Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834982

RESUMO

17α-Methyltestosterone (MT), a synthetic environmental endocrine disruptor with androgenic effects, has been shown to disrupt the reproductive system and inhibit germ cell maturation in Gobiocypris rarus. To further investigate the regulation of gonadal development by MT through the hypothalamic-pituitary-gonadal (HPG) axis, G. rarus were exposed to 0, 25, 50, and 100 ng/L of MT for 7, 14, and 21 days. We analyzed its biological indicators, gonadotropin-releasing hormone (GnRH), gonadotropins, reproduction-related gene expression, and brain tissue transcriptome profiles. We found a significant decrease in the gonadosomatic index (GSI) in G. rarus males exposed to MT for 21 days compared to the control group. GnRH, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels, as well as the expressions of the gnrh3, gnrhr1, gnrhr3, fshß, and cyp19a1b genes, were significantly reduced in the brains of both male and female fish when exposed to 100 ng/L MT for 14 days compared to the controls. Therefore, we further constructed four RNA-seq libraries from 100 ng/L MT-treated groups of male and female fish, obtaining 2412 and 2509 DEGs in male and female brain tissue, respectively. Three common pathways were observed to be affected in both sexes after exposure to MT, namely, nicotinate and nicotinamide metabolism, focal adhesion, and cell adhesion molecules. Furthermore, we found that MT affected the PI3K/Akt/FoxO3a signaling pathway through the upregulation of foxo3 and ccnd2, and the downregulation of pik3c3 and ccnd1. Therefore, we hypothesize that MT interferes with the levels of gonadotropin-releasing hormone (GnRH, FSH, and LH) in G. rarus brains through the PI3K/Akt/FoxO3a signaling pathway, and affects the expression of key genes in the hormone production pathway (gnrh3, gnrhr1 and cyp19a1b) to interfere with the stability of the HPG axis, thus leading to abnormal gonadal development. This study provides a multidimensional perspective on the damaging effects of MT on fish and confirms that G. rarus is a suitable model animal for aquatic toxicology.


Assuntos
Cyprinidae , Cipriniformes , Animais , Feminino , Masculino , Metiltestosterona/farmacologia , Transcriptoma , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cyprinidae/genética , Hormônios Esteroides Gonadais/metabolismo , Cipriniformes/genética , Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Foliculoestimulante/metabolismo
2.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835651

RESUMO

17α-Methyltestosterone (17MT), a synthetic organic compound commonly found in sewage waters, can affect reproduction in aquatic animals, such as tilapia and yellow catfish. In the present study, male Gobiocypris rarus were exposed to 25, 50, and 100 ng/L of 17α-methyltestosterone (17MT) for 7 days. We first analyzed miRNA- and RNA-seq results to determine miRNA-target gene pairs and then developed miRNA-mRNA interactive networks after 17MT administration. Total weights, total lengths, and body lengths were not significantly different between the test groups and control groups. The paraffin slice method was applied to testes of G. rarus in the MT exposure and control groups. We found that there were more mature sperm (S) and fewer secondary spermatocytes (SSs) and spermatogonia (SGs) in the testes of control groups. As 17MT concentration increased, fewer and fewer mature sperm (S) were observed in the testes of male G. rarus. The results showed that FSH, 11-KT, and E2 were significantly higher in individuals exposed to 25 ng/L 17MT compared with the control groups. VTG, FSH, LH, 11-KT, and E2 were significantly lower in the 50 ng/L 17MT exposure groups compared to the control groups. VTG, FSH, LH, 11-KT, E2, and T were significantly lower in the groups exposed to 100 ng/L 17MT. High-throughput sequencing revealed 73,449 unigenes, 1205 known mature miRNAs, and 939 novel miRNAs in the gonads of G. rarus. With miRNA-seq, 49 (MT25-M vs. Con-M), 66 (MT50-M vs. Con-M), and 49 (MT100-M vs. Con-M) DEMs were identified in the treatment groups. Five mature miRNAs (miR-122-x, miR-574-x, miR-430-y, lin-4-x, and miR-7-y), as well as seven differentially expressed genes (soat2, inhbb, ihhb, gatm, faxdc2, ebp, and cyp1a1), which may be associated with testicular development, metabolism, apoptosis, and disease response, were assayed using qRT-PCR. Furthermore, miR-122-x (related to lipid metabolism), miR-430-y (embryonic development), lin-4-x (apoptosis), and miR-7-y (disease) were differentially expressed in the testes of 17MT-exposed G. rarus. This study highlights the role of miRNA-mRNA pairs in the regulation of testicular development and immune response to disease and will facilitate future studies on the miRNA-RNA-associated regulation of teleost reproduction.


Assuntos
Cyprinidae , Cipriniformes , MicroRNAs , Animais , Masculino , Testículo/metabolismo , Metiltestosterona , MicroRNAs/metabolismo , RNA Mensageiro/genética , Cyprinidae/genética , Sêmen/metabolismo , Cipriniformes/genética , Hormônio Foliculoestimulante/metabolismo
3.
Steroids ; 190: 109150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36511323

RESUMO

Δ6-Methyltestosterone was reported as the main active ingredient of the purported "dietary supplement" Jungle Warfare. This compound is structurally similar to 17α-methyltestosterone, containing an additional Δ6 double bond, and is reported to possess notable androgenic activity, raising concerns over the potential for abuse of Jungle Warfare in sport. The in vivo metabolism of Δ6-methyltestosterone in greyhounds was investigated. Urinary phase I (unconjugated) and phase II (glucuronide) metabolites were detected following oral administration using liquid chromatography-mass spectrometry. No phase II sulfate metabolites were detected. The major phase I metabolite was confirmed as 16α,17ß-dihydroxy-17α-methylandrosta-4,6-dien-3-one by comparison with a synthetically-derived reference material. Minor amounts of the parent drug were also confirmed. Glucuronide conjugated metabolites were also observed, but were found to be resistant to hydrolysis using the Escherichia coli ß-glucuronidase enzyme. Qualitative excretion profiles, limits of detection, and extraction recoveries were determined for the parent drug and the major phase I metabolite. These results provide a method for the detection of Jungle Warfare abuse in greyhounds suitable for incorporation into routine screening methods conducted by anti-doping laboratories.


Assuntos
Anabolizantes , Doping nos Esportes , Animais , Cães , Metiltestosterona/análise , Metiltestosterona/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucuronídeos , Androgênios , Espectrometria de Massas , Anabolizantes/metabolismo , Detecção do Abuso de Substâncias/métodos
4.
Mol Biol Rep ; 50(3): 2137-2146, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562935

RESUMO

BACKGROUND: Paris polyphylla var. yunnanensis is an important medicinal plant, and the main active ingredient of the plant is polyphyllin, which is a steroid saponin with pharmacological activities. The central enzyme genes participating in the biosynthesis of polyphyllin are increasingly being uncovered; however, UGTs are rarely illustrated. METHODS AND RESULTS: In this study, we cloned a new sterol glycosyltransferase from Paris polyphylla var. yunnanensis and identified its catalytic function in vitro. PpUGT6 showed the ability to catalyse the C-3 glycosylation of pennogenin sapogenin of polyphyllin, and PpUGT6 showed catalytic promiscuity towards steroids at the C-17 position of testosterone and methyltestosterone and the triterpene at the C-3 position of glycyrrhetinic acid. Homology modelling of the PpUGT6 protein and virtual molecular docking of PpUGT6 with sugar acceptors and donors were performed, and we predicted the key residues interacting with ligands. CONCLUSIONS: Here, PpUGT6, a novel sterol glycosyltransferase related to the biosynthesis of polyphyllin from P. polyphylla, was characterized. PpUGT6 catalysed C-3 glycosylation to pennogenin sapogenin of polyphyllin, which is the first glycosylation step of the biosynthetic pathway of polyphyllins. Interestingly, PpUGT6 demonstrated glycodiversification to testosterone and methyltestosterone at C-17 and triterpene of glycyrrhetinic acid at the C-3 position. The virtual molecular docking of PpUGT6 protein with ligands predicted the key residues interacting with them. This work characterized a novel SGT glycosylating pennogenin sapogenin at C-3 of polyphyllin from P. polyphylla and provided a reference for further elucidation of the phytosterol glycosyltransferases in catalytic promiscuity and key residues interacting with substrates.


Assuntos
Ácido Glicirretínico , Liliaceae , Sapogeninas , Esteróis , Glicosiltransferases/genética , Metiltestosterona , Ligantes , Simulação de Acoplamento Molecular , Esteroides/química , Liliaceae/química
5.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364082

RESUMO

Molecularly imprinted polymers@ethylenediamine-modified carbon dots grafted on cotton fabrics (MIPs@EDA-CDs/CF) and smartphone-based fluorescence image analysis were proposed and used for the first time for the detection of 17 α-methyltestosterone (MT). The EDA-CDs were synthesized and grafted on cotton fabric before coating with the MIPs. The MIPs were synthesized using the MT as a template molecule, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and azobisisobutyronitrile (AIBN) as an initiator. The MIPs@EDA-CDs/CF were characterized using FTIR, SEM-EDS, and RGB fluorescence imaging. The fluorescence images were also taken using a smartphone and the ImageJ program was used for RGB measurement. The Δ red intensity was linearly proportional to MT concentration in the range of 100 to 1000 µg/L (R2 = 0.999) with a detection limit of 44.4 µg/L and quantification limit of 134 µg/L. The MIPs@EDA-CDs/CF could be stored at 4 °C for a few weeks and could be reused twice. The proposed method could apply for the specific determination of MT in water and sediment samples along with satisfactory recoveries of 96-104% and an acceptable relative standard deviation of 1-6% at the ppb level.


Assuntos
Impressão Molecular , Impressão Molecular/métodos , Carbono , Polímeros Molecularmente Impressos , Metiltestosterona , Polímeros
6.
Genes (Basel) ; 13(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36292604

RESUMO

Nile tilapia is a GSD + TE (Genetic Sex Determination + Temperature Effect) fish, and high-temperature treatment during critical thermosensitive periods (TSP) can induce the sex reversal of Nile tilapia genetic females, and brain transcriptomes have revealed the upregulation of Jarid2 (Jumonji and AT-rich domain containing 2) expression after 36 °C high-temperature treatment for 12 days during TSP. It was shown that JARID2 forms a complex with polycomb repressive complex 2 (PRC2) that catalyzed H3K27me3, which was strongly associated with transcriptional repression. In this study, Jarid2b was cloned and characterized in Nile tilapia, which was highly conserved among the analyzed fish species. The expression of Jarid2b was upregulated in the gonad of 21 dpf XX genetic females after 12-day high-temperature treatment and reached a similar level to that of males. Similar responses to high-temperature treatment also appeared in the brain, heart, liver, muscle, eye, and skin tissues. Interestingly, Jarid2b expression was only in response to high-temperature treatment, and not to 17α-methyltestosterone (MT) or letrozole treatments; although, these treatments can also induce the sex reversal of genetic Nile tilapia females. Further studies revealed that Jarid2b responded rapidly at the 8th hour after high-temperature treatment. Considering that JARID2 can recruit PRC2 and establish H3K27me3, we speculated that it might be an upstream gene participating in the regulation of Nile tilapia GSD + TE through regulating the H3K27 methylation level at the locus of many sex differentiation-related genes.


Assuntos
Ciclídeos , Animais , Masculino , Feminino , Ciclídeos/genética , Temperatura , Metiltestosterona/metabolismo , Letrozol , Histonas/genética , Histonas/metabolismo , Clonagem Molecular , Complexo Repressor Polycomb 2/genética
7.
Gen Comp Endocrinol ; 323-324: 114028, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35314150

RESUMO

Estrogens and androgens that coexist in the aquatic environment could potentially affect shellfish, however, endocrine disrupting effects of them in shellfish are significant. As an important aquaculture shellfish in China, Hyriopsis cumingii has remarkable economic benefits. In this study, the effects of endocrine disrupting chemicals on the steroid synthase Hc-Cyp17a in the male and female gonads of the H. cumingii were assessed by exposing juvenile mussels to cultured waters containing 17ß-Estradiol (E2) and 17α-Methyltestosterone (MT) for 28 days. At the same time, the E2 content in the four stages of gonadal development, the expression changes of Hc-Cyp17a in gonadal development and its localization in the mature gonad were measured to explore the relationship between genes and hormones. The results showed that both E2 and MT at 50 ng/L and 200 ng/L could affect the transcription level of Hc-Cyp17a, which was inhibited initially and promoted in post-development. E2 content was positively correlated with gonadal development stage, which was in mussel. By tracing the expression of Hc-Cyp17a, difference was found during different developmental periods. The expression level in ovary was higher than that in testis during gonadal development of 1/ 2/ 3-year-old mussels and showed an increasing trend with age. Furthermore, the expression levels in 6 tissues of mature individuals were measured and it showed that there was a significant difference between male and female in the gonads (p < 0.01). In situ hybridization, it suggested that Hc-Cyp17a was significantly signaled in the follicular wall and oocyte of female and in the follicular membrane of testis, respectively. These results could play a vital role in assessing and understanding the effects of aquatic environment on the endocrine system of H. cumingii.


Assuntos
Disruptores Endócrinos , Esteroide 17-alfa-Hidroxilase/metabolismo , Animais , Disruptores Endócrinos/toxicidade , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Hormônios Esteroides Gonadais/metabolismo , Gônadas/metabolismo , Masculino , Metiltestosterona/farmacologia
8.
Sci Rep ; 12(1): 2450, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165334

RESUMO

The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1R in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Metiltestosterona/farmacologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Receptor IGF Tipo 1/metabolismo , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Feminino , Fator de Crescimento Insulin-Like I/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Testosterona/análogos & derivados , Testosterona/farmacologia , Tilápia
9.
Fish Physiol Biochem ; 48(1): 161-171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039993

RESUMO

A study was conducted to evaluate the gonad differentiation of juvenile yellow perch (YP, Perca flavencens) and determine the latest labile period related to hormone treatment. Juvenile fish were subjected to two dietary concentrations of methyltestosterone (MT; 20 and 50 mg/kg feed) for 60 days in three (3) age groups of 38-, 46-, and 67-days post-hatching (dph), where control group were fed with standard commercial feed. Following a 10-month on-growing period, sex phenotypes were determined by gross and histological gonad morphology. Results showed the juvenile YP responded to the exogenous hormone when it was applied at 38 dph for both 20 and 50 mg/kg feed resulting in 100% males. At 46 dph, only 50 mg/kg feed resulted in 100% males. Both MT-treated at 38 and 46 dph significantly differed (P < 0.01) from the expected normal population of male:female (1:1). MT-treated at 67 dph resulted in 37% and 25% intersex fish for both 20 and 50 mg/kg feed dosage groups, respectively. MT-treated at 38 and 46 dph promoted growth and showed significantly heavier mean body weight (P < 0.05) compared to control. The gonadosomatic index (GSI) of MT-treated at 38 and 46 dph was significantly lower than that in control. This study provides the first evidence that juvenile YP can be successfully masculinized when the treatment is initiated at the age of up to 46 dph. The result is important for sex control in aquaculture.


Assuntos
Metiltestosterona , Percas , Diferenciação Sexual , Animais , Feminino , Gônadas , Masculino , Metiltestosterona/farmacologia , Percas/crescimento & desenvolvimento
10.
Biochim Biophys Acta Gen Subj ; 1865(11): 129991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419510

RESUMO

Mitochondrial-derived peptides (MDPs) are encoded by the mitochondrial genome and hypothesised to form part of a retrograde signalling network that modulates adaptive responses to metabolic stress. To understand how metabolic stress regulates MDPs in humans we assessed the association between circulating MOTS-c and SHLP2 and components of metabolic syndrome (MS), as well as depot-specific fat mass in participants without overt type 2 diabetes or cardiovascular disease. One-hundred and twenty-five Chinese participants (91 male, 34 female) had anthropometry, whole body dual-energy X-ray absorptiometry scans and fasted blood samples analysed. Chinese female participants and an additional 34 European Caucasian female participants also underwent magnetic resonance imaging and spectroscopy (MRI/S) for visceral, pancreatic and liver fat quantification. In Chinese participants (age = 41 ± 1 years, BMI = 27.8 ± 3.9 kg/m2), plasma MOTS-c (315 ± 27 pg/ml) and SHLP2 (1393 ± 82 pg/ml) were elevated in those with MS (n = 26). While multiple components of the MS sequelae positively associated with both MOTS-c and SHLP2, including blood pressure, fasting plasma glucose and triglycerides, the most significant of these was waist circumference (p < 0.0001). Android fat had a greater effect on increasing plasma MOTS-c (p < 0.004) and SHLP2 (p < 0.009) relative to whole body fat. Associations with MRI/S parameters corrected for total body fat mass revealed that liver fat positively associated with plasma MOTS-c and SHLP2 and visceral fat with SHLP2. Consistent with hepatic stress being a driver of circulating MDP concentrations, plasma MOTS-c and SHLP2 were higher in participants with elevated liver damage markers and in male C57Bl/6j mice fed a diet that induces hepatic lipid accumulation and damage. Our findings provide evidence that in the absence of overt type 2 diabetes, components of the MS positively associated with levels of MOTS-c and SHLP2 and that android fat, in particular liver fat, is a primary driver of these associations. MOTS-c and SHLP2 have previously been shown to have cyto- and metabolo-protective properties, therefore we suggest that liver stress may be a mitochondrial peptide signal, and that mitochondrial peptides are part of a hepatic centric-hormetic response intended to restore metabolic balance.


Assuntos
Gorduras/metabolismo , Metiltestosterona/metabolismo , Proteínas Mitocondriais/metabolismo , Adolescente , Adulto , Idoso , Feminino , Humanos , Fígado/química , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/sangue , Adulto Jovem
11.
Gen Comp Endocrinol ; 311: 113840, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216589

RESUMO

Estrogen has a pivotal role in early female differentiation and further ovarian development. Aromatase (Cyp19a) is responsible for the conversion of androgens to estrogens in vertebrates. In teleosts, cyp19a1a and it paralog cyp19a1b are mainly expressed in the ovary and hypothalamus, respectively. Decreased plasma estrogen levels and lower cyp19a1a expression are associated with the initiation of female-to-male sex change in protogynous grouper. However, an 17α-methyltestosterone (MT)-induced the sex change from a female to a precocious male is a transient phase, and a reversible sex change (induced male-to-female) occurs after chemical withdrawal. Thus, we used this characteristic to study the epigenetic modification of cyp19a1a promoter in orange-spotted grouper. CpG-rich region with a CpG island is located on the putative regulatory region of distal cyp19a1a promoter. Our results showed that cyp19a1a promoter exhibited tissue-specific methylation status. Low methylation levels of distal cyp19a1a promoter and hypomethylated (0-40%) clones of cyp19a1a promoter region were widely observed in the ovary but not shown in testis and other tissues. In femaleness, higher numbers of hypomethylated clones of cyp19a1a promoter region were observed in the vitellogenic oocyte stage compared to the primary oocyte stage. Furthermore, decreased numbers of hypomethylated clones of cyp19a1a promoter region were associated with the maleness during the female-to-male sex change. DNA methylation inhibitor (5-aza-2'-deoxycytidine) delayed the spermatogenesis process (according to germ cell stage and numbers: by decrease of sperm and increase of spermatocytes) but did not influence the reversed sex change in MT-induced bi-directional sex change. These results suggest that epigenetic modification of cyp19a1a promoter may play an important role during the sex change in orange-spotted grouper.


Assuntos
Bass , Metilação de DNA , Diferenciação Sexual , Animais , Bass/genética , Família 19 do Citocromo P450/genética , Feminino , Masculino , Metiltestosterona/farmacologia , Regiões Promotoras Genéticas/genética , Processos de Determinação Sexual , Diferenciação Sexual/genética
12.
Mar Biotechnol (NY) ; 23(3): 430-444, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34191211

RESUMO

Androgens stimulate ovarian development in eels. Our previous report indicated a correlation between the initial (debut) ovarian status (determined by kernel density estimation (KDE), presented as a probability density of oocyte size) and the consequence of 17MT treatment (change in ovary). The initial ovarian status appeared to be an important factor influencing ovarian androgenic sensitivity. We postulated that the sensitivities of initial ovaries are correlated with their gene expression profiles. Japanese eels underwent operation to sample the initial ovarian tissues, and the samples were stored in liquid nitrogen. Using high-throughput next-generation sequencing (NGS) technology, ovarian transcriptomic data were mined and analyzed based on functional gene classification with cutoff-based differentially expressed genes (DEGs); the ovarian status was transformed into gene expression profiles globally or was represented by a set of gene list. Our results also implied that the initial ovary might be an important factor influencing the outcomes of 17MT treatments, and the genes related with neuronal activities or neurogenesis seemed to play an essential role in the positive effect.


Assuntos
Androgênios/farmacologia , Anguilla/genética , Metiltestosterona/farmacologia , Ovário/metabolismo , Anguilla/metabolismo , Animais , Aquicultura , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Transcriptoma
13.
Molecules ; 26(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802606

RESUMO

Metandienone and methyltestosterone are orally active anabolic-androgenic steroids with a 17α-methyl structure that are prohibited in sports but are frequently detected in anti-doping analysis. Following the previously reported detection of long-term metabolites with a 17ξ-hydroxymethyl-17ξ-methyl-18-nor-5ξ-androst-13-en-3ξ-ol structure in the chlorinated metandienone analog dehydrochloromethyltestosterone ("oral turinabol"), in this study we investigated the formation of similar metabolites of metandienone and 17α-methyltestosterone with a rearranged D-ring and a fully reduced A-ring. Using a semi-targeted approach including the synthesis of reference compounds, two diastereomeric substances, viz. 17α-hydroxymethyl-17ß-methyl-18-nor-5ß-androst-13-en-3α-ol and its 5α-analog, were identified following an administration of methyltestosterone. In post-administration urines of metandienone, only the 5ß-metabolite was detected. Additionally, 3α,5ß-tetrahydro-epi-methyltestosterone was identified in the urines of both administrations besides the classical metabolites included in the screening procedures. Besides their applicability for anti-doping analysis, the results provide new insights into the metabolism of 17α-methyl steroids with respect to the order of reductions in the A-ring, the participation of different enzymes, and alterations to the D-ring.


Assuntos
Anabolizantes/metabolismo , Anabolizantes/urina , Metandrostenolona/metabolismo , Metandrostenolona/urina , Metiltestosterona/metabolismo , Metiltestosterona/urina , Anabolizantes/química , Cromatografia Gasosa-Espectrometria de Massas , Voluntários Saudáveis , Humanos , Metandrostenolona/química , Metiltestosterona/química , Pessoa de Meia-Idade , Padrões de Referência , Espectrometria de Massas em Tandem
14.
Endocrinology ; 162(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33831176

RESUMO

Elucidating the global molecular changes that occur during aromatase inhibitor (AI)- or 17α-methyltestosterone (MT)-induced masculinization and estradiol-17ß (E2)-induced feminization is critical to understanding the roles that endocrine and genetic factors play in regulating the process of sex differentiation in fish. Here, fugu larvae were treated with AI (letrozole), MT, or E2 from 25 to 80 days after hatching (dah), and gonadal transcriptomic analysis at 80 dah was performed. The expression of dmrt1, gsdf, foxl2, and other key genes (star, hsd3b1, cyp11c1, cyp19a1a, etc.) involved in the steroid hormone biosynthesis pathway were found be altered. The expression of dmrt1, gsdf, cyp19a1a, and foxl2 was further verified by quantitative polymerase chain reaction. In the control group, the expression of dmrt1 and gsdf was significantly higher in XY larvae than in XX larvae, while the expression of foxl2 and cyp19a1a was significantly higher in XX larvae than in XY larvae (P < .05). AI treatment suppressed the expression of foxl2 and cyp19a1a, and induced the expression of dmrt1 and gsdf in XX larvae. MT treatment suppressed the expression of foxl2, cyp19a1a, dmrt1, and gsdf in XX larvae. E2 treatment suppressed the expression of dmrt1 and gsdf, but did not restore the expression of foxl2 and cyp19a1a in XY larvae. The shared response following AI, MT, and E2 treatment suggested that these genes are essential for sex differentiation. This finding offers some insight into AI or MT-induced masculinization, and E2-induced femininization in fugu.


Assuntos
Inibidores da Aromatase/farmacologia , Estradiol/farmacologia , Feminização/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metiltestosterona/farmacologia , Takifugu/metabolismo , Animais , Aromatase/biossíntese , Feminino , Proteína Forkhead Box L2/biossíntese , Gônadas/metabolismo , Letrozol/farmacologia , Masculino , Reação em Cadeia da Polimerase , RNA-Seq , Diferenciação Sexual/efeitos dos fármacos , Fatores de Transcrição/biossíntese , Transcriptoma/efeitos dos fármacos
15.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1374-1378, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33787134

RESUMO

Protein kinase C(PKC) is a kind of kinase which is widely involved in cell proliferation and development. PKC(Wp-PKC) in Whitmania pigra body belongs to classic PKC. In order to investigate the effect of Wp-PKC on the development of Wh. pigra germ cells, 17ß-estradiol(17ß-E2)(100 ng·mL~(-1)) and methyltestosterone(MT)(150 µg·L~(-1)), 150 µg·L~(-1)(MT)+0.5 mg·L~(-1) PKC, 0.5 mg·L~(-1) PKC inhibitor were added to Wh. pigra culture water, and no addition group(control group) was added, and the effects on the development of Wh. pigra germ cells and the expression of Wp-PKC were observed. The results showed that: Wp-PKC in male gonads was always higher than that in female gonads; MT promoted the development of male gonads in Wh. pigra, while the expression of Wp-PKC was significantly higher than that in the control; 17ß-E2 promoted the development of female gonads in Wh. pigra and Wp-PKC expression significantly lower than that of the control; while the development of the female and male gonads in the PKC inhibitor group was inhibited, the expression of Wp-PKC was significantly lower than that of the control. In summary, Wp-PKC may promote the development of Wh. pigra, especially the development of male gonads.


Assuntos
Gônadas , Sanguessugas , Animais , Estradiol , Feminino , Masculino , Metiltestosterona , Ovário
16.
J Fish Biol ; 99(1): 9-17, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33252824

RESUMO

The cyp11 includes cyp11a and cyp11b in most mammals and teleosts, encoded cholesterol side chain lyase and 11ß-hydroxylase, respectively. It is essential in steroid hormone synthesis. However, studies on the regulation of cyp11 are limited, especially in teleosts. In this study, the molecular characterization and function of cyp11a and cyp11b of black rockfish was investigated. Both of them showed high homology with other teleost counterparts by phylogenetic analysis. The expression of cyp11a and cyp11b exhibited a clear sexually dimorphic pattern, with a higher expression level in testis than that of in ovaries. During the different developmental stages (40 dpf, 80 dpf, 190 dpf, 360 dpf, 720 dpf), the expression of cyp11a was earlier than cyp11b. In situ hybridization results showed that cyp11a and cyp11b were mainly expressed in oogonia and oocytes of the ovary. They were located in spermatogonia and interstitial compartment in the 1.5-year-old gonads, and spermatocytesgonia and the peritubular myoid cell of the testis in the 2.5-year-old gonads. To explore the distinct roles of cyp11a and cyp11b in gonads, oestrogen and androgens were used to stimulate the primary testicular and ovarian cells. The expressions of cyp11a and cyp11b were tested under different dose of 17α-methyltestosterone (17α-MT) and 17ß-estradiol (E2). The results showed cyp11a was significantly increased at 10-6  mol ml-1 of 17α-MT and 10-8  mol ml-1 of E2 in ovary and 10-10  mol ml-1 of 17α-MT and E2 in testis, while cyp11b was significantly decreased after 17α-MT and E2 treatment. These results indicated that cyp11a and cyp11b were likely to have different functions, and also implied they might play an important roles in the differentiation of gonads and the synthesis of steroids in black rockfish.


Assuntos
Perciformes , Animais , Feminino , Masculino , Metiltestosterona , Ovário , Filogenia , Testículo
17.
Steroids ; 165: 108758, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161054

RESUMO

There is some evidence that marketable supplements contain hormones not declared on the product label. The presence of these androgenic anabolic steroids (AAS) in sports supplements can be considered an adulteration and affect the health of consumers, who are predominantly athletes. This study aimed to measure anabolic hormones (methyltestosterone and 4-androstenedione) in sport supplements. Ultra Performance Liquid chromatography coupled mass spectrometry (UPLC-MS/MS) with electrospray ionization (ESI) in positive mode was employed under the Multiple Reaction Monitoring (MRM) ion program. To overcome matrix effects and quantify the selected analyte, the calibration curve was made using Matrix Match method. The LOQ and LOD were 1 ng/g and 0.3 ng/g for both analytes. The recovery of 4-androstenedione and methyltestosterone was in the range of 86.87-107.35 and 77.31-113.98, respectively. In terms of reproducibility, CV % for 4-androstenedione and methyltestosterone ranged from 6.56 to 16.87% and 1.45-15.12%, respectively. 4-androstenedione was found in 11 samples including 9 whey as 1.578 ±â€¯0.154 ng/g and 2 whey albumin samples with an amount of 1.134 ng/g and 1.474 ng/g. Consequently, continuous controlling of sport supplements comprising intentionally or unintentionally added androgens could be important for health and discuss in the context of compliance with anti-doping.


Assuntos
Androstenodiona , Doping nos Esportes , Metiltestosterona , Reprodutibilidade dos Testes
18.
Fish Physiol Biochem ; 47(1): 93-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33215297

RESUMO

Gonadotropin-inhibitory hormone (GnIH) plays a critical role in regulating gonadotropin-releasing hormone (GnRH), gonadotropin hormone (GtH), and steroidogenesis. The Lpxrfa (the piscine ortholog of GnIH) system has been found to regulate fish reproduction. To gain insight into the role of Lpxrfa in the regulation of spotted scat (Scatophagus argus) reproduction, spotted scat Lpxrfa (ssLpxrfa), and its receptor (ssLpxrfa-r) were cloned and analyzed. Tissue distribution and expression patterns at the hypothalamo-pituitary-gonadal axis (HPG axis) of sslpxrfa and sslpxrfa-r mRNA were also investigated during gonadal development of spotted scat. The open reading frame (ORF) of the sslpxrfa was 606 bp encoding 201 amino acids and includes a putative signal peptide and two mature ssLpxrfa peptides with LPXRFamide motif at their C-terminus. The sslpxrfa-r ORF was 1449 bp encoding 482 amino acids and contracted a seven-hydrophobic transmembrane (TM) domain structure. The tissue distribution showe d that the sslpxrfa was highly expressed in hypothalami, gill, and the gonads. In addition, sslpxrfa-r was highly expressed in hypothalami, pituitaries, and the gonads. Quantitative real-time polymerase chain reaction (qPCR) revealed that sslpxrfa had the highest expression in the hypothalami and pituitaries, and the lowest expression in the gonads in stage V. During gonadal development, the expression of sslpxrfa-r was gradually increased in the hypothalami but reduced in the gonads. However, no obvious trend was observed in the pituitaries. The expression of sslpxrfa and sslpxrfa-r decreased significantly after injection with 17ß-estradiol (E2). However, the expression of both sslpxrfa and sslpxrfa-r was not changed after injection with 17α-methyltestosterone(17α-MT) in the hypothalami. In addition, no changes were observed in the expression of fshß and lhß in the pituitaries after injecting ssLpxrfa-1. However, ssLpxrfa-2 could downregulate the expression of sbgnrh and fshß in the hypothalami and pituitaries, respectively. Taken together, these findings suggested that ssLpxrfa may participate in E2 feedback in reproduction and regulate the reproductive axis of spotted scat.


Assuntos
Proteínas de Peixes/genética , Peixes/genética , Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Reprodução/genética , Sequência de Aminoácidos , Animais , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gônadas/metabolismo , Sistema Hipotálamo-Hipofisário , Hipotálamo/metabolismo , Masculino , Metiltestosterona/farmacologia , Filogenia , Hipófise/metabolismo
19.
Braz. j. biol ; 81(2): 285-290, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1153367

RESUMO

Synthetic androgens (male hormones) administered to fish nursery are being used in aquaculture to avoid sexual differentiation and unwanted spawning at the eggs or the first feeding fry stage of fish. Present trial was conducted with the aim to produce male common carp (Cyprinus carpio) by egg immersion technique. Through this little insight, the effect of different hormone concentrations (17α-methyltestosterone @ HC:150, 300, 450 and 600 µgl-1) with immersion times (IT: 24, 48 and 72 hrs) and their interaction effect (HC x IT) on the hatching percentage of Cyprinus carpio eggs, percent survival and percent of male's production was evaluated specifically. Results showed that egg hatching percentage decreased with increased IT likewise, survival of treated fry was affected by increasing the IT (P<0.001). The main interaction effect of HC x IT showed that the highest percent of male individuals (95%) was obtained at 450-600 µgl-1 HC for 72 hrs IT, followed by 88-92.50% at 150-300 µgl-1 HC for 72-hrsof IT, 87.50% at 48-hrs of IT for rest of the hormone treatments, and lowest 47.50% was recorded in control (P<0.05). Increased percent male of Cyprinus carpio was obtained with increasing HC across all ITs. It was observed that the immersion treatment at 600µgl-1 for 72 hours was more effective to change the sex ratio of pre hatch Cyprinus carpio. A comparative outlook made from this experimental trial that sex induction of Cyprinus carpio by eggs immersion using synthetic male steroid hormone is an alternative safe technique of fish sex reversal in contrast to oral administration of hormone in fish feed.


Andrógenos sintéticos (hormônios masculinos) administrados ao viveiro de peixes estão sendo usados ​​na aquicultura para evitar a diferenciação sexual e a desova indesejada nos ovos ou no primeiro estágio de alimentação dos peixes. O presente estudo foi conduzido com o objetivo de produzir carpa comum masculina (Cyprinuscarpio) pela técnica de imersão em ovos. Com essa pequena percepção, o efeito de diferentes concentrações hormonais (17α-metiltestosterona @ HC: 150, 300, 450 e 600 µgl-1) com tempos de imersão (IT: 24, 48 e 72 horas) e seu efeito de interação (HC x IT) na porcentagem de eclosão dos ovos de Cyprinuscarpio, a porcentagem de sobrevivência e a porcentagem da produção masculina foram avaliadas especificamente. Os resultados mostraram que a porcentagem de incubação de ovos diminuiu com o aumento da TI da mesma forma, a sobrevivência dos alevinos tratados foi afetada pelo aumento da TI (P <0,001). O principal efeito de interação do HC x IT mostrou que o maior percentual de indivíduos do sexo masculino (95%) foi obtido com 450-600 µgl-1 HC por 72 horas de TI, seguido por 88-92,50% com 150-300 µgl-1 HC para 72 horas de TI, 87,50% às 48 horas de TI para o restante dos tratamentos hormonais, e 47,50% mais baixos foram registrados no controle (P <0,05). A porcentagem aumentada de macho de Cyprinuscarpio foi obtida com o aumento do HC em todas as TIs. Observou-se que o tratamento de imersão a 600µgl-1 por 72 horas foi mais efetivo na alteração da razão sexual do Cyprinuscarpio antes da eclosão. Uma perspectiva comparativa feita a partir deste ensaio experimental de que a indução sexual de Cyprinuscarpio por imersão de ovos usando hormônio esteróide masculino sintético é uma técnica alternativa segura de reversão do sexo em peixes, em contraste com a administração oral de hormônio na alimentação de peixes.


Assuntos
Animais , Masculino , Carpas/fisiologia , Androgênios/farmacologia , Metiltestosterona/administração & dosagem , Razão de Masculinidade , Aquicultura , Imersão
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-879041

RESUMO

Protein kinase C(PKC) is a kind of kinase which is widely involved in cell proliferation and development. PKC(Wp-PKC) in Whitmania pigra body belongs to classic PKC. In order to investigate the effect of Wp-PKC on the development of Wh. pigra germ cells, 17β-estradiol(17β-E2)(100 ng·mL~(-1)) and methyltestosterone(MT)(150 μg·L~(-1)), 150 μg·L~(-1)(MT)+0.5 mg·L~(-1) PKC, 0.5 mg·L~(-1) PKC inhibitor were added to Wh. pigra culture water, and no addition group(control group) was added, and the effects on the development of Wh. pigra germ cells and the expression of Wp-PKC were observed. The results showed that: Wp-PKC in male gonads was always higher than that in female gonads; MT promoted the development of male gonads in Wh. pigra, while the expression of Wp-PKC was significantly higher than that in the control; 17β-E2 promoted the development of female gonads in Wh. pigra and Wp-PKC expression significantly lower than that of the control; while the development of the female and male gonads in the PKC inhibitor group was inhibited, the expression of Wp-PKC was significantly lower than that of the control. In summary, Wp-PKC may promote the development of Wh. pigra, especially the development of male gonads.


Assuntos
Animais , Estradiol , Feminino , Gônadas , Sanguessugas , Masculino , Metiltestosterona , Ovário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...