Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.181
Filtrar
1.
Food Microbiol ; 109: 104146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36309445

RESUMO

Ultrafiltration (UF) and reverse osmosis (RO) are commonly used for the clarification and concentration of fruit juices. However, one of the main limitations of filtration membranes is biofouling, which reduces membrane efficiency and can contaminate the filtered product and lead to spoilage. In this study, the microbial fouling layers of UF and RO membranes from a Canadian cranberry juice processing plant were characterized. Unlike the microbiota found in cranberry juice, which is dominated by Bacillus sp. and other bacteria, both UF and RO membranes were mainly colonized by several strains of the yeast Candida krusei. A variation in bacterial and yeasts count was observed between tubular UF and spiral-wound RO membranes, and the analysis of the spatial distribution highlighted the homogeneity of the contamination across each membrane. Surprisingly, RO membranes had a higher level of contamination when compared to UF membranes. Furthermore, six strains of C. krusei were further characterized through multilocus sequence typing analysis, five of which exhibited unique allelic profiles and two of which were found to contain a new TRP1 allele.


Assuntos
Ultrafiltração , Vaccinium macrocarpon , Osmose , Membranas Artificiais , Canadá , Filtração , Bactérias
2.
Carbohydr Polym ; 300: 120261, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372489

RESUMO

The alginate-based multi-crosslinked biomembranes (ABMCBs) were prepared mainly with sodium alginate as matrix and self-made functionalized organosilane containing different groups as additive. The properties of ABMCBs with various additive loading were investigated as proton exchange membranes (PEMs). The results showed that higher water absorption and lower swelling were obtained simultaneously with increasing additive loading, which is very beneficial to the use of PEMs. The ABMCB-4 containing 40 wt% additive exhibited the optimal selectivity and maximum power density, which were obviously higher than that of commercial Nafion@ 117. Furthermore, ABMCB-4 possessed excellent mechanical property, methanol barrier and stability, indicating its potential adaptability as PEM for direct methanol fuel cell application.


Assuntos
Alginatos , Metanol , Membranas Artificiais , Prótons , Membranas
3.
J Colloid Interface Sci ; 630(Pt A): 416-429, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265343

RESUMO

Epoxied SiO2 nanoparticles and polyethyleneimine (PEI) was used to coating polyvinylidene fluoride (PVDF) membrane for improved anti-fouling, oil water separation, dye and heavy metal ions removal capabilities. Characterization of the modified membrane revealed that the hydrophilic coating layer was applied onto the PVDF substrate successfully. The modified membrane can exhibit a high degree of superhydrophilicity and underwater superoleophobicity. Consequently over 98% of the oil was retained when this membrane was used in oil water separation. The hydrophilic coating layer enhanced the membrane antifouling performance, and its flux recovery rate reached 96.3% after filtration and washing with bovine serum protein solution (BSA). In addition, the modified membrane presented the ability to adsorb organic dyes and heavy metal ions in water and reject them via filtration. Most importantly, the crosslinking reaction between the epoxied SiO2 nanoparticles and PEI imparts a high degree of stability to the coating layer. Thanks to the simple fabrication method and multifunctional performances of the coating layer described in this report, it may be used to modify other substrates.


Assuntos
Incrustação Biológica , Metais Pesados , Nanopartículas , Polietilenoimina/química , Dióxido de Silício , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Nanopartículas/química , Água/química , Metais Pesados/química
4.
Methods Mol Biol ; 2589: 157-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255624

RESUMO

The aberrant activity of histone deacetylases (HDACs) across a broad range of cancers and other disease indications has led to the development of small-molecule inhibitors that target one or more members of the HDAC protein family. Emerging HDAC inhibitors that show promise in drug discovery programs must be assessed across a range of in vitro assays to establish an inhibitor profile for potency and cellular selectivity towards target HDAC(s) as well as preliminary absorption, distribution, metabolism, and excretion (ADME) features. Here we provide an overview of methods to determine a subset of pivotal in vitro drug-like parameters for HDAC inhibitors (HDACi). We initially describe protocols for parallel artificial membrane permeability assays (PAMPA) to evaluate the passive permeability of small molecules across lipid membranes. Subsequently, we elaborate on cytotoxicity assays using CellTiter-Blue to determine HDACi-induced cell death in healthy/diseased cellular models. We next focus on assessing the target engagement of inhibitors with the appropriate HDAC isoforms in a cellular environment via Western blotting of acetylated HDAC substrates. Finally, we provide detailed guidelines on how to assess the metabolic stability of HDACi through whole blood stability assays. Collectively, these assays provide an overview of the permeability, selectivity, and stability of the HDAC inhibitor under development.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Isoformas de Proteínas/metabolismo , Membranas Artificiais , Lipídeos
5.
Chemosphere ; 310: 136692, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36202370

RESUMO

A low flux level of the gravity-driven membrane (GDM) process constrained its extensive application in treating the secondary effluent. In this study, different operation modes were introduced to the GDM process without aeration, backwashing, and chemical cleanings, hoping to develop simple and economic flux regulating strategies, and their influences on the filtration performances and biocake layer characteristics were systematically investigated. The results indicated that the stable fluxs in the intermittent GDM systems elevated by 40%-100% relative to the continuous GDM case, attributing to the synergetic effects of forming more permeable, mushroom-like structures and reducing the concentrations of EPS and SMP within biocake layers. The quantitative analysis of biocake layer properties suggested that the structural parameters of porosity and absolute roughness were closely related to the flux variation compared to the thickness and relative roughness. Besides, the intermittent GDM system generated an apparent detachment of the biocake layer from the membrane surface along with a persistent flux increase than in the continuous GDM case during long-term filtration, achieving its self-sustained operation in a higher flux level without any interferences. The periodical flux recovery and decline occurred daily in each intermittent GDM system since the biocake layer attached to the membrane surface was mainly reversible. Although there were no significant differences in removing dissolved organic pollutants under different operation modes, the manganese removals decreased by 0%-25% in the intermittent GDM filtrations compared to the continuous GDM scenario. The optimized daily operation mode was 16 h on / 8 h off (operation of 16 h, interruption of 8 h), considering the trade-off effects between membrane flux level and water production. These findings provide a new simply-feasible optimized GDM process operation strategy and benefit promoting the application of the GDM system in the reclamation of wastewater.


Assuntos
Purificação da Água , Purificação da Água/métodos , Membranas Artificiais , Filtração/métodos , Gravitação , Águas Residuárias
6.
Chemosphere ; 310: 136790, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220430

RESUMO

Membrane distillation (MD) is a thermally driven technology applied in desalination and water reuse with utilisation of sustainable energy. However, algal organic matter (AOM) could foul membrane critically and plague MD's long-term operational stability. In this study, the soluble extracellular polymeric substance (sEPS) and intracellular organic matter with bound extracellular polymeric substance (IOM + bEPS) of two algal species (Amphora coffeaeformis and Navicula incerta) were exposed to 60 °C, 70 °C and 80 °C for 8 h with polypropylene hydrophobic membrane, simulating heated AOMs contacted with membrane inside MD unit, to study the temperature effect on membrane fouling. The dissolved carbohydrate and protein in the sEPS and IOM + bEPS samples generally increased after being heated. Heating caused cell lysis and the release and dissolution of carbohydrate and protein from sEPS, IOM and bEPS into water. As heating temperature increased, the carbohydrate release from the AOM usually increased. The contact angle of membrane contacted with sEPS and IOM + bEPS reduced significantly after heat treatment. The reduction in IOM + bEPS was larger than sEPS, in line with SEM analysis, indicating membrane surfaces and pores with IOM + bEPS fouled more severely than sEPS. It is due to higher hydrophobicity in IOM + bEPS causing adherence to membrane and presence of amphiphiles. High protein, lipid, and saturated fats proportions also cause severe fouling. SEM-EDX analysis indicated presence of O, Na, Cl and Mg elements, pointing to carbohydrate and lipids, and salt trapped in foulants. AOM heating and composition had direct effect to the membrane integrity, dictating severity of fouling in MD operations.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Purificação da Água , Temperatura , Destilação , Membranas Artificiais , Íons , Carboidratos , Água
7.
Chemosphere ; 310: 136817, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241107

RESUMO

Although protein is an important membrane foulant in the water body that may be significantly affected by the coexisting common cation magnesium (Mg2+), the effect of Mg2+ on protein fouling is rarely reported. In this context, this study selected bovine serum albumin (BSA) as the model foulant, and investigated its fouling characteristics at different Mg2+ concentrations (0-100 mM). Filtration tests showed that the protein fouling can be significantly mitigated by adding Mg2+, and the specific filtration resistance (SFR) of pure BSA (3.56 × 1014 m kg-1) was at least 5 times that of BSA-Mg2+ solutions (0.5-100 mM). In addition, an optimal Mg2+ concentration exists, which can achieve the lowest BSA SFR. A series of characterizations indicated that the main contributors to the differences in BSA SFR were the changes in BSA adhesion capacity and the thickness and structure of the foulant layer. Basically, the above results were attributed to the hydration repulsion effect of Mg2+, which prevented tight adhesion of foulants to the membrane. Moreover, the lowest BSR SFR at 1 mM Mg2+ was achieved not only by the hydration repulsion effect but also by the particle size compression due to the conformational change of BSA molecules. This combined effect led to the lowest foulant retention on the membrane surface and delivered to the lowest SFR. This study conducts a thorough inspection into the specific effect of Mg2+ on protein fouling and provides a fresh insight into protein fouling control in the UF process.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Magnésio/farmacologia , Membranas Artificiais , Soroalbumina Bovina/química , Íons
8.
Chemosphere ; 310: 136840, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257392

RESUMO

The current work aims to advance the hydrophilicity, morphology, and antifouling characteristics of polyvinyl chloride (PVC) membranes for oily wastewater separation by incorporating modified bentonite. The surface of bentonite nanoparticles is altered by adopting the "grafting from" method using the surface-initiated atom transfer radical polymerization (SI-ATRP) approach. The PVC-based membrane is first prepared by blending acrylamide grafted bentonite (AAm-g-bentonite). AAm is grafted on bentonite in the presence of 2,2'-Bipyridyl and copper (I) bromide as a catalyst. The modified bentonite nanoparticles are studied using multiple techniques, such as fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), sedimentation tests, field emission scanning electron microscope (FE-SEM), etc. Flat-sheet PVC-based membrane is prepared by blending AAm-g-bentonite using the nonsolvent induced phase separation (NIPS) technique. Different methods, including FE-SEM, FTIR, sedimentation test, contact angle, porosity, antifouling property, and filtration studies of pure and oily water, are used to characterize and determine the performance of mixed-matrix membranes. Membrane performance is improved in the presence of modified bentonite (i.e., AAm-g-bentonite), with the best result achieved at PVC/AAm-g-ben-8 (i.e., 8 wt % of AAm-g-bentonite). Enhanced pure water flux (293.14 Lm-2h-1), permeate flux (123.96 Lm-2h-1), and oil rejection >93.2% are obtained by the reduced contact angle (49.1°) and improved porosity (71.22%).


Assuntos
Cloreto de Polivinila , Purificação da Água , Bentonita , Membranas Artificiais , Acrilamida , Purificação da Água/métodos , Óleos
9.
Chemosphere ; 310: 136886, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265699

RESUMO

Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.


Assuntos
Metais Pesados , Nanofibras , Purificação da Água , Nanofibras/química , Água/química , Polímeros , Membranas Artificiais , Metais Pesados/química
10.
Chemosphere ; 310: 136900, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265713

RESUMO

Carboxylated graphene oxide (C-GO) embedded in polysulfone (PSF) membrane composites were prepared with different wt. % (i.e., 0.2% M - 1, 0.3% M - 2, 0.4% M - 3, and 0.5% M - 4) using non-solvent induced phase separation (NIPS) method and ultrafiltration assembly was applied for the removal of dye effluents. The optimization of C-GO content into polymer matrix was found influencing factor in determining the composite membranes efficiency and application in various research fields. The membranes were characterized in terms of surface morphology (SEM), crystallinity (XRD), and functional groups identification (FTIR). The water permeability of the developed membranes was analyzed, and it is observed that increasing the content of C-GO in PSF membranes imposed a positive impact on permeation performance. M - 3 was found to be a potential candidate among all the membranes with a maximum water flux of about 183 LMH which is considerably higher as compared to the pristine PSF membrane's water flux (i.e., 27 LMH). Moreover, contact angle measurements of membranes were also checked to assess the hydrophilicity of PSF membranes. The results of contact angle also support the water permeability and efficient correlation was observed as contact angle decreases with increasing the content of C-GO. The minimum contact angle with excellent hydrophilicity was shown by the M - 3 membrane and it was found of about ±58.19° and this value is close to the M - 4 membrane having maximum C-GO content. The photocatalytic performance of the M - 3 membrane was checked under UV-254 nm using methylene blue dye and 97% dye removal was achieved within 220 min of reaction time under neutral pH conditions. The M - 3 membrane having C-GO content of 0.4% was found to be the best membrane with high pure water flux (183 LMH) and efficient dye rejection (82%) capability.


Assuntos
Grafite , Membranas Artificiais , Polímeros , Água
11.
Chemosphere ; 310: 136910, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270524

RESUMO

Reverse osmosis (RO) membrane has been widely used in various water treatment fields as an efficient desalination technology, but serious biofouling problem arises in the actual application process. Curcumin is known as a natural compound that can reduce biofouling by inhibiting the growth of microorganisms based on quorum sensing. Dopamine, a molecule with excellent adhesion and functionalization on the material's surface, has high research value for applying a curcumin coating to the membrane surface. Curcumin degrades under alkaline conditions, whereas dopamine must polymerize under alkaline conditions. Simultaneously, a coating may adversely affect curcumin. Therefore, a two-step coating process was considered by self-polymerizing dopamine on the thin-film composite membrane surface and then dip-coating curcumin attached to the polydopamine layer. Furthermore, the effect of time and concentration on the surface modification before and after membrane modification was investigated. The highest permeability of 1.39 L/m2/hr/bar was achieved with the modified membranes. The number of gram-positive bacteria decreased from 6.71 × 106 to 9.67 × 105 CFU/mL. This result is meaningful for antifouling through modification of the membrane surface. Use of curcumin can be applied to reduce biofouling and extend the lifetime of the membrane without pretreatment or membrane cleaning.


Assuntos
Incrustação Biológica , Curcumina , Purificação da Água , Incrustação Biológica/prevenção & controle , Curcumina/farmacologia , Osmose , Membranas Artificiais , Dopamina
12.
Chemosphere ; 310: 136929, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36273607

RESUMO

The separation of hardness ions such as calcium and magnesium from hard water can improve water quality, which is important but technically challenging. Nanofiltration (NF) has attracted much attention because of its efficiency, environmental friendliness and low cost. However, common NF membranes with a singly (either positively or negatively) charged layer have insufficient water softening capacity. In this work, two types of dual-layer Janus charged polyamide NF membranes composed of oppositely charged inner and outer layers were developed for the first time by sequential electrospray polymerization strategy for efficient water softening. The effect of the microstructure of the dually charged barrier layer on the separation performance of divalent salt ions was explored. Detailed mechanistic studies revealed that the microstructure of the outer layer of the barrier layer played a crucial role in the ion separation of the Janus membrane due to its control of the reverse transport of ions. Janus charged polyamide NF membrane with a loose outer layer exhibited better water softening performance (93.6% of hardness removed) compared to the singly charged NF membranes due to the simultaneous dual electrostatic effect and no ion reverse transport confinement. This Janus charged NF membrane also possessed good antifouling performance, mainly due to its negatively charged outer layers. The mechanistic insights gained in this study reveal the huge potential of microstructural design toward high-performance Janus charged NF membranes, and provide important guidance on the future development of high-efficiency water softening NF membranes.


Assuntos
Membranas Artificiais , Nylons , Nylons/química , Polimerização , Abrandamento da Água , Íons
13.
Talanta ; 252: 123831, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998446

RESUMO

Micro-electromembrane extraction (µ-EME) was presented for the selective extraction of four main ß-lactam antibiotics (penicillin, phenoxypenicillin, ampicillin, and amoxicillin) from complex samples. A volatile solvent (ethyl acetate or chloroform) was sandwiched between a plug of the complex sample and another plug of an aqueous acceptor solution in a transparent polymeric tube and formed the so-called free liquid membrane (FLM). The use of the FLM eliminated the evaporation of the solvent and enabled the µ-EME of the antibiotics, which was carried out by the application of DC voltage to the terminal aqueous solutions. The drugs in the complex sample were selectively transferred through the FLM to the acceptor solution, which was directly used for their determination by micellar electrokinetic chromatography with ultraviolet detection (MEKC-UV). The µ-EME was characterized by sub-µA electric currents, high elimination of matrix components, high stability of operational solutions, and suitability for extracting undiluted complex samples. The µ-EME/MEKC-UV method yielded good analytical repeatability (RSDs of peak areas ≤5%), extraction recoveries (40-84%), accuracy (92-105%) and linearity over one and a half order of magnitude (R2 ≥ 0.9998), and was applied to the determination of the four ß-lactam antibiotics in human serum and waste water at clinically and environmentally relevant concentration levels. Further improvement in the method sensitivity was achieved by changing the µ-EME tube geometry (conical shape) and increasing the complex sample volume (100 µL). The analytes were enriched by factors of 7.6-11.5, the limits of detection dropped down to less than 18 ng/mL, and the modified µ-EME/MEKC-UV method enabled the trace determination of ß-lactam antibiotics in complex samples.


Assuntos
Eletricidade , Membranas Artificiais , Humanos , Solventes , Antibacterianos , beta-Lactamas
14.
Chemosphere ; 311(Pt 1): 136906, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270521

RESUMO

Microplastics (MPs) are emerging contaminants that are abundantly present in the influent and effluent of wastewater treatment plants (WWTPs). Forward osmosis (FO) is an advanced treatment technology with potential applications in WWTPs. The presence of MPs in WWTP effluents can contribute to FO fouling and performance deterioration. This study focuses on FO membrane fouling by MPs of different sizes, and the interactional impacts of MPs and Humic acid (HA) (as the most common organic foulant in WWTPs) on FO membrane performance. The synergistic effect of combined MPs and HA fouling is shown to cause higher flux decline for FO membranes than that of HA or MPs alone. Reverse salt flux increased in the presence of MPs, and decreased when HA was present. Further, full flux recovery was obtained for all fouled membranes after hydraulic cleaning. This indicates the efficiency of FO systems for treating wastewater with high fouling potential. This study highlights the necessity of considering MPs in studying fouling behaviour, and for mitigation strategies of membranes used in WWT. The fundamentals created here can be further extended to other membrane-assisted separation processes.


Assuntos
Microplásticos , Purificação da Água , Plásticos , Membranas Artificiais , Osmose , Águas Residuárias , Substâncias Húmicas
15.
Chemosphere ; 311(Pt 1): 136987, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306961

RESUMO

This study explains the modeling of synthesized membranes using the Donnan Steric Pore model (DSPM) based on the Extended Nernst Planck Equation (ENP). Conventionally, structural parameters required to predict the performance of the membranes were determined through tedious experimentation, which in this study are found using a new MATLAB technique. A MATLAB program is used to determine the unknown structural parameters such as effective charge density (Xd), effective pore radius (rp), and effective membrane thickness to porosity ratio (Δx/Ak) by using the single solute rejection and permeation data. It was found that the model predicted the rejection of studied membranes accurately, with the E5C1 membrane exceeding the others (E5, E5C5) for rejection of single and divalent salt's aqueous solutions. The rejection of 100 ppm aqueous solution of NaCl for E5C1 was around 60%, whereas, for an aqueous solution of 100 ppm, CaCl2 rejection reached up to 80% at 10 bar feed pressure. The trend of salt rejection for all three membranes was found to be in the following order: E5C1 > E5C5 > E5, confirming that their structural parameters-controlled ion transport in these membranes. The structural parameters, such as effective pore radius, effective membrane thickness to porosity ratio, and effective charge density for the best performing membrane, i.e., E5C1, were determined to be 0.5 nm, 16 µm, and -6.04 mol/m3,respectively. Finally, it can be asserted that this method can be used to predict the real performance of membranes by significantly reducing the number of experiments previously required for the predictive modeling of nanofiltration-type membranes.


Assuntos
Membranas Artificiais , Cloreto de Sódio , Estados Unidos , Centers for Medicare and Medicaid Services, U.S. , Membranas , Porosidade , Água
16.
Chemosphere ; 311(Pt 1): 136998, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309061

RESUMO

Modifying PVDF membrane by blending hydrophilic nano TiO2 has been highly concerning, but its practical application is not well investigated. In this study, PVDF-TiO2 membrane was employed in two modes to treat micro-polluted raw water for the first time, direct membrane filtration and pre-oxidation assists membrane filtration. At two filtration modes, the PVDF-TiO2 membrane had comparable rejection capability to the unmodified PVDF membrane, as the removal of permanganate index (CODMn) was 0.26-0.72 mg/L, UV254 was 0.0070-0.0618 cm-1, turbidity was 1.60-4.49 NTU, and the total number of colonies was 360-23,780 CFU/mL. As for raw water treatment, using Fe2+/sodium dithionite (DTN)/O2 system as the pre-oxidation process to assist the filtration of the PVDF-TiO2 membrane was feasible. After optimization, the applicable conditions of the Fe2+/DTN/O2 process were DTN dosage at 100 mg/L and a CFe/CDTN of 1:4. As a result, the effluent qualities of the PVDF-TiO2 membrane significantly improved. It was investigated that atrazine (ATZ), CODMn, UV254, and turbidity reduced, which was realized by the synergic effects of the pre-oxidation by free radicals and flocculation by iron. Pre-oxidation of the Fe2+/DTN/O2 process could also enhance the permeability of the PVDF-TiO2 membrane from 53.6 to 58.0 L/(m2·h), nearly two times the PVDF membrane. Besides, the practical fouling of the PVDF-TiO2 membrane was stably alleviated by the reduced Rt, Rre, and Rir, mainly due to constraining the internal pore fouling effectively.


Assuntos
Membranas Artificiais , Purificação da Água , Ditionita , Recursos Hídricos , Polivinil
17.
J Colloid Interface Sci ; 630(Pt B): 111-120, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327715

RESUMO

A study was conducted to understand the effects of membrane shape, thickness, contact angle, surface tension and large deflection on capillary origami. For experiments, square and triangular membranes made of PDMS with various thicknesses and sizes were used to encapsulate different liquids. Models for membranes under pure bending were developed using the energy balance between interfacial energies (liquid-vapor, solid-liquid and solid-vapor energies) and bending energy evaluated by a small-deflection and a large-deflection assumptions. This paper is the first study to consider the large deflection for membranes as well as to include the terms for the wettability of the membrane and its shape. The developed models evaluated an important characteristic length, i.e., elasto-capillary length (LEC), which is proportional to the critical length (Lcritical) below which membranes cannot be closed to encapsulate liquid. The experimental results showed that the large-deflection model can estimate Lcritical more accurately in terms of membrane shape, thickness, contact angle and surface tension for liquids with similar properties to water than the small-deflection model. The developed models should be further improved to extend the applicability to liquids with low surface tension and low contact angle.


Assuntos
Membranas Artificiais , Água , Molhabilidade , Tensão Superficial
18.
Sci Total Environ ; 856(Pt 1): 158434, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075431

RESUMO

The introduce of a nanomaterial interlayer between the substrate and polyamide is identified as a promising strategy to construct highly performed membranes. Two-dimensional (2D) materials are potential candidates as interlayer for advanced thin-film nanocomposite interlayer (TFNi) membranes. Nevertheless, low permeability, selectivity and long-term stability are still critical issues in TFNi membrane manufacture. Herein, a scalable approach for constructing TFNi membranes was implemented using stacked MXene nanosheets as interlayer, wherein the Fe3O4 nanoparticles worked as the sacrificial template to regulate the interlayer spacing of the 2D channels. SEM, XPS, water contact angle, and zeta potential were used to characterize the physical and chemical properties of prepared TFNi membranes, and the results shows that the presence of MXene interlayer increased the hydrophilicity, thinness and roughness of polyamide layer compared to that of pure TFC membranes. Besides, the enlarged interlayer channel after the sacrifice of the Fe3O4 nanoparticles greatly boosted the transport of the water molecules. The resultant membranes exhibited nearly double fold of water flux (66.4 ± 3.45 L·m-2·h-1) and higher selective separation factor (48.4) compared with those prepared without interlayer, while the outstanding salt rejection (>97 %) was maintained. This work achieves an innovative strategy for multifunctional polyamide nanofiltration membrane construction.


Assuntos
Nanocompostos , Nylons , Salinidade , Membranas Artificiais , Água
19.
Water Res ; 226: 119298, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327584

RESUMO

The use of ceramic membranes and ultraviolet light-emitting diodes (UV-LEDs) has advanced the application of photocatalytic membrane for water treatment. We systematically evaluated the contribution of filtration and photocatalysis to dissolved organic matter (DOM) removal and fouling mechanism during in-situ UV-LED photocatalytic ceramic membrane filtration. The results showed that physical rejection primarily led to removal of 4-15 kDa molecules and photocatalysis further increased the removal of 1-4 kDa molecules, causing small sized microbial humic-like or protein-like materials in the permeate. In-situ UV-LED photocatalysis had an excellent effect on membrane fouling mitigation regardless of DOM sources. The dominant fouling mechanism changed from partial blockage to gel layer formation with increasing Ca2+ concentration but did not change with UV treatment. Correlation analysis revealed that the removal of 1-4 kDa molecules contributed to the mitigation of both reversible and irreversible fouling resistance, and the small molecules were the major cause of irreversible fouling resistance. Removal of 1-4 kDa terrestrial humic acid-like contributed to the pore blockage mechanism for synthetic water. Removal of 4-15 kDa protein-like materials was closely correlated to the pore blockage mechanism for real water. Trihalomethanes (THMs) and haloacetic acids (HAAs) formation potential (FP) were both significantly reduced after photocatalytic ceramic membrane process, but precursors of nitrogenous disinfection by-products (N-DBPs) with high toxicity were not removed by filtration or by photocatalysis, which deserves attention. Membrane rejection made higher contribution to better DBPFP control than photocatalysis. This study provides novel insights into the impact of UV-LED on DOM removal, DBPFP control and fouling mitigation, promoting the development of photocatalytic ceramic membrane filtration.


Assuntos
Membranas Artificiais , Purificação da Água , Matéria Orgânica Dissolvida , Filtração , Purificação da Água/métodos , Cerâmica
20.
Water Res ; 226: 119274, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332296

RESUMO

With the development of comprehensive utilization of high-salinity wastewater, salt resources regeneration has been considered as the fundamental requirement for process sustainability and economic benefits. As one of the potential candidates, bipolar membrane electrodialysis (BMED) was rapidly developed in recent years for the treatment of saline wastewater. Different from other methods directly obtaining salts or condensed wastewater, BMED could utilize and convert the dissolved waste salt into higher-value acid and alkali simultaneously, which has various advantages including outstanding environmental effects and economic benefits. In this review, the recent applications of BMED for waste salt recovery and high-value acid/alkali generation from saline wastewater were systematically outlined. Based on the summary above, the economy analysis of BMED was further reviewed from the roles of desalination and resources recovery. In addition, the BMED-based processes integrated with in-situ utilization of the generated acid/alkali resources were discussed. Furthermore, the influence of operating factors on BMED performance were outlined. Finally, the strategies for improving BMED performance were concluded. Furthermore, the future application and prospects of BMED was presented. This work would provide guidance for the applications of bipolar membrane electrodialysis in saline wastewater treatment and the high-value conversion of salt resources into acids and alkalis.


Assuntos
Águas Residuárias , Purificação da Água , Álcalis , Membranas Artificiais , Purificação da Água/métodos , Membranas , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...