and KNN for DNA detection tasks. Considering area under the receiver operating characteristic curve (AUC) (0.97), precision (0.96) and F1-score (0.97), we found RF performed best for both tasks. Our research shows the potentiality of ML models in the field of biosensor development, which can be expanded to develop novel disease diagnosis and prognosis tools in the future.
Assuntos
Benchmarking , Ressonância de Plasmônio de Superfície , DNA , Ouro , Aprendizado de MáquinaRESUMO
Artificial intelligence (AI) and machine learning describe a broad range of algorithm types that can be trained based on datasets to make predictions. The increasing sophistication of AI has created new opportunities to apply these algorithms within within trauma care. Our paper overviews the current uses of AI along the continuum of trauma care, including injury prediction, triage, emergency department volume, assessment, and outcomes. Starting at the point of injury, algorithms are being used to predict severity of motor vehicle crashes, which can help inform emergency responses. Once on the scene, AI can be used to help emergency services triage patients remotely in order to inform transfer location and urgency. For the receiving hospital, these tools can be used to predict trauma volumes in the emergency department to help allocate appropriate staffing. After patient arrival to hospital, these algorithms not only can help to predict injury severity, which can inform decision-making, but also predict patient outcomes to help trauma teams anticipate patient trajectory. Overall, these tools have the capability to transform trauma care. AI is still nascent within the trauma surgery sphere, but this body of the literature shows that this technology has vast potential. AI-based predictive tools in trauma need to be explored further through prospective trials and clinical validation of algorithms.
Assuntos
Inteligência Artificial , Serviços Médicos de Emergência , Humanos , Estudos Prospectivos , Algoritmos , Aprendizado de MáquinaRESUMO
Social media platforms play a key role in fostering the outreach of extremism by influencing the views, opinions, and perceptions of people. These platforms are increasingly exploited by extremist elements for spreading propaganda, radicalizing, and recruiting youth. Hence, research on extremism detection on social media platforms is essential to curb its influence and ill effects. A study of existing literature on extremism detection reveals that it is restricted to a specific ideology, binary classification with limited insights on extremism text, and manual data validation methods to check data quality. In existing research studies, researchers have used datasets limited to a single ideology. As a result, they face serious issues such as class imbalance, limited insights with class labels, and a lack of automated data validation methods. A major contribution of this work is a balanced extremism text dataset, versatile with multiple ideologies verified by robust data validation methods for classifying extremism text into popular extremism types such as propaganda, radicalization, and recruitment. The presented extremism text dataset is a generalization of multiple ideologies such as the standard ISIS dataset, GAB White Supremacist dataset, and recent Twitter tweets on ISIS and white supremacist ideology. The dataset is analyzed to extract features for the three focused classes in extremism with TF-IDF unigram, bigrams, and trigrams features. Additionally, pretrained word2vec features are used for semantic analysis. The extracted features in the proposed dataset are evaluated using machine learning classification algorithms such as multinomial Naïve Bayes, support vector machine, random forest, and XGBoost algorithms. The best results were achieved by support vector machine using the TF-IDF unigram model confirming 0.67 F1 score. The proposed multi-ideology and multiclass dataset shows comparable performance to the existing datasets limited to single ideology and binary labels.
Assuntos
Algoritmos , Mídias Sociais , Humanos , Adolescente , Teorema de Bayes , Aprendizado de Máquina , Algoritmo Florestas AleatóriasRESUMO
Infectious diseases are always alarming for the survival of human life and are a key concern in the public health domain. Therefore, early diagnosis of these infectious diseases is a high demand for modern-era healthcare systems. Novel general infectious diseases such as coronavirus are infectious diseases that cause millions of human deaths across the globe in 2020. Therefore, early, robust recognition of general infectious diseases is the desirable requirement of modern intelligent healthcare systems. This systematic study is designed under Kitchenham guidelines and sets different RQs (research questions) for robust recognition of general infectious diseases. From 2018 to 2021, four electronic databases, IEEE, ACM, Springer, and ScienceDirect, are used for the extraction of research work. These extracted studies delivered different schemes for the accurate recognition of general infectious diseases through different machine learning techniques with the inclusion of deep learning and federated learning models. A framework is also introduced to share the process of detection of infectious diseases by using machine learning models. After the filtration process, 21 studies are extracted and mapped to defined RQs. In the future, early diagnosis of infectious diseases will be possible through wearable health monitoring cages. Moreover, these gages will help to reduce the time and death rate by detection of severe diseases at starting stage.
Assuntos
Doenças Transmissíveis , Humanos , Bases de Dados Factuais , Inteligência , Aprendizado de Máquina , Reconhecimento PsicológicoRESUMO
Healthcare is predominantly regarded as a crucial consideration in promoting the general physical and mental health and well-being of people around the world. The amount of data generated by healthcare systems is enormous, making it challenging to manage. Many machine learning (ML) approaches were implemented to develop dependable and robust solutions to handle the data. ML cannot fully utilize data due to privacy concerns. This primarily happens in the case of medical data. Due to a lack of precise clinical data, the application of ML for the same is challenging and may not yield desired results. Federated learning (FL), which is a recent development in ML where the computation is offloaded to the source of data, appears to be a promising solution to this problem. In this study, we present a detailed survey of applications of FL for healthcare informatics. We initiate a discussion on the need for FL in the healthcare domain, followed by a review of recent review papers. We focus on the fundamentals of FL and the major motivations behind FL for healthcare applications. We then present the applications of FL along with recent state of the art in several verticals of healthcare. Then, lessons learned, open issues, and challenges that are yet to be solved are also highlighted. This is followed by future directions that give directions to the prospective researchers willing to do their research in this domain.
Assuntos
Informática , Aprendizado de Máquina , Humanos , Estudos Prospectivos , Saúde Mental , MotivaçãoRESUMO
Aim: Due to the growing availability of genomic datasets, machine learning models have shown impressive diagnostic potential in identifying emerging and reemerging pathogens. This study aims to use machine learning techniques to develop and compare a model for predicting bacterial resistance to a panel of 12 classes of antibiotics using whole genome sequence (WGS) data of Pseudomonas aeruginosa. Method: A machine learning technique called Random Forest (RF) and BioWeka was used for classification accuracy assessment and logistic regression (LR) for statistical analysis. Results: Our results show 44.66% of isolates were resistant to twelve antimicrobial agents and 55.33% were sensitive. The mean classification accuracy was obtained ≥98% for BioWeka and ≥96 for RF on these families of antimicrobials. Where ampicillin was 99.31% and 94.00%, amoxicillin was 99.02% and 95.21%, meropenem was 98.27% and 96.63%, cefepime was 99.73% and 98.34%, fosfomycin was 96.44% and 99.23%, ceftazidime was 98.63% and 94.31%, chloramphenicol was 98.71% and 96.00%, erythromycin was 95.76% and 97.63%, tetracycline was 99.27% and 98.25%, gentamycin was 98.00% and 97.30%, butirosin was 99.57% and 98.03%, and ciprofloxacin was 96.17% and 98.97% with 10-fold-cross validation. In addition, out of twelve, eight drugs have found no false-positive and false-negative bacterial strains. Conclusion: The ability to accurately detect antibiotic resistance could help clinicians make educated decisions about empiric therapy based on the local antibiotic resistance pattern. Moreover, infection prevention may have major consequences if such prescribing practices become widespread for human health.
Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , Farmacorresistência Bacteriana , Aprendizado de MáquinaRESUMO
Importance: Identifying new prognostic features in colon cancer has the potential to refine histopathologic review and inform patient care. Although prognostic artificial intelligence systems have recently demonstrated significant risk stratification for several cancer types, studies have not yet shown that the machine learning-derived features associated with these prognostic artificial intelligence systems are both interpretable and usable by pathologists. Objective: To evaluate whether pathologist scoring of a histopathologic feature previously identified by machine learning is associated with survival among patients with colon cancer. Design, Setting, and Participants: This prognostic study used deidentified, archived colorectal cancer cases from January 2013 to December 2015 from the University of Milano-Bicocca. All available histologic slides from 258 consecutive colon adenocarcinoma cases were reviewed from December 2021 to February 2022 by 2 pathologists, who conducted semiquantitative scoring for tumor adipose feature (TAF), which was previously identified via a prognostic deep learning model developed with an independent colorectal cancer cohort. Main Outcomes and Measures: Prognostic value of TAF for overall survival and disease-specific survival as measured by univariable and multivariable regression analyses. Interpathologist agreement in TAF scoring was also evaluated. Results: A total of 258 colon adenocarcinoma histopathologic cases from 258 patients (138 men [53%]; median age, 67 years [IQR, 65-81 years]) with stage II (n = 119) or stage III (n = 139) cancer were included. Tumor adipose feature was identified in 120 cases (widespread in 63 cases, multifocal in 31, and unifocal in 26). For overall survival analysis after adjustment for tumor stage, TAF was independently prognostic in 2 ways: TAF as a binary feature (presence vs absence: hazard ratio [HR] for presence of TAF, 1.55 [95% CI, 1.07-2.25]; P = .02) and TAF as a semiquantitative categorical feature (HR for widespread TAF, 1.87 [95% CI, 1.23-2.85]; P = .004). Interpathologist agreement for widespread TAF vs lower categories (absent, unifocal, or multifocal) was 90%, corresponding to a κ metric at this threshold of 0.69 (95% CI, 0.58-0.80). Conclusions and Relevance: In this prognostic study, pathologists were able to learn and reproducibly score for TAF, providing significant risk stratification on this independent data set. Although additional work is warranted to understand the biological significance of this feature and to establish broadly reproducible TAF scoring, this work represents the first validation to date of human expert learning from machine learning in pathology. Specifically, this validation demonstrates that a computationally identified histologic feature can represent a human-identifiable, prognostic feature with the potential for integration into pathology practice.
Assuntos
Adenocarcinoma , Neoplasias do Colo , Masculino , Humanos , Idoso , Neoplasias do Colo/diagnóstico , Patologistas , Inteligência Artificial , Aprendizado de Máquina , Medição de RiscoRESUMO
BACKGROUND: Older patients are at an increased risk of malnutrition due to many factors related to poor clinical outcomes. OBJECTIVE: This study aims to develop an assisted diagnosis model using machine learning (ML) for identifying older patients with malnutrition and providing the focus of individualized treatment. METHODS: We reanalyzed a multicenter, observational cohort study including 2660 older patients. Baseline malnutrition was defined using the global leadership initiative on malnutrition (GLIM) criteria, and the study population was randomly divided into a derivation group (2128/2660, 80%) and a validation group (532/2660, 20%). We applied 5 ML algorithms and further explored the relationship between features and the risk of malnutrition by using the Shapley additive explanations visualization method. RESULTS: The proposed ML models were capable to identify older patients with malnutrition. In the external validation cohort, the top 3 models by the area under the receiver operating characteristic curve were light gradient boosting machine (92.1%), extreme gradient boosting (91.9%), and the random forest model (91.5%). Additionally, the analysis of the importance of features revealed that BMI, weight loss, and calf circumference were the strongest predictors to affect GLIM. A BMI of below 21 kg/m2 was associated with a higher risk of GLIM in older people. CONCLUSIONS: We developed ML models for assisting diagnosis of malnutrition based on the GLIM criteria. The cutoff values of laboratory tests generated by Shapley additive explanations could provide references for the identification of malnutrition. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-EPC-14005253; https://www.chictr.org.cn/showproj.aspx?proj=9542.
Assuntos
Algoritmos , Desnutrição , Idoso , Humanos , Estudos de Coortes , Aprendizado de Máquina , Desnutrição/diagnóstico , Avaliação Nutricional , Estado NutricionalRESUMO
Although medical science has been fully developed, due to the high heterogeneity of triple-negative breast cancer (TNBC), it is still difficult to use reasonable and precise treatment. In this study, based on local optimization-feature screening and genomics screening strategy, we screened 25 feature genes. In multiple machine learning algorithms, feature genes have excellent discriminative diagnostic performance among samples composed of multiple large datasets. After screening at the single-cell level, we identified genes expressed substantially in myeloid cells (MCGs) that have a potential association with TNBC. Based on MCGs, we distinguished two types of TNBC patients who showed considerable differences in survival status and immune-related characteristics. Immune-related gene risk scores (IRGRS) were established, and their validity was verified using validation cohorts. A total of 25 feature genes were obtained, among which CXCL9, CXCL10, CCL7, SPHK1, and TREM1 were identified as the result after single-cell level analysis and screening. According to these entries, the cohort was divided into MCA and MCB subtypes, and the two subtypes had significant differences in survival status and tumor-immune microenvironment. After Lasso-Cox screening, IDO1, GNLY, IRF1, CTLA4, and CXCR6 were selected for constructing IRGRS. There were significant differences in drug sensitivity and immunotherapy sensitivity among high-IRGRS and low-IRGRS groups. We revealed the dynamic relationship between TNBC and TIME, identified a potential biomarker called Granulysin (GNLY) related to immunity, and developed a multi-process machine learning package called "MPMLearning 1.0" in Python.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Algoritmos , Genômica , Aprendizado de Máquina , Microambiente TumoralRESUMO
BACKGROUND: Although chronic kidney disease (CKD) is associated with high multimorbidity, polypharmacy, morbidity and mortality, existing classification systems (mild to severe, usually based on estimated glomerular filtration rate, proteinuria or urine albumin-creatinine ratio) and risk prediction models largely ignore the complexity of CKD, its risk factors and its outcomes. Improved subtype definition could improve prediction of outcomes and inform effective interventions. METHODS: We analysed individuals ≥18 years with incident and prevalent CKD (n = 350,067 and 195,422 respectively) from a population-based electronic health record resource (2006-2020; Clinical Practice Research Datalink, CPRD). We included factors (n = 264 with 2670 derived variables), e.g. demography, history, examination, blood laboratory values and medications. Using a published framework, we identified subtypes through seven unsupervised machine learning (ML) methods (K-means, Diana, HC, Fanny, PAM, Clara, Model-based) with 66 (of 2670) variables in each dataset. We evaluated subtypes for: (i) internal validity (within dataset, across methods); (ii) prognostic validity (predictive accuracy for 5-year all-cause mortality and admissions); and (iii) medications (new and existing by British National Formulary chapter). FINDINGS: After identifying five clusters across seven approaches, we labelled CKD subtypes: 1. Early-onset, 2. Late-onset, 3. Cancer, 4. Metabolic, and 5. Cardiometabolic. Internal validity: We trained a high performing model (using XGBoost) that could predict disease subtypes with 95% accuracy for incident and prevalent CKD (Sensitivity: 0.81-0.98, F1 score:0.84-0.97). Prognostic validity: 5-year all-cause mortality, hospital admissions, and incidence of new chronic diseases differed across CKD subtypes. The 5-year risk of mortality and admissions in the overall incident CKD population were highest in cardiometabolic subtype: 43.3% (42.3-42.8%) and 29.5% (29.1-30.0%), respectively, and lowest in the early-onset subtype: 5.7% (5.5-5.9%) and 18.7% (18.4-19.1%). MEDICATIONS: Across CKD subtypes, the distribution of prescription medication classes at baseline varied, with highest medication burden in cardiometabolic and metabolic subtypes, and higher burden in prevalent than incident CKD. INTERPRETATION: In the largest CKD study using ML, to-date, we identified five distinct subtypes in individuals with incident and prevalent CKD. These subtypes have relevance to study of aetiology, therapeutics and risk prediction. FUNDING: AstraZeneca UK Ltd, Health Data Research UK.
Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Prognóstico , Registros Eletrônicos de Saúde , Aprendizado de MáquinaRESUMO
INTRODUCTION: Patients with drug-resistant focal epilepsy may benefit from ablative or resective surgery. In presurgical work-up, intracranial EEG markers have been shown to be useful in identification of the seizure onset zone and prediction of post-surgical seizure freedom. However, in most cases, implantation of depth or subdural electrodes is performed, exposing patients to increased risks of complications. METHODS: We analysed EEG data recorded from a minimally invasive approach utilizing foramen ovale (FO) and epidural peg electrodes using a supervised machine learning approach to predict post-surgical seizure freedom. Power-spectral EEG features were incorporated in a logistic regression model predicting one-year post-surgical seizure freedom. The prediction model was validated using repeated 5-fold cross-validation and compared to outcome prediction based on clinical and scalp EEG variables. RESULTS: Forty-seven patients (26 patients with post-surgical 1-year seizure freedom) were included in the study, with 31 having FO and 27 patients having peg onset seizures. The area under the receiver-operating curve for post-surgical seizure freedom (Engel 1A) prediction in patients with FO onset seizures was 0.74 ± 0.23 using electrophysiology features, compared to 0.66 ± 0.22 for predictions based on clinical and scalp EEG variables (p < 0.001). The most important features for prediction were spectral power in the gamma and high gamma ranges. EEG data from peg electrodes was not informative in predicting post-surgical outcomes. CONCLUSION: In this hypothesis-generating study, a data-driven approach based on EEG features derived from FO electrodes recordings outperformed the predictive ability based solely on clinical and scalp EEG variables. Pending validation in future studies, this method may provide valuable post-surgical prognostic information while minimizing risks of more invasive diagnostic approaches.
Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Forame Oval , Humanos , Epilepsia/cirurgia , Eletroencefalografia/métodos , Eletrocorticografia , Convulsões , Aprendizado de Máquina , Resultado do Tratamento , Estudos RetrospectivosRESUMO
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease diagnosis with their outstanding image classification performance. In spite of the outstanding results, the widespread adoption of these techniques in clinical practice is still taking place at a moderate pace. One of the major hindrance is that a trained Deep Neural Networks (DNN) model provides a prediction, but questions about why and how that prediction was made remain unanswered. This linkage is of utmost importance for the regulated healthcare domain to increase the trust in the automated diagnosis system by the practitioners, patients and other stakeholders. The application of deep learning for medical imaging has to be interpreted with caution due to the health and safety concerns similar to blame attribution in the case of an accident involving autonomous cars. The consequences of both a false positive and false negative cases are far reaching for patients' welfare and cannot be ignored. This is exacerbated by the fact that the state-of-the-art deep learning algorithms comprise of complex interconnected structures, millions of parameters, and a 'black box' nature, offering little understanding of their inner working unlike the traditional machine learning algorithms. Explainable AI (XAI) techniques help to understand model predictions which help develop trust in the system, accelerate the disease diagnosis, and meet adherence to regulatory requirements. This survey provides a comprehensive review of the promising field of XAI for biomedical imaging diagnostics. We also provide a categorization of the XAI techniques, discuss the open challenges, and provide future directions for XAI which would be of interest to clinicians, regulators and model developers.
Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Diagnóstico por Imagem , Algoritmos , Aprendizado de MáquinaRESUMO
Predicting chemical activation energies is one of the longstanding and important challenges in computational chemistry. Recent advances have shown that machine learning can be used to create tools to predict them. Such tools can significantly decrease the computational cost for these predictions compared to traditional methods, which require an optimal path search along a high-dimensional potential energy surface. To enable this new route, we need both large and accurate datasets and a compact yet complete description of the reactions. Although data for chemical reactions is becoming increasingly available, the key step of encoding the reaction as an efficient descriptor remains a big challenge. In this paper, we demonstrate that including electronic energy levels in the description of the reaction significantly improves the prediction accuracy and transferability. Feature importance analysis further demonstrates that electronic energy levels have a higher importance than some structural information and typically require less space in the reaction encoding vector. In general, we observe that the results of the feature importance analysis relate well to the domain knowledge of fundamental chemical principles. This work can help to build better chemical reaction encodings for machine learning and thus improve the predictions of machine learning models for reaction activation energies. These models could ultimately be used to recognize reaction limiting steps in large reaction systems, allowing to account for bottlenecks at the design stage.
Assuntos
Eletrônica , Aprendizado de MáquinaRESUMO
Low-level lead exposure in children is a major public health issue. Higher-resolution spatial targeting would significantly improve county and state-wide policies and programs for lead exposure prevention that generally intervene across large geographic areas. We use stack-ensemble machine learning, including an elastic net generalized linear model, gradient-boosted machine, and deep neural network, to predict the number of children with venous blood lead levels (BLLs) ≥2 to <5 µg/dL and ≥5 µg/dL in ~1 km2 raster cells in the metro Atlanta region using a sample of 92,792 children ≤5 years old screened between 2010 and 2018. Permutation-based predictor importance and partial dependence plots were used for interpretation. Maps of predicted vs. observed values were generated to compare model performance. According to the EPA Toxic Release Inventory for air-based toxic release facility density, the percentage of the population below the poverty threshold, crime, and road network density was positively associated with the number of children with low-level lead exposure, whereas the percentage of the white population was inversely associated. While predictions generally matched observed values, cells with high counts of lead exposure were underestimated. High-resolution geographic prediction of lead-exposed children using ensemble machine learning is a promising approach to enhance lead prevention efforts.
Assuntos
Intoxicação por Chumbo , Chumbo , Humanos , Criança , Pré-Escolar , Intoxicação por Chumbo/epidemiologia , Pobreza , Aprendizado de Máquina , Modelos LinearesRESUMO
The rapid advances in science and technology in the field of artificial neural networks have led to noticeable interest in the application of this technology in medicine. Given the need to develop medical sensors that monitor vital signs to meet both people's needs in real life and in clinical research, the use of computer-based techniques should be considered. This paper describes the latest progress in heart rate sensors empowered by machine learning methods. The paper is based on a review of the literature and patents from recent years, and is reported according to the PRISMA 2020 statement. The most important challenges and prospects in this field are presented. Key applications of machine learning are discussed in medical sensors used for medical diagnostics in the area of data collection, processing, and interpretation of results. Although current solutions are not yet able to operate independently, especially in the diagnostic context, it is likely that medical sensors will be further developed using advanced artificial intelligence methods.
Assuntos
Inteligência Artificial , Medicina , Humanos , Aprendizado de Máquina , Redes Neurais de ComputaçãoRESUMO
Crude Oil is one of the most important commodities in this world. We have studied the effects of Crude Oil inventories on crude oil prices over the last ten years (2011 to 2020). We tried to figure out how the Crude Oil price variance responds to inventory announcements. We then introduced several other financial instruments to study the relation of these instruments with Crude Oil variation. To undertake this task, we took the help of several mathematical tools including machine learning tools such as Long Short Term Memory(LSTM) methods, etc. The previous researches in this area primarily focussed on statistical methods such as GARCH (1,1) etc. (Bu (2014)). Various researches on the price of crude oil have been undertaken with the help of LSTM. But the variation of crude oil price has not yet been studied. In this research, we studied the variance of crude oil prices with the help of LSTM. This research will be beneficial for the options traders who would like to get benefit from the variance of the underlying instrument.
Assuntos
Aprendizado Profundo , Petróleo , Aprendizado de Máquina , Memória de Longo PrazoRESUMO
Spike sorting is the process of grouping spikes of distinct neurons into their respective clusters. Most frequently, this grouping is performed by relying on the similarity of features extracted from spike shapes. In spite of recent developments, current methods have yet to achieve satisfactory performance and many investigators favour sorting manually, even though it is an intensive undertaking that requires prolonged allotments of time. To automate the process, a diverse array of machine learning techniques has been applied. The performance of these techniques depends however critically on the feature extraction step. Here, we propose deep learning using autoencoders as a feature extraction method and evaluate extensively the performance of multiple designs. The models presented are evaluated on publicly available synthetic and real "in vivo" datasets, with various numbers of clusters. The proposed methods indicate a higher performance for the process of spike sorting when compared to other state-of-the-art techniques.
Assuntos
Algoritmos , Aprendizado de Máquina , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Processamento de Sinais Assistido por ComputadorRESUMO
BACKGROUND: Prolonged Disorders of Consciousness (PDOC) resulting from severe acquired brain injury can lead to complex disabilities that make diagnosis challenging. The role of machine learning (ML) in diagnosing PDOC states and identifying intervention strategies is relatively under-explored, having focused on predicting mortality and poor outcome. This study aims to: (a) apply ML techniques to predict PDOC diagnostic states from variables obtained from two non-invasive neurobehavior assessment tools; and (b) apply network analysis for guiding possible intervention strategies. METHODS: The Coma Recovery Scale-Revised (CRS-R) is a well-established tool for assessing patients with PDOC. More recently, music has been found to be a useful medium for assessment of coma patients, leading to the standardization of a music-based assessment of awareness: Music Therapy Assessment Tool for Awareness in Disorders of Consciousness (MATADOC). CRS-R and MATADOC data were collected from 74 PDOC patients aged 16-70 years at three specialist centers in the USA, UK and Ireland. The data were analyzed by three ML techniques (neural networks, decision trees and cluster analysis) as well as modelled through system-level network analysis. RESULTS: PDOC diagnostic state can be predicted to a relatively high level of accuracy that sets a benchmark for future ML analysis using neurobehavioral data only. The outcomes of this study may also have implications for understanding the role of music therapy in interdisciplinary rehabilitation to help patients move from one coma state to another. CONCLUSIONS: This study has shown how ML can derive rules for diagnosis of PDOC with data from two neurobehavioral tools without the need to harvest large clinical and imaging datasets. Network analysis using the measures obtained from these two non-invasive tools provides novel, system-level ways of interpreting possible transitions between PDOC states, leading to possible use in novel, next-generation decision-support systems for PDOC.
Assuntos
Coma , Transtornos da Consciência , Humanos , Coma/diagnóstico , Transtornos da Consciência/diagnóstico , Benchmarking , Análise por Conglomerados , Aprendizado de MáquinaRESUMO
BACKGROUND: Reducing the duration of intraoperative hypoxemia in pediatric patients by means of rapid detection and early intervention is considered crucial by clinicians. We aimed to develop and validate a machine learning model that can predict intraoperative hypoxemia events 1 min ahead in children undergoing general anesthesia. METHODS: This retrospective study used prospectively collected intraoperative vital signs and parameters from the anesthesia ventilator machine extracted every 2 s in pediatric patients undergoing surgery under general anesthesia between January 2019 and October 2020 in a tertiary academic hospital. Intraoperative hypoxemia was defined as oxygen saturation <95% at any point during surgery. Three common machine learning techniques were employed to develop models using the training dataset: gradient-boosting machine (GBM), long short-term memory (LSTM), and transformer. The performances of the models were compared using the area under the receiver operating characteristics curve using randomly assigned internal testing dataset. We also validated the developed models using temporal holdout dataset. Pediatric patient surgery cases between November 2020 and January 2021 were used. The performances of the models were compared using the area under the receiver operating characteristic curve (AUROC). RESULTS: In total, 1,540 (11.73%) patients with intraoperative hypoxemia out of 13,130 patients' records with 2,367 episodes were included for developing the model dataset. After model development, 200 (13.25%) of the 1,510 patients' records with 289 episodes were used for holdout validation. Among the models developed, the GBM had the highest AUROC of 0.904 (95% confidence interval [CI] 0.902 to 0.906), which was significantly higher than that of the LSTM (0.843, 95% CI 0.840 to 0.846 P < .001) and the transformer model (0.885, 95% CI, 0.882-0.887, P < .001). In holdout validation, GBM also demonstrated best performance with an AUROC of 0.939 (95% CI 0.936 to 0.941) which was better than LSTM (0.904, 95% CI 0.900 to 0.907, P < .001) and the transformer model (0.929, 95% CI 0.926 to 0.932, P < .001). CONCLUSIONS: Machine learning models can be used to predict upcoming intraoperative hypoxemia in real-time based on the biosignals acquired by patient monitors, which can be useful for clinicians for prediction and proactive treatment of hypoxemia in an intraoperative setting.