Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151.182
Filtrar
1.
Semin Cell Dev Biol ; 155(Pt C): 3-15, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37316416

RESUMO

Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Plasticidade Celular , Células Endoteliais/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Macrófagos/metabolismo
2.
Life Sci Alliance ; 7(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903626

RESUMO

Members of the tristetraprolin (TTP) family of RNA-binding proteins can bind to and promote the decay of specific transcripts containing AU-rich motifs. ZFP36 (TTP) is best known for regulating pro-inflammatory cytokine expression in myeloid cells; however, its mammalian paralogues ZFP36L1 and ZFP36L2 have not been viewed as important in controlling inflammation. We knocked out these genes in myeloid cells in mice, singly and together. Single-gene myeloid-specific knockouts resulted in almost no spontaneous phenotypes. In contrast, mice with myeloid cell deficiency of all three genes developed severe inflammation, with a median survival of 8 wk. Macrophages from these mice expressed many more stabilized transcripts than cells from myeloid-specific TTP knockout mice; many of these encoded pro-inflammatory cytokines and chemokines. The failure of weight gain, arthritis, and early death could be prevented completely by two normal alleles of any of the three paralogues, and even one normal allele of Zfp36 or Zfp36l2 was enough to prevent the inflammatory phenotype. Our findings emphasize the importance of all three family members, acting in concert, in myeloid cell function.


Assuntos
Inflamação , Tristetraprolina , Camundongos , Animais , Tristetraprolina/genética , Tristetraprolina/metabolismo , Inflamação/genética , Inflamação/metabolismo , Células Mieloides/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , Citocinas/metabolismo , Mamíferos/metabolismo
3.
J Biomed Mater Res A ; 112(1): 6-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37681297

RESUMO

Magnesium alloys have been used to manufacture biodegradable implants, bone graft substitutes, and cardiovascular stents. WE43 was the most widely used magnesium alloy. The degradation process begins when the magnesium alloy stent is implanted in the body and comes into contact with body fluid. The degradation products include hydrogen, Mg2+ , local alkaline environment, and unsoluble products. A large number of studies focused on Mg2+ and pH in vitro, and in vivo of magnesium alloys, but few studies on unsoluble corrosion products (UCPs). In this study, UCPs of WE43 alloy were prepared by immersion in vitro, and their effects on macrophages were investigated. The results showed that the unsoluble corrosion products were Mg24Y5, Mg12YNd, and MgCO3 ·3H2 O, which were dose-dependent on the apoptosis and necrosis of macrophages. After phagocytosis of UCPs, macrophages mainly metabolize in lysosome, and autophagy also participates in the metabolism of UCPs. It also decreases mitochondrial membrane potential and increases lysosomes, endoplasmic reticulum stress, and P2X7 receptor activation. These will increase reactive oxygen species (ROS) in cells, activating NLRP3 inflammatory corpuscles, activating the downstream pro-IL18 and pro-IL1ß, and converting it to IL-18, and IL-1ß. However, its pro-inflammatory effect is far lower than that of the classical Lipopolysaccharide (LPS) pro-inflammatory pathway. This work has increased our understanding of magnesium alloy metabolism and provides new ideas for the clinical application of magnesium alloys.


Assuntos
Substitutos Ósseos , Magnésio , Corrosão , Magnésio/farmacologia , Stents , Implantes Absorvíveis , Ligas/farmacologia , Macrófagos , Teste de Materiais
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166895, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748566

RESUMO

BACKGROUND: Extracellular adenosine triphosphate (eATP) is an important inflammatory mediator that can boost the antitumour immune response, but its role in endometriosis remains unknown. We hypothesized that eATP could inhibit endometriosis cell function both directly and indirectly through macrophages. METHODS: Peritoneal and cyst fluid from endometriosis patients and non-endometriosis controls was collected to measure eATP levels. The addition of eATP was performed to explore its effects on endometriotic cell and macrophage functions, including cell proliferation, apoptosis, pyroptosis, mitochondrial membrane potential, phagocytosis, and the production of inflammatory cytokines and reactive oxygen species. A coculture of endometriotic epithelial cells and U937 macrophages was established, followed by P2X7 antagonist and eATP treatment. Endometriosis model eATP-treated rats were used to evaluate in situ cell death and macrophage marker expression. RESULTS: The pelvic microenvironment of endometriosis patients shows high eATP levels, which could induce endometriotic epithelial cell apoptosis and pyroptosis and significantly inhibit cell growth via the MAPK/JNK/Akt pathway. eATP treatment ameliorated endometriosis-related macrophage dysfunction and promoted macrophage recruitment. eATP treatment in the presence of macrophages exerted a stronger cytotoxic effect on endometriotic epithelial cells by regulating P2X7. eATP treatment effectively induced cell death in an endometriosis rat model and prominently increased the macrophage number without affecting the eutopic endometrium. CONCLUSION: eATP induces endometriotic epithelial cell death and enhances the immune function of macrophages to inhibit the progression of endometriosis, while eutopic endometrium is not affected. eATP treatment may serve as a nonhormonal therapeutic strategy for endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Ratos , Animais , Endometriose/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Endométrio/patologia , Imunidade
5.
J Ethnopharmacol ; 319(Pt 2): 117268, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37797874

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bark is frequently used in southern African traditional medicine to treat inflammation, yet it remains to be rigorously examined for its immunological and anti-inflammatory activity. AIM OF THE STUDY: Barks obtained from ten important and popular southern Africa plants were evaluated for their anti-inflammatory and immunomodulatory properties against the secretion of some pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6, tumour necrosis factor-α (TNF-α), and interferon-gamma (IFN-γ) as well as chemokines (monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2) in murine RAW 264.7 macrophages. MATERIALS AND METHODS: The inhibitory effects of aqueous and ethanol extracts were determined using cytokine multiplex-bead assays in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 cells. RESULTS: Overall, the ethanol extracts were more potent cytokine inhibitors compared to the aqueous extracts. The LPS-stimulated cells treated with the ethanol extracts of Erythrina lysistemon Hutch., Pterocelastrus rostratus Walp. Syzygium cordatum Hochst. ex Krauss and Warburgia salutaris (G. Bertol.) Chiov., demonstrated significant (p < 0.005) inhibition up to 85% of IL-1ß, IL-6, and TNF-α secretion compared to the LPS control. Additionally, P. rostratus and S. cordatum aqueous bark extracts substantially decreased the secretion of all the tested cytokines and chemokines. Chemical investigation of the S. cordatum extract resulted in the identification of four ellagic acid derivatives: ellagic acid 4-O-α-rhamnopyranoside (1), ellagic acid 4-O-α-4″-acetylrhamnopyranoside (2), 3-O-methylellagic acid 4'-O-α-3″-O-acetylrhamnopyranoside (3) and 3-O-methylellagic acid 4'-O-α-4″-O-acetylrhamnopyranoside (4), along with mixtures of ellagic acid 4-O-α-2″-acetylrhamnopyranoside (5), ellagic acid 4-O-α-3″-acetylrhamnopyranoside (6) and ellagic acid (7). Their structures were confirmed by mass spectrometry, NMR spectroscopy, and comparison with data from literature. CONCLUSION: The cytokine inhibition properties of most of the medicinal plants screened herein are reported for the first time. Our results provide insights into the mechanism of action by which the selected southern African medicinal plants regulate inflammation.


Assuntos
Plantas Medicinais , Camundongos , Animais , Plantas Medicinais/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Ácido Elágico/farmacologia , Macrófagos , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Quimiocinas/metabolismo , Células RAW 264.7 , Inflamação/metabolismo , Etanol/química
6.
Int J Mol Med ; 53(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937666

RESUMO

Tumor­associated macrophages (TAMs) are pivotal components in colorectal cancer (CRC) progression, markedly influencing the tumor microenvironment through their polarization into the pro­inflammatory M1 or pro­tumorigenic M2 phenotypes. Recent studies have highlighted that the Grb2­associated binder 2 (Gab2) is a critical gene involved in the development of various types of tumor, including CRC. However, the precise role of Gab2 in mediating TAM polarization remains incompletely elucidated. In the present study, it was discovered that Gab2 was highly expressed within CRC tissue TAMs, and was associated with a poor prognosis of patients with CRC. Functionally, it was identified that the tumor­conditioned medium (TCM) induced Gab2 expression, facilitating the TAMs towards an M2­like phenotype polarization. Of note, the suppression of Gab2 expression using shRNA markedly inhibited the TCM­induced expression of M2­associated molecules, without affecting M1­type markers. Furthermore, the xenotransplantation model demonstrated that Gab2 deficiency in TAMs inhibited tumor growth in the mouse model of CRC. Mechanistically, Gab2 induced the M2 polarization of TAMs by regulating the AKT and ERK signaling pathways, promoting CRC growth and metastasis. In summary, the present study study elucidates that decreasing Gab2 expression hinders the transition of TAMs towards the M2 phenotype, thereby suppressing the growth of CRC. The exploration of the regulatory mechanisms of Gab2 in TAM polarization may enhance the current understanding of the core molecular pathways of CRC development and may thus provide a foundation for the development of novel immunotherapeutic strategies targeted against TAMs.


Assuntos
Neoplasias Colorretais , Macrófagos Associados a Tumor , Animais , Camundongos , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Macrófagos/metabolismo , Transdução de Sinais , Microambiente Tumoral , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
J Colloid Interface Sci ; 654(Pt A): 612-625, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37862809

RESUMO

Reprogramming immunosuppressive M2 macrophages into M1 macrophages in tumor site provides a new strategy for the immunotherapy of colorectal cancer. In this study, M1 macrophage-derived exosome nanoprobe (M1UC) with Ce6-loaded upconversion material is designed to enhance the photodynamic performance of Ce6 while reprogramming M2 macrophages at tumor site and producing NO gas for three-mode synergistic therapy. Under the excitation of near-infrared light at 808 nm, the probe can generate 660 nm up-conversion fluorescence, which enables the photosensitizer Ce6 to produce ROS efficiently. In addition, the probe leads the production of NO by nitric oxide synthase on exosomes. Confocal laser and flow cytometry results show that M1UC probe reprograms M2 macrophages into M1 macrophages with an efficiency of 95.12%. The cell experiments show that the apoptosis rate of the three-mode synergistic therapy group is 78.8%, and the therapeutic effect is significantly higher than those of the other single treatment groups. In vivo experiments results show that M1UC probes maximally gather at the tumor site after 12 h of intravenous injection in orthotopic colorectal cancer mice. After 808 nm laser irradiation, the survival rate of mice is 100% and the recurrence rate was 0 within 60 d, and the therapeutic effect is significantly higher than those of other single treatment groups, which is also confirmed by immunohistochemistry. This M1 macrophage-derived exosome nanoplatform which is based on the three modes of immunotherapy, gas therapy and photodynamic therapy, provides a new design idea for the diagnosis and treatment of deep tumors.


Assuntos
Neoplasias Colorretais , Exossomos , Fotoquimioterapia , Camundongos , Animais , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Macrófagos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia
8.
Glia ; 72(1): 5-18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37501579

RESUMO

Macrophages have emerged as critical cellular components of the central nervous system (CNS), promoting development, maintenance, and immune defense of the CNS. Here we will review recent advances in our understanding of brain macrophage heterogeneity, including microglia and border-associated macrophages, focusing on the mouse. Emphasis will be given to the discussion of strengths and limitations of the experimental approaches that have led to the recent insights and hold promise to further deepen our mechanistic understanding of brain macrophages that might eventually allow to harness their activities for the management of CNS pathologies.


Assuntos
Encéfalo , Macrófagos , Camundongos , Animais , Macrófagos/patologia , Encéfalo/patologia , Sistema Nervoso Central/patologia , Microglia/patologia
9.
Glia ; 72(1): 111-132, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37675659

RESUMO

Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.


Assuntos
Transtorno Depressivo Maior , Microglia , Camundongos , Animais , Humanos , Microglia/patologia , Macrófagos , Neurônios , Estresse Psicológico/complicações , Estresse Psicológico/patologia
10.
Phytomedicine ; 122: 155144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925889

RESUMO

BACKGROUND: Colorectal cancer (CRC) metastasis is a complicated process that not only involves tumor cells but also the effects of M2 type tumor-associated macrophages, a key component of the tumor microenvironment (TME), act a crucial role in cancer metastasis. Macelignan, an orally active lignan isolated from Myristica fragrans, possesses various beneficial biological activities, including anti-cancer effects, but its effect on macrophage polarization in the TME remains unknown. PURPOSE: To evaluate the inhibitory potency and prospective mechanism of macelignan on M2 polarization of macrophages and CRC metastasis. METHODS: The polarization and specific mechanism of M1 and M2 macrophage regulated by macelignan were determined by western blot, flow cytometry, immunofluorescence and network pharmacology. In vitro and in vivo function assays were performed to investigate the roles of macelignan in CRC metastasis. RESULTS: Macelignan efficiently inhibited IL-4/13-induced polarization of M2 macrophages by suppressing the PI3K/AKT pathway in a reactive oxygen species (ROS)-dependent manner. The proportion of CD206+ M2 macrophages was elevated in patients with CRC liver metastasis. Furthermore, macelignan inhibited M2 macrophage-mediated metastasis of CRC cells in vitro and in vivo. Mechanistically, macelignan reduced secretion of IL-1ß from M2 macrophages, which in turn blocked NF-κB p65 nuclear translocation and inhibited metastasis. CONCLUSION: Macelignan suppressed macrophage M2 polarization via ROS-mediated PI3K/AKT signaling pathway, thus preventing IL-1ß/NF-κB-dependent CRC metastasis. In the present study, we reveal a previously unrecognized mechanism of macelignan in the prevention of CRC metastasis and demonstrate its effectively and safely therapeutic potential in CRC treatment.


Assuntos
Neoplasias Colorretais , Lignanas , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lignanas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/metabolismo , Macrófagos , Microambiente Tumoral
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166878, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673359

RESUMO

Macrophage-driven chronic low-grade inflammatory response is intimately associated with pathogenesis of insulin resistance and type 2 diabetes (T2D). However, the molecular basis for skewing of pro-inflammatory macrophage is still elusive. Here, we describe the mechanism and significance of TGS1/PIMT (PRIP-Interacting protein with Methyl Transferase domain) in regulating macrophage activation and polarization and its impact on the development of insulin resistance in skeletal muscle cells. We show altered expression of TGS1 in M1 polarized cultured macrophages, bone marrow-derived (BMDM) and adipose tissue macrophages. Moreover, in High Fat Diet (HFD)-fed mice enhanced TGS1 expression is predominantly localized to the nucleus of adipose tissue macrophages suggesting its potential functional role. Gain and loss of TGS1 expression in macrophage further established its role in the secretion of pro-inflammatory mediators. Mechanistically, TGS1 controls the transcription of numerous genes linked to inflammation by forming a complex with Histone Acetyl Transferase (HAT)-containing transcriptional co-activators CBP and p300. Functionally, TGS1 mediated macrophage inflammatory response induces the development of insulin resistance in skeletal muscle cells and adipocytes. Our findings thus demonstrate an unexpected contribution of TGS1 in the regulation of macrophage mediated inflammation and insulin resistance highlighting that TGS1 antagonism could be a promising therapeutic target for the management of inflammation and insulin resistance in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Resistência à Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Transferases/metabolismo , Músculo Esquelético/metabolismo
12.
J Ethnopharmacol ; 319(Pt 3): 117308, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37865276

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mai Men Dong decoction (MMDD), a traditional Chinese medicine formula, is relevant to ethnopharmacology due to its constituents and therapeutic properties. The formula contains herbs like Ophiopogon japonicus (Thunb.) Ker Gawl., Pinellia ternata (Thunb.) Makino, Panax ginseng C.A.Mey, Glycyrrhiza uralensis Fisch, and Ziziphus jujuba Mill, Oryza sativa L., which have been used for centuries in Chinese medicine. These herbs provide a comprehensive approach to treating respiratory conditions by addressing dryness, cough, and phlegm. Ethnopharmacological studies have explored the scientific basis of these herbs and identified active compounds that contribute to their medicinal effects. The traditional usage of MMDD by different ethnic groups reflects their knowledge and experiences. Examining this formula contributes to the understanding and development of ethnopharmacology. AIM OF THE STUDY: In the case of pulmonary fibrosis (PF), treating it can be challenging due to the limited treatment options available. This study aimed to assess the potential of MMDD as a treatment for PF by targeting macrophages and the PI3K/Akt/FOXO3a signaling pathway. MATERIALS AND METHODS: In a mouse model of PF, we investigated the effects of MMDD on inflammation, fibrosis, and M2 macrophage infiltration in lung tissue. Additionally, we examined the modulation of pro-fibrotic factors and key proteins in the PI3K/Akt/FOXO3a pathway. In vitro experiments involved inducing M2-type macrophages and assessing the impact of MMDD on fibroblast activation and the PI3K/Akt/FOXO3a pathway. RESULTS: Results demonstrated that MMDD improved weight, reduced inflammation, and inhibited M2 macrophage infiltration in mouse lung tissue. It downregulated pro-fibrotic factors, such as TGF-ß1 and PDGF-RB, as well as markers of fibroblast activation. MMDD also exhibited regulatory effects on key proteins in the PI3K/Akt/FOXO3a signaling pathway. CONCLUSIONS: MMDD inhibited M2 macrophage polarization and released profibrotic factors that inhibited pulmonary fibrosis. As a result, the PI3K/Akt/FOXO3a signaling pathway is suppressed. MMDD is proving to be a successful treatment for PF. However, further research is needed to validate its effectiveness in clinical practice.


Assuntos
Fibrose Pulmonar , Masculino , Humanos , Animais , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Inflamação , Macrófagos , Transdução de Sinais , Fibroblastos
13.
J Ethnopharmacol ; 319(Pt 1): 117067, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37619857

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The polarization of glioma-associated microglia/macrophages (GAMs) affects the growth and infiltration of glioma. Astragali Radix (AR) and Solanum nigrum L. (SN) are traditional antitumor combinations in Chinese herbal medicine, but their roles and mechanisms against glioma are not yet clear. AIM OF THE STUDY: The effects of AR and SN compound (ARSN) on the polarization of GAMs and glioma cells in vitro and in vivo were studied, providing new ideas for the treatment of glioma. MATERIALS AND METHODS: The UPLC-QTOF-MS method was used to examine the quality of ARSN extracts. The effects of ARSN on proliferation, migration and apoptosis of C6 cells were investigated using CCK-8 assay, colony-forming assay, wound healing assay and flow cytometry. The impact of ARSN on the polarization of GAMs was verified by PCR, ELISA, and flow cytometry. In addition, a rat glioma model was established to assess the effects of ARSN on glioma growth, infiltration, and polarization of GAMs. RESULTS: In vitro experiments, ARSN can effectively inhibit the proliferation and migration of C6 cells and promote apoptosis. In the rat orthotopic tumor model, ARSN also effectively inhibited tumor growth and infiltration. The SN part of ARSN has strong cytotoxicity. Meanwhile the AR part can effectively inhibit the M2 polarization of GAMs and chemokine production induced by tumor, promote the M1 phenotype of GAMs, and regulate the tumor immune microenvironment to indirectly kill glioma. CONCLUSIONS: ARSN inhibited glioma growth both in vitro and in vivo. SN takes effect through direct cytotoxicity, while AR works by regulating GAMs polarization. ARSN extracts can be used as a potential agent for glioma treatment.


Assuntos
Astrágalo , Neoplasias Encefálicas , Glioblastoma , Glioma , Solanum nigrum , Ratos , Animais , Glioblastoma/tratamento farmacológico , Microglia/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Macrófagos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Microambiente Tumoral
14.
Microbiol Res ; 278: 127515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37837829

RESUMO

Bacterial pneumoniae caused by Klebsiella pneumoniae (Kp) is a major concern due to the prevalence of multiple antibiotic-resistant strains, which limit treatment options and increase mortality rates. Patients with Kp infections often experience an uncontrolled immune response in the lungs, leading to excessive inflammation and elevated levels of proinflammatory cytokines. This study aimed to investigate the cytotoxicity, the inflammatory cytokine response, and the longevity of intracellular bacterial load in RAW 264.7 macrophages, infected with two different Kp strains - cKP (HKU1: Classical Kp) and HvKP (17ZR101: Hypervirulent Kp). This study found that after infecting macrophages with cKP and HvKP, the internalization rate was faster and the intracellular cKP load was higher than that of HvKP. Additionally, the number of intracellular Kp was correlated with the presence of M1 macrophage polarization marker CD86 and expressions of proinflammatory cytokines. Interestingly, the expression of these proinflammatory cytokines was significantly higher in cKP-infected macrophages than in HvKP-infected macrophages. Thus, a higher intracellular cKP load is suggested to play a significant role in causing more proinflammatory cytokines and killing macrophages compared to HvKP infection. This finding highlights the importance of understanding the mechanisms behind Kp infections and developing effective treatment strategies.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Infecções por Klebsiella/epidemiologia , Antibacterianos , Macrófagos , Citocinas
15.
Curr Stem Cell Res Ther ; 19(2): 145-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36809969

RESUMO

Brucella is an intracellular bacterial pathogen capable of long-term persistence in the host, resulting in chronic infections in livestock and wildlife. The type IV secretion system (T4SS) is an important virulence factor of Brucella and is composed of 12 protein complexes encoded by the VirB operon. T4SS exerts its function through its secreted 15 effector proteins. The effector proteins act on important signaling pathways in host cells, inducing host immune responses and promoting the survival and replication of Brucella in host cells to promote persistent infection. In this article, we describe the intracellular circulation of Brucella-infected cells and survey the role of Brucella VirB T4SS in regulating inflammatory responses and suppressing host immune responses during infection. In addition, the important mechanisms of these 15 effector proteins in resisting the host immune response during Brucella infection are elucidated. For example, VceC and VceA assist in achieving sustained survival of Brucella in host cells by affecting autophagy and apoptosis. BtpB, together with BtpA, controls the activation of dendritic cells during infection, induces inflammatory responses, and controls host immunity. This article reviews the effector proteins secreted by Brucella T4SS and their involvement in immune responses, which can provide a reliable theoretical basis for the subsequent mechanism of hijacking the host cell signaling pathway by bacteria and contribute to the development of better vaccines to effectively treat Brucella bacterial infection.


Assuntos
Brucelose , Sistemas de Secreção Tipo IV , Humanos , Sistemas de Secreção Tipo IV/metabolismo , Brucella abortus/metabolismo , Macrófagos/metabolismo , Proteínas/metabolismo , Brucelose/metabolismo , Brucelose/microbiologia
16.
J Ethnopharmacol ; 319(Pt 1): 117070, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37625608

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The deposition of lipids in macrophages and the subsequent formation of foam cells significantly increase the risk of developing atherosclerosis (As). Targeting ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1)-mediated reverse cholesterol transport is crucial for regulating foam cell formation. Therefore, the search for natural chemical components with the ability to regulate ABCA1/G1 is a potential drug target to combat the development of atherosclerosis. Gypenoside XVII (GP-17), a gypenoside monomer extracted from gynostemma pentaphyllum, presents an efficient anti-atherosclerosis function. However, the suppressed formation mechanism of foam cells by GP-17 remains elusive. AIM OF STUDY: To explore the protective activities of GP-17 in ox-LDL-induced THP-1 macrophage-derived foam cells through modulating the promotion of cholesterol efflux and alleviation of inflammation. MATERIALS AND METHODS: MTT was used to detect cell viability. Bodipy493/503 and oil red O staining were performed to measure cell lipid deposition. Enzymatic assay was used to measure intracellular cholesterol measurement. Cholesterol efflux/uptake were determined by cholesterol efflux assay and Dil-ox-LDL uptake assay. Inflammatory cytokines were measured by ELISA. Bioinformatics prediction and dual luciferase reporter assay were performed to validate miR-182-5p targeting HDAC9. Relative protein levels were evaluated by immunoblotting and relative gene levels were determined by quantitative real-time PCR. RESULTS: Our results showed that GP-17 upregulated the expression of ABCA1, ABCG1 and miR-182-5p, but reduced HDAC9 expression levels in lipid-loaded macrophages, which promoted cholesterol efflux and inhibited lipid deposition. Additionally, GP-17 promoted the M2 phenotype of the macrophage and suppressed the inflammatory response in THP-1 macrophage-derived foam cells. Overexpression of HDAC9 or suppression of miR-182-5p eliminated the effects of ABCA1/G1 expression, lipid deposition and pro-inflammatory response. CONCLUSION: These findings suggest that GP-17 exerts a beneficial effect on macrophage lipid deposition and inflammation responses through activating the miR-182-5p/HDAC9 signaling pathway.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Colesterol/metabolismo , Macrófagos , Células Espumosas , Transdução de Sinais , Aterosclerose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Proteínas Repressoras/metabolismo
17.
Carbohydr Polym ; 325: 121585, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008480

RESUMO

Tumor-associated macrophages (TAMs) have emerged as therapeutic interests in cancer nanomedicine because TAMs play a pivotal role in the immune microenvironment of solid tumors. Dextran and its derived nanocarriers are among the most promising nanomaterials for TAM targeting due to their intrinsic affinities towards macrophages. Various dextran-based nanomaterials have been developed to image TAMs. However, the effects of physiochemical properties especially for surface charges of dextran nanomaterials on TAM-targeting efficacy were ambiguous in literature. To figure out the surface charge effects on TAM targeting, here we developed a facile non-covalent self-assembly strategy to construct oppositely charged dextran nanogels (NGs) utilizing the coordination interaction of ferric ions, chlorine e6 (Ce6) dye and three dextran derivatives, diethylaminoethyl-, sulfate sodium- and carboxymethyl-dextran. The acquired dextran NGs exhibit different charges but similar hydrodynamic size, Ce6 loading and mechanical stiffness, which enables a side-by-side comparison of the effects of NG surface charges on TAM targeting monitored by the Ce6 fluorescence imaging. Compared with negative NGs, the positive NG clearly displays a superior TAM targeting in murine breast cancer model. This study identifies that positively charged dextran NG could be a promising approach to better engineer nanomedicine towards an improved TAM targeting.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Animais , Humanos , Camundongos , Nanogéis , Dextranos/farmacologia , Macrófagos , Neoplasias/patologia , Ferro/farmacologia , Microambiente Tumoral
18.
Life Sci Alliance ; 7(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37949473

RESUMO

Programmed death ligand 1 (PD-L1) serves as a pivotal immune checkpoint in both the innate and adaptive immune systems. PD-L1 is expressed in macrophages in response to IFNγ. We examined whether PD-L1 might regulate macrophage development. We established PD-L1 KO (CD274 -/- ) human pluripotent stem cells and differentiated them into macrophages and observed a 60% reduction in CD11B+CD45+ macrophages in CD274 -/- ; this was orthogonally verified, with the PD-L1 inhibitor BMS-1166 reducing macrophages to the same fold. Single-cell RNA sequencing further confirmed the down-regulation of the macrophage-defining transcription factors SPI1 and MAFB Furthermore, CD274 -/- macrophages reduced the level of inflammatory signals such as NF-κB and TNF, and chemokine secretion of the CXCL and CCL families. Anti-inflammatory TGF-ß was up-regulated. Finally, we identified that CD274 -/- macrophages significantly down-regulated interferon-stimulated genes despite the presence of IFNγ in the differentiation media. These data suggest that PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells.


Assuntos
Antígeno B7-H1 , Macrófagos , Humanos , Antígeno B7-H1/genética , Interferon gama/imunologia , NF-kappa B
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166911, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813169

RESUMO

Vascular injury is an early manifestation leading to end-organ damage in hypertension pathogenesis, which involves a macrophage-associated immune response. Dendritic cell-associated C-type lectin-1 (Dectin1) is a pivotal player in regulating inflammation-mediated cardiovascular disease. However, its role in hypertension-induced vascular damage and the underlying mechanisms remain unclear. We hypothesized that Dectin1 might accelerate angiotensin II (Ang II)- or deoxycorticosterone acetate-salt (DOCA-salt)-induced vascular injury through proinflammatory actions in macrophages. Macrophage Dectin1 was upregulated in mouse aortic tissues stimulated with Ang II. In the peripheral blood, Ang II also increased CD11b+F4/80+ macrophages in mice. In our constructed Dectin1 knockout mice, Dectin1 deletion protected against Ang II-induced EB extravasation and aortic wall thickness. Deficiency of Dectin1 or its pharmacological inhibition considerably improved fibrosis and inflammation responses, accompanied by a reduction in M1 macrophage polarization as well as proinflammatory cytokines and chemokines induced by Ang II or DOCA-salt. Through the bone marrow (BM) transplantation assay, these effects were verified in the wild type mice reconstituted with Dectin1-deficient BM cells. Mechanistically, Ang II promoted Dectin1 homodimerization, thereby triggering the spleen tyrosine kinase/nuclear factor kappa B pro-inflammatory cascade to induce the expression of inflammatory factors and chemokines in vivo and in vitro. In conclusion, Dectin1 has an essential role in the pathogenic procedure of Ang II-stimulated or DOCA-salt-induced vascular damage in mice and represents a promising therapeutic target for cardiovascular diseases.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Lesões do Sistema Vascular , Animais , Camundongos , Quimiocinas/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Hipertensão/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais , Lesões do Sistema Vascular/metabolismo
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166902, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37816396

RESUMO

OBJECTIVES: To explore the novel function of MYO6 on Osteoclast differentiation and its joint destruction capacity in Rheumatoid arthritis mice model. METHODS: We examined joint erosion in a collagen-induced arthritis (CIA) mouse model using micro-CT, with the mice having a MYO6 knockout background. Inflammatory cytokines were analyzed using an enzyme-linked immunosorbent assay (ELISA). In vitro, we investigated the osteoclastogenesis ability of bone marrow-derived macrophages isolated from MYO6-/- mice and their littermate controls, examining both morphological and functional differences. Furthermore, we explored podosome formation and endosome maturation using immunofluorescence staining. RESULTS: We found that MYO6 deficiency attenuated arthritis development and bone destruction in CIA mice as well as impaired osteoclast differentiation by inhibiting NFATc1 induction. Our findings indicate that MYO6 is essential for the organization of podosomes by modulating the FAK/AKT and integrin-ß3/Src pathways. MYO6 also mediates endosome transportation by regulating the expression of Rab5 and GM130. This may impact the maintenance and functionality of the ruffled border, as well as the regulation of autophagy in osteoclasts. CONCLUSION: Our results demonstrated a critical function of MYO6 in osteoclast differentiation and its potential relevance in experimental arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Camundongos , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...