Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.853
Filtrar
1.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679836

RESUMO

In this study, we design a highly efficient plasma source using a magnetic mirror trap with two opposing permanent magnets for a miniature high-efficiency ion pump. First, we simulated the distribution of the magnetic field line formed by the proposed magnetic mirror configuration. By optimizing the distance between two opposing permanent magnets and size of these magnets, a magnetic mirror ratio value of 27 could be obtained, which is an electron confinement efficiency of over 90%. We also conducted an experiment on a high-efficiency discharge plasma source for a miniature ion pump using an optimized magnetic circuit. As a result, we revealed that the proposed magnetic circuit has a pronounced effect on plasma generation, particularly in the high-vacuum region.


Assuntos
Magnetismo , Imãs , Campos Magnéticos , Vácuo , Elétrons
2.
Sci Rep ; 13(1): 1218, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681720

RESUMO

Texture-based magnonics focuses on the utilization of spin waves in magnetization textures to process information. Using micromagnetic simulations, we study how (1) the dynamic magnetic susceptibility, (2) dispersion relations, and (3) the equilibrium magnetic configurations in periodic magnetization textures in a ultrathin ferromagnetic film in remanence depend on the values of the Dzyaloshinskii-Moriya interaction and the perpendicular magnetocrystalline anisotropy. We observe that for large Dzyaloshinskii-Moriya interaction values, spin spirals with periods of tens of nanometers are the preferred state; for small Dzyaloshinskii-Moriya interaction values and large anisotropies, stripe domain patterns with over a thousand times larger period are preferable. We observe and explain the selectivity of the excitation of resonant modes by a linearly polarized microwave field. We study the propagation of spin waves along and perpendicular to the direction of the periodicity. For propagation along the direction of the periodicity, we observe a bandgap that closes and reopens, which is accompanied by a swap in the order of the bands. For waves propagating in the perpendicular direction, some modes can be used for unidirectional channeling of spin waves. Overall, our findings are promising in sensing and signal processing applications and explain the fundamental properties of periodic magnetization textures.


Assuntos
Imãs , Tetranitrato de Pentaeritritol , Anisotropia , Micro-Ondas , Filmes Cinematográficos
3.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615607

RESUMO

The chemical immobilization of cobalt(II) ions in a silica aerogel matrix enabled the synthesis of the first representative example of aerogel-based single-ion magnets. For the synthesis of the lyogels, methyl-trimethoxysilane and N-3-(trimethoxysilyl)propyl ethylenediamine were co-hydrolyzed, then the ethylenediamine groups that were immobilized on the silica matrix enabled the subsequent binding of cobalt(II) ions. Lyogels with various amounts of ethylenediamine moieties (0.1-15 mol %) were soaked in isopropanol solutions of cobalt(II) nitrate and further supercritically dried in carbon dioxide to obtain aerogels with a specific surface area of 210-596 m2·g-1, an apparent density of 0.403-0.740 cm3·g-1 and a porosity of 60-78%. The actual cobalt content in the aerogels was 0.01-1.50 mmol per 1 g of SiO2, which could easily be tuned by the concentration of ethylenediamine moieties in the silica matrix. The introduction of cobalt(II) ions into the ethylenediamine-modified silica aerogel promoted the stability of the diamine moieties at the supercritical drying stage. The molecular prototype of the immobilized cobalt(II) complex, bearing one ethylenediamine ligand [Co(en)(MeCN)(NO3)2], was synthesized and structurally characterized. Using magnetometry in the DC mode, it was shown that cobalt(II)-modified silica aerogels exhibited slow magnetic relaxation in a nonzero field. A decrease in cobalt(II) concentration in aerogels from 1.5 mmol to 0.14 mmol per 1 g of SiO2 resulted in a weakening of inter-ion interactions; the magnetization reversal energy barrier likewise increased from 4 to 18 K.


Assuntos
Imãs , Dióxido de Silício , Dióxido de Silício/química , Cobalto/química , Magnetismo , Etilenodiaminas
4.
Sensors (Basel) ; 23(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617102

RESUMO

Magnetic Barkhausen noise (MBN), sensitive to the microstructure of materials, can be applied in the surface decarburization depth detection of ferromagnetic specimens. However, the effects of core microstructures on the determination results of decarburization depth have not been explored. In this study, MBN was employed to evaluate the magnetic properties of the decarburized 60Si2Mn spring steels with martensitic and pearlitic core microstructures. Spring steel samples were austenitized at different times to generate different decarburization depths. Seven magnetic features were extracted from the MBN butterfly profiles. We used the variation coefficient, linear correlation coefficient, and normalized sensitivity to discuss the influence of the core microstructures on these seven features. The different core microstructures led to a large difference in the ability of MBN features to characterize the decarburization layer depth. However, three features of MBN butterfly profiles demonstrated an approximately linear dependency (linear correlation coefficient > 94%) on surface decarburization depth and monotonically increased with the increase in depth in both core microstructures of spring steels.


Assuntos
Imãs , Aço , Fenômenos Físicos , Estações do Ano , Fenômenos Magnéticos
5.
PLoS One ; 18(1): e0272166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630461

RESUMO

Characterization of gene lists obtained from high-throughput genomic experiments is an essential task to uncover the underlying biological insights. A common strategy is to perform enrichment analyses that utilize standardized biological annotations, such as GO and KEGG pathways, which attempt to encompass all domains of biology. However, this approach provides generalized, static results that may fail to capture subtleties associated with research questions within a specific domain. Thus, there is a need for an application that can provide precise, relevant results by leveraging the latest research. We have therefore developed an interactive web application, Macrophage Annotation of Gene Network Enrichment Tool (MAGNET), for performing enrichment analyses on gene sets that are specifically relevant to macrophages. Using the hypergeometric distribution, MAGNET assesses the significance of overlapping genes with annotations that were curated from published manuscripts and data repositories. We implemented numerous features that enhance utility and user-friendliness, such as the simultaneous testing of multiple gene sets, different visualization options, option to upload custom datasets, and downloadable outputs. Here, we use three example studies compared against our current database of ten publications on mouse macrophages to demonstrate that MAGNET provides relevant and unique results that complement conventional enrichment analysis tools. Although specific to macrophage datasets, we envision MAGNET will catalyze developments of similar applications in other domains of interest. MAGNET can be freely accessed at the URL https://magnet-winterlab.herokuapp.com. Website implemented in Python and PostgreSQL, with all major browsers supported. The source code is available at https://github.com/sychen9584/MAGNET.


Assuntos
Redes Reguladoras de Genes , Imãs , Animais , Camundongos , Software , Genômica/métodos , Internet
6.
Inorg Chem ; 62(3): 1075-1085, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625763

RESUMO

Herein, hexaazamacrocyclic ligand LN6 was employed to construct a series of photochromic rare-earth complexes, [Ln(LN6)(NO3)2](BPh4) [1-Ln, Ln = Dy, Tb, Eu, Gd, Y; LN6 = (3E,5E,10E,12E)-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane-3,5,10,12-tetraene]. The behavior of photogenerated radicals of hexaazamacrocyclic ligands was revealed for the first time. Upon 365 nm light irradiation, complexes 1-Ln exhibit photochromic behavior induced by photogenerated radicals according to EPR and UV-vis analyses. Static and dynamic magnetic studies of 1-Dy and irradiated product 1-Dy* indicate weak ferromagnetic interactions among DyIII ions and photogenerated LN6 radicals, as well as slow magnetization relaxation behavior under a 2 kOe applied field. Further fitting analyses show that the magnetization relaxation in 1-Dy* is markedly different from 1-Dy. Time-dependent fluorescence measurements reveal the characteristic luminescence quenching dynamics of lanthanide in the photochromic process. Especially for irradiated product 1-Eu*, the luminescence is almost completely quenched within 5 min with a quenching efficiency of 98.4%. The results reported here provide a prospect for the design of radical-induced photochromic lanthanide single-molecule magnets and will promote the further development of multiresponsive photomagnetic materials.


Assuntos
Elementos da Série dos Lantanídeos , Luminescência , Magnetismo , Imãs , Fluorescência , Ligantes
7.
Inorg Chem ; 62(3): 1141-1155, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36630675

RESUMO

Recent advances in single-molecule magnet (SMM) research have placed great value on interpretation of inelastic neutron scattering (INS) data for rare earth (RE)-containing SMMs. Here, we present the synthesis of several rare earth complexes where combined magnetic and INS studies have been performed, supported by ab initio calculations. The reaction of rare earth nitrate salts with 2,2'-bipyridine (2,2'-bpy) and tetrahalocatecholate (X4Cat2-, X = Br, Cl) ligands in methanol (MeOH) afforded two new families of compounds [RE(2,2'-bpy)2(X4Cat)(X4CatH)(MeOH)] (X = Br and RE = Y, Eu, Gd, Tb, Dy, Ho, Yb for 1-RE; X = Cl and RE = Y, Tb, Dy, Ho, and Yb for 2-RE). Addition of triethylamine (Et3N) to the reaction mixture delivered Et3NH[RE(2,2'-bpy)2(Br4Cat)2] (3-RE, RE = Er and Yb). Interestingly, cerium behaves differently to the rest of the series, generating (2,2'-bpyH)2[Ce(Br4Cat)3(2,2'-bpy)] (4-Ce) with tetravalent Ce(IV) in contrast to the trivalent metal ions in 1-3. The static magnetic properties of 1-RE (RE = Gd, Tb, Dy and Ho) were investigated in conjunction with INS measurements on 1-Y, 1-Tb, and 1-Ho to probe their ground state properties and any crystal field excitations. To facilitate interpretation of the INS spectra and provide insight into the magnetic behavior, ab initio calculations were performed using the single-crystal X-ray diffraction structural data of 1-RE (RE = Tb, Dy and Ho). The ab initio calculations indicate ground doublets dominated by the maximal angular momentum projection states of Kramers type for 1-Dy and Ising type for 1-Tb and 1-Ho. Dynamic magnetic susceptibility measurements indicate that 1-Dy exhibits slow magnetic relaxation in the presence of a small applied magnetic field mainly through Raman pathways. Inelastic neutron scattering spectra exhibit distinct transitions corresponding to crystal field-induced tunneling gaps between the pseudo-doublet ground state components for 1-Tb and 1-Ho, which is one of the first direct experimental measurements with INS of such tunneling transitions in a molecular nanomagnet. The power of high-resolution INS is demonstrated with evidence of two distinct tunneling gaps measurable for the two crystallographically unique Tb coordination environments observed in the single crystal X-ray structure.


Assuntos
Cério , Imãs , Cristalografia por Raios X , Campos Magnéticos
8.
Biosens Bioelectron ; 222: 114745, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502714

RESUMO

The process of developing an end-to-end model of a magneto-immunoassay is described, simulating the agglutination effect due to the specific binding of bacteria to paramagnetic particles. After establishing the properties of the dose-specific agglutination through direct imaging, a microfluidic assay was used to demonstrate changes in the magnetophoretic transport dynamics of agglutinated clusters via transient inductive magentometer measurements. End-to-end mathematical modelling is used to establish the physical processes underlying the assay. First, a modified form of Becker-Döring nucleation kinetic equations is used to establish a relationship between analyte dose and average cluster size. Next, Stokes flow equations are used to establish a relationship between cluster size and speed of motion within the fluid chamber. This predicts a cluster-size dynamic profile of concentration of PMPs versus time when the magnetic field is switched between the two actuated magnets. Finally, inductive modelling is carried out to predict the response of the magnetometer circuit in response to the dynamics of magnetic clusters. The predictions of this model are shown to agree well with the results of experiments, and to predict the shape of the dose-response curve.


Assuntos
Técnicas Biossensoriais , Modelos Teóricos , Magnetismo , Imãs , Movimento (Física)
9.
Emerg Med J ; 39(6): 467-470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34544782

RESUMO

INTRODUCTION: The ingestion of small, strong, rare-earth magnets, also termed 'ball magnets', can rapidly result in life-threatening bowel injuries. The objective of this study was to report the incidence and management of 'ball magnet' ingestion in children across the UK and to discuss the potential implications for policy-makers and public awareness campaigns. METHODS: In this multi-centre survey of UK major trauma centres (MTCs), paediatric patients admitted to hospital following 'ball magnet' ingestion from 1 January 2020 to 31 December 2020 were included. RESULTS: Responses were received from 11 MTCs (52%) reporting a total of 53 children admitted with 'ball magnet' ingestion over the 1-year study period. Most patients (n=51) presented following unintentional ingestion. 36 (68%) patients presented asymptomatically following witnessed or reported ingestion. In symptomatic patients, abdominal pain and vomiting were the the most common symptoms. The median number of 'ball magnets' ingested was 5.0 (IQR 3.0-7.8), range 1 to 63. 27 (51%) patients underwent operative intervention; laparotomy being the the most common (n=24, 89%). There were no deaths reported during the study period. CONCLUSION: This multi-centre survey from the UK demonstrates the serious impact of 'ball magnet' ingestion in children. Clinicians, regulators and caregivers must work symbiotically in order to prevent, recognise and reduce life-threatening bowel injuries.


Assuntos
Corpos Estranhos , Imãs , Dor Abdominal , Criança , Ingestão de Alimentos , Corpos Estranhos/epidemiologia , Corpos Estranhos/terapia , Humanos , Laparotomia , Imãs/efeitos adversos
10.
J Am Chem Soc ; 144(50): 22965-22975, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36490388

RESUMO

The study of how spin interacts with lattice vibrations and relaxes to equilibrium provides unique insights into its chemical environment and the relation between electronic structure and molecular composition. Despite its importance for several disciplines, ranging from magnetic resonance to quantum technologies, a convincing interpretation of spin dynamics in crystals of magnetic molecules is still lacking due to the challenging experimental determination of the correct spin relaxation mechanism. We apply ab initio spin dynamics to a series of 12 coordination complexes of Co2+ and Dy3+ ions selected among ∼240 compounds that largely cover the literature on single-molecule magnets and well represent different regimes of spin relaxation. Simulations reveal that the Orbach spin relaxation rate of known compounds mostly depends on the ions' zero-field splitting and little on the details of molecular vibrations. Raman relaxation is instead found to be also significantly affected by the features of low-energy phonons. These results provide a complete understanding of the factors limiting spin lifetime in single-molecule magnets and revisit years of experimental investigations by making it possible to transparently distinguish Orbach and Raman relaxation mechanisms.


Assuntos
Complexos de Coordenação , Imãs , Tecnologia , Eletrônica , Vibração
11.
PLoS One ; 17(12): e0279432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548368

RESUMO

Removal of excess dideoxy terminators from the sequencing mix after the enzymatic reaction is a key process affecting the dideoxy/Sanger sequencing quality. Ethanol precipitation may be the most popular clean-up method because of its low cost; however, it takes a long centrifugation time and frequently results in low quality sequence data. Commercially available clean-up kits provide high quality sequence data, while they generally have high cost. Here, we describe rapid, effective and low-cost dideoxy terminator clean-up method using a home-made magnetic beads suspension, MagNA, and magnetic separator. We found that MagNA enables rapid and efficient clean-up at ~1/100 of the cost of commercially available kits. The magnetic separator made using low-cost neodymium magnets worked well for the MagNA separation, representing a rapid, efficient and cost-effective dideoxy terminator clean-up system.


Assuntos
Magnetismo , Imãs , Sequência de Bases , Análise de Sequência de DNA/métodos , Fenômenos Magnéticos
12.
Nat Commun ; 13(1): 7646, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496444

RESUMO

Natural superlattice structures MnBi2Te4(Bi2Te3)n (n = 1, 2, ...), in which magnetic MnBi2Te4 layers are separated by nonmagnetic Bi2Te3 layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic-antiferromagnetic coexisting ground states that persist down to the 2-septuple layers limit are observed and comprehensively investigated in MnBi4Te7 (n = 1) and MnBi6Te10 (n = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle interlayer magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect, arising from the coupling between the ferromagnetic and antiferromagnetic components in the ground state, is observed in MnBi2Te4(Bi2Te3)n (n = 1, 2), which provides design principles and material platforms for future spintronic devices. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in MnBi2Te4(Bi2Te3)n (n = 1, 2) as well as their magnetic applications.


Assuntos
Imãs , Viés
13.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500440

RESUMO

The rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication route that allows for obtaining a magnetically enhanced bulk τ-MnAlC magnet. In the fabrication process, an electric arc-melting method was carried out to melt ingots of MnAlC alloys. A two-step solution treatment at 1200 °C and 1100 °C allowed us to synthesize a pure room-temperature ε-MnAlC ingot that completely transformed into τ-MnAlC alloy, free of secondary phases, after an annealing treatment at 550 °C for 30 min. The Rietveld refinements and magnetization measurements demonstrated that the quenched process produces a phase-segregated ε-MnAlC alloy that is formed by two types of ε-phases due to local fluctuation of the Mn. Room-temperature hysteresis loops showed that our improved τ-MnAlC alloy exhibited a remanent magnetization of 42 Am2/kg, a coercive field of 0.2 T and a maximum energy product, (BH)max, of 6.07 kJ/m3, which is higher than those reported in previous works using a similar preparation route. Experimental evidence demonstrated that the synthesis of a pure room-temperature ε-MnAlC played an important role in the suppression of undesirable phases that deteriorate the permanent magnet properties of the τ-MnAlC. Finally, magnetic images recorded by Lorentz microscopy allowed us to observe the microstructure and magnetic domain walls of the optimized τ-MnAlC. The presence of magnetic contrasts in all the observed grains allowed us to confirm the high-quality ferromagnetic behavior of the system.


Assuntos
Imãs , Metais Terras Raras , Imãs/química , Ligas/química , Temperatura , Magnetismo
14.
Sensors (Basel) ; 22(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502137

RESUMO

Factors such as insufficient heat dissipation and excessively high temperature can easily lead to demagnetization of the PMs in permanent-magnet (PM) motors. As a result, the magnetic field distribution of the motor will not be uniform, producing fault harmonics and lowering the operational performance of the motor. An essential stage in the diagnosis of faults and the monitoring of motor condition is the establishment of an accurate model of motors with demagnetization faults. In this paper, demagnetization faults are modeled by changing the Fourier coefficients in the Fourier expansion of the magnetization of PMs. This model can be used to determine the motor performance under various types of demagnetization, including radial air gap flux density, back electromotive force (EMF), and torque. On this basis, the corresponding relationship between the demagnetization degree and the fault signature is established, to provide a theoretical foundation for the subsequent demagnetization fault diagnosis. The finite element analysis (FEA) verifies the effectiveness and superiority of the proposed analytical model. The modeling method proposed in this paper can be applied to PM motors with PMs having different magnetization directions and shapes because it is based on the demagnetization region of PMs.


Assuntos
Imãs , Torque
15.
Sci Robot ; 7(73): eadd1017, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36516273

RESUMO

A climbing robot that can rapidly move on diverse surfaces such as floors, walls, and ceilings will have an enlarged operational workspace compared with other terrestrial robots. However, the climbing skill of robots in such environments has been limited to low speeds or simple locomotion tasks. Here, we present an untethered quadrupedal climbing robot called MARVEL (magnetically adhesive robot for versatile and expeditious locomotion), capable of agile and versatile climbing locomotion in ferromagnetic environments. MARVEL excels over prior climbing robots in terms of climbing speed and ability to execute various motions. It demonstrates the fastest vertical and inverted walking speed, whereas its versatile locomotion ability enables the highest number of gaits and locomotion tasks. The key innovations are an integrated foot design using electropermanent magnets and magnetorheological elastomers that provide large adhesion and traction forces, torque control actuators, and a model predictive control framework adapted for stable climbing. In experiments, the robot achieved locomotion on ceilings and vertical walls up to 0.5 meter (1.51 body lengths) per second and 0.7 meter (2.12 body lengths) per second, respectively. Furthermore, the robot exhibited complex behaviors such as stepping over 10-centimeter-wide gaps; overcoming 5-centimeter-high obstacles; and making transitions between floors, walls, and ceilings. We also show that MARVEL could climb on a curved surface of a storage tank covered with up to 0.3-millimeter-thick paint with rust and dust.


Assuntos
Robótica , Imãs , Locomoção , Marcha , Movimento (Física)
17.
Nature ; 611(7936): 570-577, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352231

RESUMO

Expanding our global testing capacity is critical to preventing and containing pandemics1-9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10-14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15-20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21-29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents ('ferrobots') for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10-300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future.


Assuntos
Automação , Teste para COVID-19 , Imãs , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Robótica , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Teste para COVID-19/métodos , Técnicas de Diagnóstico Molecular/economia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/economia , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias/prevenção & controle , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Algoritmos , Automação/economia , Automação/métodos , Robótica/métodos , Indicadores e Reagentes/economia
18.
J Magn Reson ; 344: 107322, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36332512

RESUMO

Multilayer Halbach array magnets support portable NMR and MRI, but optimizing their design to maximize performance and minimize the use of expensive magnet materials is challenging. This is partly because our theoretical understanding of such arrays is incomplete and computationally intensive. Here we provide a theoretical description of the magnetic field distribution and we demonstrate that inhomogeneity is greatest along the z axis in multilayer Halbach array magnets. This allows the configuration of the multilayer Halbach array magnets to be optimized in a way that takes into account homogeneity, magnet volume, and magnetic flux density. At the same time, our description simplifies the design of multilayer array magnets, while accommodating the possibility of different outer radii, lengths for each layer array, or the presence of separation between the rings. We validated the theoretical description in simulations of a three-layer Halbach array magnet, then with a prototype three-layer 1-T Halbach array magnet. After adjusting the position of magnet blocks in the neighboring rings, we achieved homogeneity of 220 ppm for a standard 5 mm NMR tube while the inner diameter of the magnet is 20 mm. Our work provides a theoretical foundation for designing multilayer Halbach array magnets to maximize homogeneity and minimize the use of magnet materials.


Assuntos
Imageamento por Ressonância Magnética , Imãs , Desenho de Equipamento , Espectroscopia de Ressonância Magnética , Campos Magnéticos
19.
Proc Natl Acad Sci U S A ; 119(47): e2204485119, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375053

RESUMO

Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe3CoB2, through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe3CoB2 exhibits a high magnetic anisotropy (K1 = 1.2 MJ/m3) and saturation magnetic polarization (Js = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials.


Assuntos
Imãs , Metais Terras Raras , Retroalimentação , Magnetismo , Fenômenos Magnéticos , Aprendizado de Máquina
20.
Sensors (Basel) ; 22(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36366004

RESUMO

Target azimuth information can help further improve the accuracy of magnetic orientation, but the current periodic magnetic field generated by the magnetic beacon is multivalued, so it is not suitable for azimuth measurement. According to the distribution of a rotating magnetic field and the phase angle measuring principle, we put forward a new magnetic source structure design of a multiple rotating permanent magnet array by adjusting the spacing d, the rotating speed ω and the initial rotation angle φ, and then verified the mathematical model using COMSOL simulation software. A triple structure was obtained by comparison (d3=3d1=3d2=43 m, d3=3d1=3d2=43 m, φ1=0, φ2=4π5 rad. φ3=π rad), which can produce a strong characteristic magnetic signal similar to a heart-shaped field pattern. Finally, a signal transceiver system was set up for the experiment. The experimental result shows that the waveform of the magnetic signal generated by the real beacon meets the requirement of having a unique maximum value and good directivity within a period, which proves the practical application effect of the structure.


Assuntos
Campos Magnéticos , Magnetismo , Rotação , Imãs , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...