RESUMO
Polyethylene (PE) is the most abundantly used synthetic resin and one of the most resistant to degradation, and its massive accumulation in the environment has caused serious pollution. Traditional landfill, composting and incineration technologies can hardly meet the requirements of environmental protection. Biodegradation is an eco-friendly, low-cost and promising method to solve the plastic pollution problem. This review summarizes the chemical structure of PE, the species of PE degrading microorganisms, degrading enzymes and metabolic pathways. Future research is suggested to focus on the screening of high-efficiency PE degrading strains, the construction of synthetic microbial consortia, the screening and modification of degrading enzymes, so as to provide selectable pathways and theoretical references for PE biodegradation research.
Assuntos
Bactérias , Polietileno , Polietileno/química , Polietileno/metabolismo , Bactérias/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Consórcios MicrobianosRESUMO
Microbial communities have vital roles in systems essential to human health and agriculture, such as gut and soil microbiomes, and there is growing interest in engineering designer consortia for applications in biotechnology (e.g., personalized probiotics, bioproduction of high-value products, biosensing). The capacity to monitor and model metabolite exchange in dynamic microbial consortia can provide foundational information important to understand the community level behaviors that emerge, a requirement for building novel consortia. Where experimental approaches for monitoring metabolic exchange are technologically challenging, computational tools can enable greater access to the fate of both chemicals and microbes within a consortium. In this study, we developed an in-silico model of a synthetic microbial consortia of sucrose-secreting Synechococcus elongatus PCC 7942 and Escherichia coli W. Our model was built on the NUFEB framework for Individual-based Modeling (IbM) and optimized for biological accuracy using experimental data. We showed that the relative level of sucrose secretion regulates not only the steady-state support for heterotrophic biomass, but also the temporal dynamics of consortia growth. In order to determine the importance of spatial organization within the consortium, we fit a regression model to spatial data and used it to accurately predict colony fitness. We found that some of the critical parameters for fitness prediction were inter-colony distance, initial biomass, induction level, and distance from the center of the simulation volume. We anticipate that the synergy between experimental and computational approaches will improve our ability to design consortia with novel function.
Assuntos
Microbiota , Humanos , Consórcios Microbianos , Escherichia coli/metabolismo , Simulação por Computador , BiotecnologiaRESUMO
Human microbiome research is helped by the characterization of microbial networks, as these may reveal key microbes that can be targeted for beneficial health effects. Prevailing methods of microbial network characterization are based on measures of association, often applied to limited sampling points in time. Here, we demonstrate the potential of wavelet clustering, a technique that clusters time series based on similarities in their spectral characteristics. We illustrate this technique with synthetic time series and apply wavelet clustering to densely sampled human gut microbiome time series. We compare our results with hierarchical clustering based on temporal correlations in abundance, within and across individuals, and show that the cluster trees obtained by using either method are significantly different in terms of elements clustered together, branching structure and total branch length. By capitalizing on the dynamic nature of the human microbiome, wavelet clustering reveals community structures that remain obscured in correlation-based methods.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Análise de Ondaletas , Consórcios Microbianos , Análise por ConglomeradosRESUMO
Soils co-contaminated with heavy metals and organic pollutants are common and threaten the natural environment and human health. Although artificial microbial consortia have advantages over single strains, the mechanism affecting their effectiveness and colonization in polluted soils still requires determination. Here, we constructed two kinds of artificial microbial consortia from the same or different phylogenetic groups and inoculated them into soil co-contaminated with Cr(VI) and atrazine to study the effects of phylogenetic distance on consortia effectiveness and colonization. The residual concentrations of pollutants demonstrated that the artificial microbial consortium from different phylogenetic groups achieved the highest removal rates of Cr(VI) and atrazine. The removal rate of 400 mg/kg atrazine was 100%, while that of 40 mg/kg Cr(VI) was 57.7%. High-throughput sequence analysis showed that the soil bacterial negative correlations, core genera, and potential metabolic interactions differed among treatments. Furthermore, artificial microbial consortia from different phylogenetic groups had better colonization and a more significant effect on the abundance of native core bacteria than consortia from the same phylogenetic group. Our study highlights the importance of phylogenetic distance on consortium effectiveness and colonization and offers insight into the bioremediation of combined pollutants.
Assuntos
Atrazina , Poluentes do Solo , Humanos , Atrazina/análise , Filogenia , Consórcios Microbianos , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Solo , Microbiologia do SoloRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are among the most widely spread pollutants in the environment including the agricultural soil. PAH degradation by indigenous bacteria is an effective and economical means to remove these pollutants from the environment. Here, we report a bacterial consortium (Pdy-1) isolated from paddy rice soil in northern Japan able to degrade polycyclic aromatic hydrocarbons (PAHs) at high rates. Pdy-1 was incubated with a mixture of PAH compounds (fluorene, phenanthrene, and pyrene) in Bushnell Haas Medium at a final concentration of 100 mg/L each. PDY-1 degraded 100% of fluorene, 95% of phenanthrene, and 52% of pyrene in 5 days. Phenanthrene and pyrene were completely degraded at 10 d and 15 d, respectively. Cloning of the 16S rRNA gene revealed that the consortium was composed of 40% Achromobacter and 7% each of Castelaniella, Rhodanobacter, and Hypomicrobium. Comamonas, Ferrovibrio, Terrimonas, Bordetella, Rhizobium, and Pseudonocardia were also detected. PCR-DGGE showed the dynamics of the consortium during the incubation period. Real-time PCR revealed that PAH degrading genes such as the gram-positive ring dihydroxylating genes (PAH-RDH) and pyrene dioxygenase (nidA) were most abundant at day 5 when the rapid biodegradation of the PAHs was observed. This study improves our understanding on dynamics and characteristics of an effective PAH-degrading bacterial consortium from paddy rice soil.
Assuntos
Poluentes Ambientais , Oryza , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Oryza/metabolismo , Solo , Consórcios Microbianos , RNA Ribossômico 16S/genética , Poluentes do Solo/metabolismo , Fenantrenos/metabolismo , Fluorenos/metabolismo , Pirenos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Microbiologia do SoloRESUMO
Hydroxytyrosol, a valuable plant-derived phenolic compound, is increasingly produced from microbial fermentation. However, the promiscuity of the key enzyme HpaBC, the two-component flavin-dependent monooxygenase from Escherichia coli, often leads to low yields. To address this limitation, we developed a novel strategy utilizing microbial consortia catalysis for hydroxytyrosol production. We designed a biosynthetic pathway using tyrosine as the substrate and selected enzymes and overexpressing glutamate dehydrogenase GdhA to realize the cofactor cycling by coupling reactions catalyzed by the transaminase and the reductase. Additionally, the biosynthetic pathway was divided into two parts and performed by separate E. coli strains. Furthermore, we optimized the inoculation time, strain ratio, and pH to maximize the hydroxytyrosol yield. Glycerol and ascorbic acid were added to the co-culture, resulting in a 92% increase in hydroxytyrosol yield. Using this approach, the production of 9.2 mM hydroxytyrosol was achieved from 10 mM tyrosine. This study presents a practical approach for the microbial production of hydroxytyrosol that can be promoted to produce other value-added compounds.
Assuntos
Escherichia coli , Tirosina , Escherichia coli/metabolismo , Tirosina/metabolismo , Consórcios Microbianos , Catálise , Engenharia Metabólica/métodosRESUMO
Methomyl is a widely used carbamate pesticide, which has adverse biological effects and poses a serious threat to ecological environments and human health. Several bacterial isolates have been investigated for removing methomyl from environment. However, low degradation efficiency and poor environmental adaptability of pure cultures severely limits their potential for bioremediation of methomyl-contaminated environment. Here, a novel microbial consortium, MF0904, can degrade 100% of 25 mg/L methomyl within 96 h, an efficiency higher than that of any other consortia or pure microbes reported so far. The sequencing analysis revealed that Pandoraea, Stenotrophomonas and Paracoccus were the predominant members of MF0904 in the degradation process, suggesting that these genera might play pivotal roles in methomyl biodegradation. Moreover, five new metabolites including ethanamine, 1,2-dimethyldisulfane, 2-hydroxyacetonitrile, N-hydroxyacetamide, and acetaldehyde were identified using gas chromatography-mass spectrometry, indicating that methomyl could be degraded firstly by hydrolysis of its ester bond, followed by cleavage of the C-S ring and subsequent metabolism. Furthermore, MF0904 can successfully colonize and substantially enhance methomyl degradation in different soils, with complete degradation of 25 mg/L methomyl within 96 and 72 h in sterile and nonsterile soil, respectively. Together, the discovery of microbial consortium MF0904 fills a gap in the synergistic metabolism of methomyl at the community level and provides a potential candidate for bioremediation applications.
Assuntos
Metomil , Praguicidas , Humanos , Metomil/química , Metomil/metabolismo , Biodegradação Ambiental , Praguicidas/metabolismo , Bactérias , Solo , Redes e Vias Metabólicas , Consórcios MicrobianosRESUMO
BACKGROUND: Microbial interactions are fundamental for Earth's ecosystem functioning and biogeochemical cycling. Nevertheless, they are challenging to identify and remain barely known. Omics-based censuses are helpful in predicting microbial interactions through the statistical inference of single (static) association networks. Yet, microbial interactions are dynamic and we have limited knowledge of how they change over time. Here, we investigate the dynamics of microbial associations in a 10-year marine time series in the Mediterranean Sea using an approach inferring a time-resolved (temporal) network from a single static network. RESULTS: A single static network including microbial eukaryotes and bacteria was built using metabarcoding data derived from 120 monthly samples. For the decade, we aimed to identify persistent, seasonal, and temporary microbial associations by determining a temporal network that captures the interactome of each individual sample. We found that the temporal network appears to follow an annual cycle, collapsing, and reassembling when transiting between colder and warmer waters. We observed higher association repeatability in colder than in warmer months. Only 16 associations could be validated using observations reported in literature, underlining our knowledge gap in marine microbial ecological interactions. CONCLUSIONS: Our results indicate that marine microbial associations follow recurrent temporal dynamics in temperate zones, which need to be accounted for to better understand the functioning of the ocean microbiome. The constructed marine temporal network may serve as a resource for testing season-specific microbial interaction hypotheses. The applied approach can be transferred to microbiome studies in other ecosystems. Video Abstract.
Assuntos
Ecossistema , Microbiota , Bactérias/genética , Consórcios Microbianos , Estações do Ano , Interações MicrobianasRESUMO
Understanding the role of oxido-reductase enzymes followed by deciphering the functional genes and their corresponding proteins are crucial for the speculation of molecular mechanism for azo dye degradation. In the present study, decolourization efficiency of developed microbial consortium was tested using 100 mgL-1 reactive blue 13 (RB13) and the results showed â¼92.67% decolourization of RB13 at 48 h of incubation. The fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analysis were performed to identify the metabolites formed during RB13 degradation, followed by hypothesizing the metabolic pathway. The GC-MS analysis showed formation of 1,4-dihydronaphthalen-1-ol and 1,3,5-triazin-2-amine as the final degraded compounds after enzymatic breakdown of RB13 dye. The activity of different oxido-reductase enzymes was determined, and the results showed that NADH DCIP reductase and azo reductase had higher activity than other enzymes. It clearly indicated the degradation was initiated with the enzymatic cleavage of azo bond of RB13. Further, the functional genes were annotated against the database of clusters of orthologous groups (COGs) and kyoto encyclopedia of genes and genomes (KEGG). It provided valuable information about the role of crucial functional genes and their corresponding proteins correlated with dominant bacterial species in degradation of RB13. Hence, the present research is the first systematic study that correlated the formation of degradation compounds with the functional genes/enzymes and their corresponding bacterial species responsible for RB13 degradation.
Assuntos
Corantes , Consórcios Microbianos , Corantes/química , Biodegradação Ambiental , Compostos Azo/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Pyrrhotite is ubiquitously found in natural environment and involved in diverse (bio)processes. However, the pyrrhotite-driven bioreduction of toxic selenate [Se(VI)] remains largely unknown. This study demonstrates that Se(VI) is successfully bioreduced under anaerobic condition with the participation of pyrrhotite for the first time. Completely removal of Se(VI) was achieved at initial concentration of 10 mg/L Se(VI) and 0.56 mL/min flow rate in continuous column experiment with indigenous microbial consortium and pyrrhotite. Variation in hydrochemistry and hydrodynamics affected Se(VI) removal performance. Se(VI) was reduced to insoluble Se(0) while elements in pyrrhotite were oxidized to Fe(III) and SO42-. Breakthrough study indicated that biotic activity contributed 81.4 ± 1.07% to Se(VI) transformation. Microbial community analysis suggested that chemoautotrophic genera (e.g., Thiobacillus) could realize pyrrhotite oxidation and Se(VI) reduction independently, while heterotrophic genera (e.g., Bacillus, Pseudomonas) contributed to Se(VI) detoxification by utilizing metabolic intermediates generated through Fe(II) and S(-II) oxidation, which were further verified by pure culture tests. Metagenomic and qPCR analyses indicated genes encoding enzymes for Se(VI) reduction (e.g., serA, napA and srdBAC), S oxidation (e.g., soxB) and Fe oxidation (e.g., mtrA) were upregulated. The elevated electron transporters (e.g., nicotinamide adenine dinucleotide, cytochrome c) promoted electron transfer from pyrrhotite to Se(VI). This study gains insights into Se biogeochemistry under the effect of Fe(II)-bearing minerals and provides a sustainable strategy for Se(VI) bioremediation in natural aquifer.
Assuntos
Água Subterrânea , Consórcios Microbianos , Ácido Selênico , Compostos Férricos , Oxirredução , Compostos FerrososRESUMO
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Assuntos
Micotoxinas , Aves Domésticas , Animais , Anaerobiose , Esterco , Consórcios Microbianos , Reatores BiológicosRESUMO
Reed is a typical emerged plant in constructed wetlands (CWs). Its litters were used as raw materials for preparing Fe-C ceramic-filler (Fe-C-CF). The physical and chemical properties of Fe-C-CF were studied under different conditions, including the mass ration of Fe to carbon (Fe/C ratio), sintering temperature, and time, to determine the optimum preparing conditions. Meanwhile, the denitrification performance and CO2 emission flux of the surface flow constructed wetland (SFCW) systems were investigated when using Fe-C-CF as the matrix. The optimum preparing conditions for Fe-C-CF were Fe/C ratio of 1:1, sintering temperature and time of 500 °C and 20 min, respectively. The SFCW system with Fe-C-CF obtained a higher total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH3-N) removal efficiencies than the control SFCW system without Fe-C-CF. Compared with the heterotrophic denitrification process, the SFCW system with Fe-C-CF decreased CO2 emission by 67.9 g m-2 per year. The results of microbial community analysis indicated that addition of Fe-C-CF increased the diversity and abundance of microbial communities in the SFCW systems. The dominant genus of the SFCW system with Fe-C-CF was Bacillus, while Uliginosibacterium was the dominant genus in the system without the filler.
Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Consórcios Microbianos , Dióxido de Carbono , Nitrogênio/análise , DesnitrificaçãoRESUMO
Microbial consortia drive essential processes, ranging from nitrogen fixation in soils to providing metabolic breakdown products to animal hosts. However, it is challenging to translate the composition of microbial consortia into their emergent functional capacities. Community-scale metabolic models hold the potential to simulate the outputs of complex microbial communities in a given environmental context, but there is currently no consensus for what the fitness function of an entire community should look like in the presence of ecological interactions and whether community-wide growth operates close to a maximum. Transitioning from single-taxon genome-scale metabolic models to multitaxon models implies a growth cone without a well-specified growth rate solution for individual taxa. Here, we argue that dynamic approaches naturally overcome these limitations, but they come at the cost of being computationally expensive. Furthermore, we show how two nondynamic, steady-state approaches approximate dynamic trajectories and pick ecologically relevant solutions from the community growth cone with improved computational scalability.
Assuntos
Consórcios Microbianos , Modelos BiológicosRESUMO
This article summarizes the reviews and original research papers published in Chinese Journaol of Biotechnology in the area of biomanufacturing driven by engineered organisms in the year of 2022. The enabling technologies including DNA sequencing, DNA synthesis, and DNA editing as well as regulation of gene expression and in silico cell modeling were highlighted. This was followed by discussing the biomanufacturing of biocatalytics products, amino acids and its derivatives, organic acids, natural products, antibiotics and active peptides, functional polysaccharides, and functional proteins. Lastly, the technologies for utilizing C1 compounds and biomass as well as synthetic microbial consortia were discussed. The aim of this article was to help the readers to gain insights into this rapidly developing field from the journal point of view.
Assuntos
Produtos Biológicos , Biotecnologia , Consórcios Microbianos , DNA , Publicações , Biologia SintéticaRESUMO
Synthetic electroactive microbial consortia, which include exoelectrogenic and electrotrophic communities, catalyze the exchange of chemical and electrical energy in cascade metabolic reactions among different microbial strains. In comparison to a single strain, a community-based organisation that assigns tasks to multiple strains enables a broader feedstock spectrum, faster bi-directional electron transfer, and greater robustness. Therefore, the electroactive microbial consortia held great promise for a variety of applications such as bioelectricity and biohydrogen production, wastewater treatment, bioremediation, carbon and nitrogen fixation, and synthesis of biofuels, inorganic nanomaterials, and polymers. This review firstly summarized the mechanisms of biotic-abiotic interfacial electron transfer as well as biotic-biotic interspecific electron transfer in synthetic electroactive microbial consortia. This was followed by introducing the network of substance and energy metabolism in a synthetic electroactive microbial consortia designed by using the "division-of-labor" principle. Then, the strategies for engineering synthetic electroactive microbial consortiums were explored, which included intercellular communications optimization and ecological niche optimization. We further discussed the specific applications of synthetic electroactive microbial consortia. For instance, the synthetic exoelectrogenic communities were applied to biomass generation power technology, biophotovoltaics for the generation of renewable energy and the fixation of CO2. Moreover, the synthetic electrotrophic communities were applied to light-driven N2 fixation. Finally, this review prospected future research of the synthetic electroactive microbial consortia.
Assuntos
Consórcios Microbianos , Biologia Sintética , Transporte de Elétrons , Eletricidade , Biodegradação AmbientalRESUMO
Ammonium (NH4+) and salinity (NaCl) inhibit CH4 production in anaerobic digestion. However, whether bioaugmentation using marine sediment-derived microbial consortia can relieve the inhibitory effects of NH4+ and NaCl stresses on CH4 production remains unclear. Thus, this study evaluated the effectiveness of bioaugmentation using marine sediment-derived microbial consortia in alleviating the inhibition of CH4 production under NH4+ or NaCl stress and elucidated the underlying mechanisms. Batch anaerobic digestion experiments under 5 gNH4-N/L or 30 g/L NaCl were performed with or without augmentation using two marine sediment-derived microbial consortia pre-acclimated to high NH4+ and NaCl. Compared with non-bioaugmentation, bioaugmentation reinforced CH4 production. Network analysis revealed the joint effects of microbial connections by Methanoculleus, which promoted the efficient consumption of propionate accumulated under NH4+ and NaCl stresses. In conclusion, bioaugmentation with pre-acclimated marine sediment-derived microbial consortia can mitigate the inhibition under NH4+ or NaCl stress and enhance CH4 production in anaerobic digestion.
Assuntos
Compostos de Amônio , Consórcios Microbianos , Reatores Biológicos , Anaerobiose , Cloreto de Sódio/farmacologia , Metano , Sedimentos Geológicos , Estresse SalinoRESUMO
Lignite-converted bioorganic fertilizer substantially improves soil physiochemical properties, but little is known about how lignite bioorganic fertilizer (LBF) affects soil microbial communities and how the changed microbial communities impact their stability, functions, and crop growth in saline-sodic soil. Therefore, a two-year field experiment was conducted in saline-sodic soil in the upper Yellow River basin, Northwest China. Three treatments, i.e., the control treatment without organic fertilizer (CK), the farmyard manure treatment (FYM) amended with 21 t ha-1 (same as local farmers) sheep manure, and the LBF treatment amended with the optimal rate of LBF (3.0 and 4.5 t ha-1), were designed in this study. The results showed that after two years of application of LBF and FYM, the percentage of aggregate destruction (PAD) was significantly reduced by 14.4 % and 9.4 %, respectively, while the saturated hydraulic conductivity (Ks) was obviously increased by 114.4 % and 99.7 %, respectively. The LBF treatment significantly increased the contributions of nestedness to total dissimilarity by 101.4 % and 156.2 % in bacterial and fungal communities, respectively. LBF contributed to the shift from stochasticity to variable selection in the assembly of the fungal community. The LBF treatment enriched the bacterial classes of Gammaproteobacteria, Gemmatimonadetes, and Methylomirabilia and fungal classes of Glomeromycetes and GS13, which were mainly driven by PAD and Ks. Additionally, the LBF treatment significantly increased the robustness and positive cohesions and decreased the vulnerability of the bacterial co-occurrence networks in both 2019 and 2020 in comparison with the CK treatment, indicating that the LBF treatment increased stability of bacterial community. The relative abundance of chemoheterotrophy and arbuscular mycorrhizae in the LBF treatment were 89.6 % and 854.4 % higher than those in the CK treatment, respectively, showing that the LBF enhanced sunflower-microbe interactions. The FYM treatment improved the functions mainly regarding sulfur respiration and hydrocarbon degradation by 309.7 % and 212.8 % in comparison with the CK treatment, respectively. The core rhizomicrobiomes in the LBF treatment showed strong positive connections with the stabilities of both bacterial and fungal co-occurrence networks, as well as the relative abundance and potential functions of chemoheterotrophy and arbuscular mycorrhizae. These factors were also linked to the growth of sunflowers. This study reveals that the LBF improved sunflower growth due to enhance microbial community stability and sunflower-microbe interactions through altering core rhizomicrobiomes in saline-sodic farmland.
Assuntos
Microbiota , Micorrizas , Animais , Ovinos , Solo/química , Fertilizantes/análise , Esterco , Consórcios Microbianos , Bactérias , Micorrizas/química , Microbiologia do SoloRESUMO
Tetracycline (TC) is an antibiotic that is recently found as an emerging pollutant with low biodegradability. Biodegradation shows great potential for TC dissipation. In this study, two TC-degrading microbial consortia (named SL and SI) were respectively enriched from activated sludge and soil. Bacterial diversity decreased in these finally enriched consortia compared with the original microbiota. Moreover, most ARGs quantified during the acclimation process became less abundant in the finally enriched microbial consortia. Microbial compositions of the two consortia as revealed by 16 S rRNA sequencing were similar to some extent, and the dominant genera Pseudomonas, Sphingobacterium, and Achromobacter were identified as the potential TC degraders. In addition, consortia SL and SI were capable of biodegrading TC (initial 50 mg/L) by 82.92% and 86.83% within 7 days, respectively. They could retain high degradation capabilities under a wide pH range (4-10) and at moderate/high temperatures (25-40 °C). Peptone with concentrations of 4-10 g/L could serve as a desirable primary growth substrate for consortia to remove TC through co-metabolism. A total of 16 possible intermediates including a novel biodegradation product TP245 were detected during TC degradation. Peroxidase genes, tetX-like genes and the enriched genes related to aromatic compound degradation as revealed by metagenomic sequencing were likely responsible for TC biodegradation.
Assuntos
Microbiota , Tetraciclina , Antibacterianos , Consórcios Microbianos , MetagenomaRESUMO
Synergistic studies of microorganisms in the last decade have been mostly directed towards their biofertilizing effects on growth and crop yield. Our research examines the role of a microbial consortium (MC) on physiological responses of Allium cepa hybrid F1 2000 under water and nutritional deficit in a semi-arid environment. An onion crop was established with normal irrigation (NIr) (100% ETc) and water deficit (WD) (67% ETc) and different fertilization treatments (MC with 0%, 50% and 100% NPK). Gas exchange (Stomatal conductance (Gs), transpiration (E) and CO2 assimilation rates (A)) and leaf water status were evaluated throughout its growth cycle. The MC + 50% NPK treatment with NIr maintained similar A rates to the production control. A. cepa decreased Gs by approximately 50% in the WD treatment. The highest water use efficiency (WUE) and an increase in the modulus of elasticity in response to water stress were obtained for the 100% NPK treatment under non-inoculated WD. The onion hybrid F1 2000 was tolerant to water stress and under non-limiting nutrient conditions, irrigation may be reduced. The MC facilitated the availability of nutrients under NIr allowing a 50% reduction in the application of high doses of fertilization without affecting yield, resulting in a suitable agroecological strategy for this crop.
Assuntos
Gastrópodes , Cebolas , Animais , Desidratação , Consórcios Microbianos , Transporte BiológicoRESUMO
Lichens represent a charismatic corner of biology that has a rich history of scientific exploration, but to which modern biological techniques have been sparsely applied. This has limited our understanding of phenomena unique to lichen, such as the emergent development of physically coupled microbial consortia or distributed metabolisms. The experimental intractability of natural lichens has prevented studies of the mechanistic underpinnings of their biology. Creating synthetic lichen from experimentally tractable, free-living microbes has the potential to overcome these challenges. They could also serve as powerful new chassis for sustainable biotechnology. In this review we will first briefly introduce what lichen are, what remains mysterious about their biology, and why. We will then articulate the scientific insights that creating a synthetic lichen will generate and lay out a roadmap for how this could be achieved using synthetic biology. Finally, we will explore the translational applications of synthetic lichen and detail what is needed to advance the pursuit of their creation.