Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
BMC Res Notes ; 16(1): 87, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221603

RESUMO

OBJECTIVE: Sidalcea is a genus of flowering plants restricted to the west coast of North America, commonly known as checkermallows. Remarkably, of the ~ 30 recognized species, 16 are of conservation concern (vulnerable, imperilled or critically imperilled). To facilitate biological studies in this genus, and in the wider Malvaceae, we have sequenced the whole plastid genome of Sidalcea hendersonii. This will allow us both to check those regions already developed as general Malvaceae markers in a previous study, and to search for new regions. RESULTS: By comparing the Sidalcea genome to that of Althaea, we have identified a hypervariable circa 1 kb region in the short single copy region. This region shows promise for examining phylogeographic pattern, hybridization and haplotype diversity. Remarkably, considering the conservation of plastome architecture between Sidalcea and Althaea, the former has a 237 bp deletion in the otherwise highly conserved inverted repeat region. Newly designed primers provide a PCR assay to determine presence of this indel across the Malvaceae. Screening of previously designed chloroplast microsatellite markers indicates two markers with variation within S. hendersonii that would be useful in future population conservation genetics.


Assuntos
Malvaceae , Noroeste dos Estados Unidos , Bioensaio , Cloroplastos , Primers do DNA
2.
Toxicon ; 229: 107140, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119859

RESUMO

Alcea glabrata from the family Malvaceae, was selected for evaluating its xanthine oxidase inhibitory, anti-malarial, and antioxidant activities. In addition, some phytochemical analysis upon different extracts of A. glabrata were performed. Aerial parts of the collected A. glabrata plant material were dried and solvent extracted via soxhlet apparatus using different solvents. Various chromatographic techniques were used for extra fractionation of the achieved extracts. Xanthine oxidase (XO) inhibitory, antimalarial and antioxidant activity assays upon different A. glabrata extracts and fractions were carried out and reported in terms of IC50s. Total phenolic and flavonoid contents of the A. glabrata methanol extract (MeOH) were determined using the 2,2-Di Phenyl-1-Picryl Hydrazyl (DPPH) assay, aluminum chloride colorimetric, and Folin-Ciocalteu reagents, respectively. In addition, A. glabrata essential oil was obtained through hydrodistillation by a Clevenger apparatus. Analysis and identification of essential oil compounds were carried out through gas chromatography mass spectrometry (GC-MS) analysis. MeOH extract showed the highest XO inhibitory activity with the IC50 of 0.37 ± 0.12 mg/mL antioxidant activity with the RC50 of 0.24 ± 0.06 mg/mL. While, chloroform extract revealed the strongest antimalarial activity with the IC50 of 0.4 ± 0.05 mg/mL. The total flavonoid and phenolic contents of the A. glabrata methanol extract were 39.8 mg quercetin equivalent and 6.1 g gallic acid equivalent per 100 g of dry plant material, respectively. GC-MS analysis showed that the monoterpenes were prevailing in A. glabrata essential oil where the major constituents: octacosane (30.7%), eugenol (12.3%), and anethole (12.0%). Concerning the results of this study, A. glabrata extracts and its ingredients could be considered as a novel promising herbal medicine in the design and also treatment of new drugs for the relief of gout and malaria diseases.


Assuntos
Antimaláricos , Malvaceae , Óleos Voláteis , Antioxidantes/farmacologia , Antimaláricos/farmacologia , Xantina Oxidase , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Fenóis/farmacologia , Solventes/química
3.
PeerJ ; 11: e15047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974135

RESUMO

Background: Begomoviruses are circular single-stranded DNA plant viruses that cause economic losses worldwide. Weeds have been pointed out as reservoirs for many begomoviruses species, especially from members of the Sida and Malvastrum genera. These weeds have the ability to host multiple begomoviruses species simultaneously, which can lead to the emergence of new viral species that can spread to commercial crops. Additionally, begomoviruses have a natural tendency to recombine, resulting in the emergence of new variants and species. Methods: To explore the begomoviruses biodiversity in weeds from genera Sida and Malvastrum in Colima, México, we collected symptomatic plants from these genera throughout the state. To identify BGVs infecting weeds, we performed circular DNA genomics (circomics) using the Illumina platform. Contig annotation was conducted with the BLASTn tool using the GenBank nucleotide "nr" database. We corroborated by PCR the presence of begomoviruses in weeds samples and isolated and sequenced the complete genome of a probable new species of begomovirus using the Sanger method. The demarcation process for new species determination followed the International Committee on Taxonomy of Viruses criteria. Phylogenetic and recombination analyses were implemented to infer the evolutionary relationship of the new virus. Results: We identified a new begomovirus species from sida and malvastrum plants that has the ability to infect Cucumis sativus L. According to our findings, the novel species Sida chlorotic leaf virus is the result of a recombination event between one member of the group known as the Squash leaf curl virus (SLCV) clade and another from the Abutilon mosaic virus (AbMV) clade. Additionally, we isolated three previously identified begomoviruses species, two of which infected commercial crops: okra (Okra yellow mosaic Mexico virus) and cucumber (Cucumber chlorotic leaf virus). Conclusion: These findings support the idea that weeds act as begomovirus reservoirs and play essential roles in begomovirus biodiversity. Therefore, controlling their populations near commercial crops must be considered in order to avoid the harmful effects of these phytopathogens and thus increase agricultural efficiency, ensuring food and nutritional security.


Assuntos
Begomovirus , Cucumis sativus , Malvaceae , Sida (Planta) , Begomovirus/genética , Cucumis sativus/genética , Filogenia , DNA Viral/genética , Sequência de Bases , Malvaceae/genética
4.
J Nat Prod ; 86(2): 276-289, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36746775

RESUMO

Sixteen new quinoline alkaloids (1a-7, 8a, 9, 10, 13-15, 17, and 21) and 10 known analogs (8b, 11, 12, 16, 18-20, and 22-24), along with three known cyclopeptide alkaloids (25-27), were isolated from the roots of Waltheria indica. The structures of the new compounds were elucidated by detailed NMR and circular dichroism with computational support and mass spectrometry data interpretation. Anti-inflammatory potential of isolates was evaluated based on inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production and tumor necrosis factor-alpha (TNF-α)-induced nuclear factor kappa B (NF-κB) activity with cell culture models. In the absence of cell growth inhibition, compounds 6, 8a, 9-11, 13, 21, and 24 reduced TNF-α-induced NF-κB activity with IC50 values ranging from 7.1 to 12.1 µM, comparable to the positive control (BAY 11-7082, IC50 = 9.7 µM). Compounds 6, 8a, 8b, and 11 showed significant NO-inhibitory activity with IC50 values ranging from 11.0 to 12.8 µM, being more active than the positive control (l-NMMA, IC50 = 22.7 µM). Structure-activity relationships indicated that NO inhibitory activity was significantly affected by C-8 substitution. Inhibition of LPS-induced nitric oxide synthase (iNOS) by 8b [(5S)-waltherione M, IC50 11.7 ± 0.8 µM] correlated with inhibition of iNOS mRNA expression. The biological potential of W. indica metabolites supports the traditional use of this plant for the treatment of inflammatory-related disorders.


Assuntos
Alcaloides , Malvaceae , Quinolinas , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Malvaceae/química , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico
5.
Food Res Int ; 164: 112354, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737942

RESUMO

Pachira aquatica (Malvaceae) is an unconventional food plant (UFP) native to Mexico and found all over Brazil, where it is commonly known as monguba. It has an arboreal shape, exotic flowers, and a fruit similar to cocoa with several seeds. Although its main application is in urban ornamentation and folk medicine, monguba's fruit has a great potential for use in the food, pharmacology, cosmetic, and bioenergy industry, mainly due to its oil's characteristics. This review aims to compile the nutritional composition, bioactive and antioxidant activities, and technological and nutritional potential of monguba's seed, leaf, and fruit pericarp. It reviews studies of different databases between January 2018 and October 2021. Monguba seeds are rich in lipids, proteins, and minerals; the bark is rich in fiber; and all parts of the fruit have bioactive compounds. Discussing the use of UFP is a way of finding new alternative food sources, usually discarded, offering products with high nutritional value allied to technological and consumption potential, such as the monguba fruit.


Assuntos
Bombacaceae , Malvaceae , Frutas , Sementes/metabolismo , Plantas Comestíveis
6.
Cells ; 12(3)2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36766739

RESUMO

The current prevalence of such lifestyle diseases as mycobacteriosis and tuberculosis is a result of the growing resistance of microorganisms to the available antibiotics and their significant toxicity. Therefore, plants can successfully become a source of new therapeutic agents. The aim of this study was to investigate the effect of protein extract from Sida hermaphrodita seeds on the morphology, structure, and viability of Mycobacterium smegmatis and to carry out proteomic characterization of the protein extract. The analyses were carried out using fluorescence and transmission microscopy, atomic force microscopy, and spectroscopy. The proteomic studies were performed using liquid chromatography coupled to tandem mass spectrometry. The studies showed that the seed extract applied at concentrations of 50-150 µg/mL exerted a statistically significant effect on M. smegmatis cells, that is, a reduction of the viability of the bacteria and induction of changes in the structure of the mycobacterial cell wall. Additionally, the SEM analysis confirmed that the extract did not have a cytotoxic or cytopathic effect on fibroblast cells. The proteomic analysis revealed the presence of structural, storage, and enzymatic proteins and peptides in the extract, which are typical for seeds. Proteins and peptides with antimicrobial activity identified as vicillins and lipid-transporting proteins were also determined in the protein profile of the extract.


Assuntos
Malvaceae , Malvaceae/química , Proteômica , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sementes
7.
Virol J ; 20(1): 17, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710353

RESUMO

Leaves of hollyhock (Alcea rosea) exhibiting vein chlorosis and yellow mosaic symptoms were collected at public sites in Lausanne and Nyon, two cities of western Switzerland. Diagnostic methods untangled in samples from both sites the mixed infections of a novel isometric virus, tentatively named "Alcea yellow mosaic virus" (AYMV) with the carlavirus Gaillardia latent virus. A new potyvirus was also identified in samples from Nyon. A combination of Illumina, Nanopore and Sanger sequencing was necessary to assemble the full-length genome of AYMV, revealing an exceptionally high cytidine content and other features typically associated with members of the genus Tymovirus. The host range of AYMV was found to be restricted to mallows, including ornamentals as well as economically important plants. Phylogenetic analyses further showed that AYMV belongs to a Tymovirus subclade that also gathers the other mallow-infecting members. The virus was readily transmitted by sap inoculation, and the weevil species Aspidapion radiolus was evidenced as a vector. Transmission assays using another weevil or other insect species did not succeed, and seed transmission was not observed.


Assuntos
Coinfecção , Malvaceae , Vírus do Mosaico , Tymovirus , Gorgulhos , Animais , Tymovirus/genética , Filogenia , Doenças das Plantas
8.
Mol Phylogenet Evol ; 182: 107687, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581141

RESUMO

Dispersals have been shown to be critical to the evolution of the long isolated but megadiverse flora of Madagascar and the surrounding islands of the western Indian Ocean, but we are just beginning to understand the directionality of these dispersals. With more than half of its species occurring in the western Indian Ocean region (WIOR), the paleotropical subfamily Dombeyoideae provides a particularly useful case study through which to better understand the biogeography of the WIOR, and yet its biogeography is poorly understood. Here we sampled six molecular markers from all 20 genera in the Dombeyoideae to reconstruct the most complete phylogeny to date for the subfamily. From this, divergence times, calibrated with three fossils (two dombeyoid, one malvoid), and ancestral range estimations were hypothesized. Biogeographic stochastic mapping (BSM) analyses on the maximum clade credibility tree were completed and compared to BSM analyses on 1,000 trees randomly sampled from the posterior distribution of trees resulting from the dating analysis. We found the Dombeyoideae crown node diverged ca. 53 million years ago out of a broad ancestral range involving all three major areas of its distribution: Madagascar, Africa, and Asia. The majority of diversification and dispersals in the subfamily occurred within the last ca. 10 million years, mostly from the Pliocene onwards. There were roughly five dispersals from Madagascar to Africa (and only one in reverse), at least six from Madagascar to surrounding islands of the WIOR (Mascarenes and Comoros), and one dispersal from Madagascar to Asia (and ca. 1 in reverse). Other long-distance dispersals included one from Africa to St. Helena and one from Africa to Australasia, both from within the most widespread clade, the Cheirolaena & allies clade, and one dispersal from Asia to Africa. Critically, the Dombeyoideae provide strong evidence for considering the island of Madagascar as a source for the colonization of continents, as well as the surrounding islands of the WIOR. Furthermore, narrow sympatry was a key process in the evolution of the subfamily, particularly in Madagascar and the Mascarenes.


Assuntos
Malvaceae , Filogenia , Madagáscar , Filogeografia , África
9.
Plant Signal Behav ; 17(1): 2152224, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36463534

RESUMO

Seashore mallow (Kosteletzkya virginica), as a noninvasive perennial halophytic oilseed-producing dicot, is native from the Gulf to the Atlantic coasts of the U.S. The purpose of our research was to investigate 1-aminocyclopropane-1carboxylic acid deaminase (ACCD) producing endophytic fungi from K.virginica. A total of 59 endophytic fungal strains, isolated from roots in K.virginica of seedlings, were grouped into 12 genera including in Penicillium, Aspergillus, Fusarium, Trichoderma, Rhizopycnis sp., Ceriporia Donk, Trametes sp., Schizophyllum commune sp., Alternaria, Cladosporium, Cylindrocarpon, and Scytalidium according to sequences of ITS. The ACD activity of 10 endophytic fungi isolated was detected. T.asperellum had the highest ACC deaminase activity among all 10 isolated genera of fungal strains, followed by T. viride. Dry weight and fresh weight of plant, plant height, root length, SOD activity, and chlorophyll content of wheat and soybean inoculated with T.asperellum or T. viride was increased compared with non-inoculated control plants under non salt or salt stress. Further analysis showed that T.asperellum or T.viride strains induced downregulation of the expression of ethylene synthesis-related genes such as ACC oxidase (ACO) and ACC synthase (ACS), thereby reducing ethylene synthesis and damage to plants under salt stress. These endophytic fungi can be used as alternative bioinoculants to increase crop yield in saline soil.


Assuntos
Malvaceae , Plantas Tolerantes a Sal , Trametes , Carbono-Carbono Liases/genética , Etilenos
10.
Genetica ; 150(6): 395-405, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36322294

RESUMO

Firmiana is a small genus within the subfamily Sterculioideae of the Malvaceae. There are nine Firmiana species distributed in South and South-west China, most of which are endangered. Due to the shortage of plastid genomes data, the phylogenetic relationships and the evolutionary history of this genus remain unclear. Therefore, the complete chloroplast genomes of F. calcarean and F. hainanensis were sequenced using high-throughput sequencing and then compared with the chloroplast genomes of other reported Firmiana species. The genome size of F. calcarean and F. hainanensis is 161,263 and 160,031 bp long, respectively, containing a total of 131 genes (including 85 protein coding genes, 37 tRNAs, 8 rRNAs, and one pseudogene). Comparative analysis revealed that the genome structure, GC content, gene content and order, as well as the RNA editing sites within the chloroplast genomes of F. calcarean and F. hainanensis were similar to previously reported Firmiana species. ML phylogenetic analysis revealed that F. danxiaensis, F. hainanensis, F. calcarean, F. simplex, and F. major form a sister group to F. colorata, F. pulcherrima, and F. kwangsiensis. The SSRs, long repeats, and 21 highly divergent regions (Pi > 0.01) identified in this study might provide potential DNA markers for further population genetics and phylogenetic studies of Firmiana. Our findings can help design new species-specific molecular markers and the general framework to further explore the evolutionary history of Firmiana and to address their conservation challenges.


Assuntos
Genoma de Cloroplastos , Malvaceae , Filogenia , Cloroplastos/genética , Repetições de Microssatélites , Malvaceae/genética
11.
Planta ; 257(1): 3, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36418498

RESUMO

MAIN CONCLUSIONS: Transmitting tissue cells of Luehea divaricata present a thick middle lamella and prominent convex lens-shaped thickenings of the cell wall that act as reservoir of energy for pollen tube growth. Luehea Milld. is a Neotropical genus with 18 species. This paper reports the study of the structure and the ultrastructure of the stigma and the style of Luehea divaricata Milld. using bright-field microscope and transmission electron microscope. Multiseriate papillae are observed in the stigma. The papillae cells are large with a content that stains intensively and the sub-stigmatic tissue resembles the style's transmitting tissue. L. divaricata has a closed style with an epidermis that presents raised stomata and multicellular trichomes. Numerous organelles and a large nucleus are present in the dense cytoplasm of the transmitting tissue cells. A relevant feature is that the cells of this tissue in the species studied present a very thick middle lamella with two zones of different electron density in the angle of contact between cells, and convex lens-shaped thickenings of the cell wall are prominent mainly also in these angles of contact. The growth of the pollen tube is initiated on the stigmatic papillae surface and continues growing in the middle lamella of the sub-stigmatic tissue and the transmitting tissue, mainly at the contact angle between cells. The present work is the first contribution to the knowledge of structure and ultrastructure of the stigma and style in the genus Luehea, as well as to the subfamily Grewioideae (Malvaceae).


Assuntos
Malvaceae , Núcleo Celular , Citoplasma , Tubo Polínico , Coloração e Rotulagem
12.
Food Chem Toxicol ; 168: 113330, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35926645

RESUMO

In currently, biosynthesis of copper oxide nanoparticles (CuO NPs) are most widely used numerous in biological applications such as biosensor, energy, medicine, agriculture, environmental and industrial wastewater treatment. The hierarchical CuO NPs was synthesized via green chemistry method by using of Abutilon indicum (A. indicum) leaf extract, its nontoxic, facile and low-cost approaches. Biogenic synthesized CuO NPs was characterized by using a UV-visible absorption spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Field mission scanning electron microscopy (FE-SEM) with Energy-dispersive X-ray spectroscopy (EDX) analysis. The synthesized CuO NPs was performed antibacterial activity against human pathogenic organisms of both Gram negative (Escherichia coli and Salmonella typhi) and Gram positive (Bacillus subtilis and Staphylococcus aureus) bacteria by using agar well diffusion method. Biological synthesized CuO NPs was showed potential bactericidal activity against Gram positive bacteria of B. subtilis than compared to Gram negative bacteria of E. coli. The cytotoxic effect of A. indicum mediated synthesized CuO NPs was evaluated against to human lung A549 and breast MDA-MB-231cancer cell lines by determined using of MTT assay. In furthermore, photocatalytic dye degradation was performed that synthesized CuO NPs have effectively removed 78% of malachite green dye molecule. Our investigation results suggested that the green synthesized CuO NPs potential biological activity of antibacterial activity against Gram positive bacterial, anticancer activity was effectively against MDA-MB-231cancer cell line and good dye degradation was exhibited in malachite green. The A. indicum aqueous leaf extract mediated synthesized CuO NPs has strongly suggested promising nano-biomaterials for fabrication of biomedical applications.


Assuntos
Neoplasias da Mama , Malvaceae , Nanopartículas Metálicas , Ágar/farmacologia , Antibacterianos/química , Neoplasias da Mama/tratamento farmacológico , Cobre/química , Cobre/farmacologia , Escherichia coli , Feminino , Bactérias Gram-Positivas , Humanos , Pulmão , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Óxidos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Corantes de Rosanilina , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Oxid Med Cell Longev ; 2022: 1215097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941904

RESUMO

The present study evaluated the polyphenolic contents and hypoglycemic, antioxidant, and anti-inflammatory effects of the diethyl ether fraction of Thespesia garckeana using various in vitro and in vivo models. Total phenol and flavonoid contents of the extract were 613.65 ± 2.38 and 152.83 ± 1.56 mg/100 g dry weight, respectively. The extract exhibited in vitro antioxidant activities against DPPH, FRAP, LPO, and ABTS with respective half-maximal inhibitory concentration (IC50) values of 30.91 ± 0.23, 16.81 ± 0.51, 41.29 ± 1.82, and 42.39 ± 2.24 µg/mL. In vitro anti-inflammatory studies using membrane stabilization, protein denaturation, and proteinase activities revealed the effectiveness of the extract with respective IC50 values of 54.45 ± 2.89, 93.62 ± 3.04, and 56.60 ± 2.34 µg/mL, while in vitro hypoglycemic analysis of the extract revealed inhibition of α-amylase (IC5064.59 ± 3.29 µg/mL) and enhancement of glucose uptake by yeast cells. Interestingly, the extract demonstrated in vivo hypoglycemic and anti-inflammatory effects in streptozotocin- (STZ-) induced diabetic and xylene-induced ear swelling models, respectively. In addition, the extract improved insulin secretion, attenuated pancreatic tissue distortion and oxidative stress, and increased the activities of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH), while reducing the concentration of LPO in the diabetic rats. A high-performance liquid chromatography (HPLC) analysis identified the presence of catechin (6.81e - 1 ppm), rutin (8.46 e - 1 ppm), myricetin, apigenin (4.019 e - 1 ppm), and luteolin (15.09 ppm) with respective retention times (RTs) of 13.64, 24.269, 27.781, 29.58, and 32.23 min, and these were subjected to a pharmacoinformatics analysis, which revealed their drug-likeness and good pharmacokinetic properties. A docking analysis hinted at the potential of luteolin, the most abundant compound in the extract, for targeting glucose-metabolizing enzymes. Thus, the present study provides preclinical insights into the bioactive constituents of T. garckeana, its antioxidant and anti-inflammatory effects, and its potential for the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental , Malus , Malvaceae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Luteolina/farmacologia , Luteolina/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Estreptozocina/uso terapêutico
14.
Infect Genet Evol ; 103: 105341, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878819

RESUMO

In high abundance, females of the genus Mansonia (Blanchard) can be a nuisance to humans and animals because they are voraciously hematophagous and feed on the blood of a myriad of vertebrates. The spatial-temporal distribution pattern of Mansonia species is associated with the presence of their host plants, usually Eichhornia crassipes, E. azurea, Ceratopteris pteridoides, Limnobium laevigatum, Pistia stratiotes, and Salvinia sp. Despite their importance, there is a lack of investigation on the dispersion and population genetics of Mansonia species. Such studies are pivotal to evaluating the genetic structuring, which ultimately reflects populational expansion-retraction patterns and dispersal dynamics of the mosquito, particularly in areas with a history of recent introduction and establishment. The knowledge obtained could lead to better understanding of how anthropogenic changes to the environment can modulate the population structure of Mansonia species, which in turn impacts mosquito population density, disturbance to humans and domestic animals, and putative vector-borne disease transmission patterns. In this study, we present an Illumina NGS sequencing protocol to obtain whole-mitogenome sequences of Mansonia spp. to assess the microgeographic genetic diversity and dispersion of field-collected adults. The specimens were collected in rural environments in the vicinities of the Santo Antônio Energia (SAE) hydroelectric reservoir on the Madeira River.


Assuntos
Ascaridídios , Culicidae , Malvaceae , Adulto , Animais , Brasil/epidemiologia , Feminino , Genética Populacional , Humanos , Mitocôndrias , Mosquitos Vetores , Rios
15.
Biomed Pharmacother ; 152: 113196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35667233

RESUMO

The quest for novel anti-diabetic medication from medicinal plants is very important since they contain bioactive phytochemicals that offer better activity and safety compared to conventional therapy. In the present study, in vitro, in vivo and in silico approaches were explored to evaluate the anti-inflammatory, antioxidants, and hypoglycemic activities of the crude methanol extract of Azanza garckeana pulp. Our in vitro analysis revealed that the extract contains total phenols (260.80 ±â€¯2.23 mg/100 g) and total flavonoids (10.28 ±â€¯1.29 mg/100 g) contents, and demonstrated dose-dependent in vitro antioxidants activities in; DPPH (IC50 =141.30 ±â€¯1.64 µg/mL), FRAP (IC50 =155.07 ±â€¯1.03 µg/mL), LPO (IC50 =184.96 ±â€¯2.01 µg/mL), and ABTS (IC50 =162.56 ±â€¯1.14 µg/mL) assays; anti-inflammatory activities in: membrane stabilization (IC50 =141.34 ±â€¯0.46 µg/mL), protein denaturation (IC50 =203.61 ±â€¯2.35 µg/mL) and proteinase activities (IC50=f 171.35 ±â€¯1.56 µg/mL) assays; and hypoglycemic activities in: α- amylase (IC50 277.85 ±â€¯2.51 µg/mL), and glucose uptake by yeast cells assays. In vivo analysis revealed that the extract exhibited dose-dependent anti-inflammatory, hypoglycemic activities and improved the weight gain in STZ-induced diabetic rats. In addition, the extract attenuated oxidative stress and increased the activities of SOD, catalase, GSH while depleting the level of LPO in STZ induced diabetic rats. Consequently, the liquid chromatography mass spectrometry (LC-MS) characterization of A. garckeana pulp, revealed the presence of 2-Hexadecen-1-ol,3,7,11,15-tetramethyl-,(2E,7 R,11 R)-, nonyl flavanone, testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone. These compounds were subjected to pharmacoinformatics analysis among which testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone demonstrated the best drug-likeness, pharmacokinetics, and also exhibited potential hypoglycemic and anti-inflammatory properties. Altogether, the present study provides preclinical evidence of the antioxidant, anti-inflammatory and antidiabetic activities of A. garckeana extract suggesting its potential applications for the development of alternative therapy for diabetes and its associated inflammatory condition.


Assuntos
Diabetes Mellitus Experimental , Malvaceae , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Ratos , Testolactona/uso terapêutico
16.
Arch Virol ; 167(9): 1889-1892, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660981

RESUMO

A new virus, named Mutum virus, related to members of the family Tymoviridae, was isolated from mosquitoes (Mansonia spp.) in clone C6/36 cells, and its complete genome was sequenced. Its genome is 6494 nt in size with an organization resembling that of tymovirids. The isolated virus is phylogenetically related to two viruses isolated from Culex spp. mosquitoes: Ek Balam virus, reported in Mexico, and Culex-originated Tymoviridae-like virus, isolated in China. The results of this study suggest that this virus is a new member of the family Tymoviridae.


Assuntos
Culex , Culicidae , Malvaceae , Tymoviridae , Animais , Brasil , Genoma Viral , Filogenia , Tymoviridae/genética
17.
J Nat Prod ; 85(7): 1872-1879, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35771599

RESUMO

The first asymmetric synthesis of microgrewiapine C, a piperidine alkaloid isolated from Microcos paniculata, is reported. This synthesis prompted correction of the 1H and 13C NMR data for the natural sample of the alkaloid, which was achieved by reanalysis of the original spectra. The corrected data for the natural product were found to be identical to those of the synthetic sample prepared herein, thus confirming the structural and relative configurational assignment of microgrewiapine C. Although comparison of specific rotation values indicates that the (1R,2S,3S,6S) absolute configuration should be assigned to the alkaloid, consideration of potential common biosynthetic origins of microgrewiapine C and congeners suggests that further phytochemical investigations are warranted.


Assuntos
Alcaloides , Malvaceae , Alcaloides/química , Malvaceae/química , Estrutura Molecular , Piperidinas/química , Estereoisomerismo
18.
Acta Trop ; 233: 106574, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35768041

RESUMO

Previous studies have linked the construction of hydroelectric dams with increases in the density of mosquitoes, especially Mansonia. In Brazil, Mansonia mosquitoes are still poorly studied at the taxonomic, biological, ecological and epidemiological levels, and nothing is known about the genetic diversity and the cryptic speciation of the group. The current study analyzed the molecular taxonomy of Mansonia species captured in the area surrounding the Jirau hydroelectric dam, Rondônia state, Brazil. Samples were collected from fifteen locations between 2018 and 2019. Genomic DNA of the specimens was extracted, and the DNA barcode region of the Cytochrome Oxidase, subunit I gene was amplified with PCR and both DNA strands were sequenced. The dataset was analyzed using MEGA, Mr. Bayes and DnaSP software. The results provided COI sequences for 100 specimens collected in the area surrounding from Jirau hydroelectric dam. These belonged to five species of the Mansonia subgenus, identified morphologically as Mansonia humeralis, Mansonia amazonensis, Mansonia titillans, Mansonia dyari and Mansonia indubitans. Findings showed that the COI gene is an effective and accessible DNA barcode that provides a high-resolution tool for delimiting species within the subgenus Mansonia, with the tree construction (Bayesian Inference) well supported and non-overlapping intraspecific and interspecific (K2-P) genetic distance values. These findings also indicate the occurrence of cryptic speciation within M. dyari and near of M. titillans. This is the first study to apply molecular tools to the taxonomy of Mansonia species from Brazil.


Assuntos
Culicidae , Malvaceae , Animais , Teorema de Bayes , Brasil , DNA , Código de Barras de DNA Taxonômico
19.
Mol Biol Rep ; 49(6): 5635-5644, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35598198

RESUMO

BACKGROUND: Hollyhock (Alcea rosea) is an ornamental plant belonging to the Malvaceae family and has a remarkable aesthetic and medicinal value. A number of distinct infectious entity including fungi, nematode, bacteria and most importantly both single and double stranded DNA and RNA viruses are reported from infected hollyhock plant. Begomoviruses, the well reputed member of the family Geminiviridae infected the hollyhock recently with a new hollyhock vein yellowing virus and in the present study it infected the hollyhock plant with Cotton leaf curl Multan virus (CLCuMV) which cause the disease of leaf curling. METHODS AND RESULTS: The symptomatic leaves of the hollyhock plants were collected based on the characteristic symptoms of leaf curling, puckering as well as vein thickening. DNA was extracted by using the recommended 2× CTAB protocol and PCR technique was optimized for the detection of begomovirus followed by sequencing. The data of disease incidence of infection location wise was collected based on the positive results of PCR amplification. Virus free whitefly collected from cotton field and feed on infected hollyhock plant in cage for few days then used for the transmission study of begomovirus on healthy hollyhock plants. Results of PCR amplification indicated that the primers Av/Ac core, Begomo 01/02, and CLCV 01/02 showed the bands of 579 bp, 2.8 kb and 1.1 kb respectively. The betasatellite was amplified by using beta01/02 and CLCuMuBF11/R33, which showed the band of 1400 bp and 481 bp. Disease incidence and Transmission study confirmed the begomovirus in hollyhock plants at molecular level. The sequence obtained with Av/Ac core primers showed the 99% identity with Cotton leaf curl Multan virus-Rajasthan strain and betasatellite primers showed 98% identity with Cotton leaf curl Multan betasatellite. CONCLUSION: Hollyhock plants infected by CLCuMV and associated betasatellite has been reported as a possible source of virus inoculum from Pakistan. These findings extend the range of Begomoviruses and betasatellites known to infect A. rosea and highlight this hollyhock species as an important reservoir of agriculturally important Begomoviruses and betasatellites.


Assuntos
Begomovirus , Malvaceae , Begomovirus/genética , Paquistão , Filogenia , Doenças das Plantas/genética , Prevalência
20.
Molecules ; 27(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630547

RESUMO

After being harvested, cacao beans are usually subjected to very complex processes in order to improve their chemical and physical characteristics, like tastefulness with chocolate characteristic flavors. The traditional process consists of three major processing stages: fermentation, drying, and roasting, while most of the fermentation is carried out by an on-farm in-box process. In Taiwan, we have two major cocoa beans, the red and the yellow. We proposed that the major factor affecting the variation in tastes and colors in the finished cocoa might be the difference between cultivars. To uncover this, we examined the effect of the three major processes including fermentation, drying and roasting on these two cocoa beans. Results indicated that the two cultivars really behaved differently (despite before or after processing with fermentation, drying, and roasting) with respect to the patterns of fatty acids (palmitic, stearic, oleic, and arachidonic); triacylglycerols:1,2,3-trioleoyl-glycerol (OOO); 1-stearoyl-2,3-oleoyl-glycerol (SOO); 1-stearoyl-sn-2-oleoyl-3-arachidoyl- glycerol (SOA); 1,3-distearyol-sn-2-oleoyl-glycerol (SOS); organic acids (citric, tartaric, acetic, and malic); soluble sugars (glucose and fructose); amino acids; total phenolics; total flavonoids; and volatiles. Our findings suggest that to choose specific processing conditions for each specific cocoa genotype is the crucial point of processing cocoa with consistent taste and color.


Assuntos
Cacau , Malvaceae , Cacau/química , Fermentação , Glicerol/metabolismo , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...