RESUMO
Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.
Assuntos
Proteoma , Proteostase , Proteoma/metabolismo , Peptídeos , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismoRESUMO
Diabetes can result in impaired corneal wound healing. Mitochondrial dysfunction plays an important role in diabetic complications. However, the regulation of mitochondria function in the diabetic cornea and its impacts on wound healing remain elusive. The present study aimed to explore the molecular basis for the disturbed mitochondrial metabolism and subsequent wound healing impairment in the diabetic cornea. Seahorse analysis showed that mitochondrial oxidative phosphorylation is a major source of ATP production in human corneal epithelial cells. Live corneal biopsy punches from type 1 and type 2 diabetic mouse models showed impaired mitochondrial functions, correlating with impaired corneal wound healing, compared to nondiabetic controls. To approach the molecular basis for the impaired mitochondrial function, we found that Peroxisome Proliferator-Activated Receptor-α (PPARα) expression was downregulated in diabetic human corneas. Even without diabetes, global PPARα knockout mice and corneal epithelium-specific PPARα conditional knockout mice showed disturbed mitochondrial function and delayed wound healing in the cornea, similar to that in diabetic corneas. In contrast, fenofibrate, a PPARα agonist, ameliorated mitochondrial dysfunction and enhanced wound healing in the corneas of diabetic mice. Similarly, corneal epithelium-specific PPARα transgenic overexpression improved mitochondrial function and enhanced wound healing in the cornea. Furthermore, PPARα agonist ameliorated the mitochondrial dysfunction in primary human corneal epithelial cells exposed to diabetic stressors, which was impeded by siRNA knockdown of PPARα, suggesting a PPARα-dependent mechanism. These findings suggest that downregulation of PPARα plays an important role in the impaired mitochondrial function in the corneal epithelium and delayed corneal wound healing in diabetes.
Assuntos
Diabetes Mellitus Experimental , PPAR alfa , Camundongos , Humanos , Animais , PPAR alfa/genética , PPAR alfa/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Córnea/metabolismo , Cicatrização/fisiologia , Camundongos Knockout , Mitocôndrias/metabolismoRESUMO
Superoxide/hydrogen peroxide production by site IQ in complex I of the electron transport chain is conventionally assayed during reverse electron transport (RET) from ubiquinol to NAD. However, S1QELs (specific suppressors of superoxide/hydrogen peroxide production by site IQ) have potent effects in cells and in vivo during presumed forward electron transport (FET). Therefore, we tested whether site IQ generates S1QEL-sensitive superoxide/hydrogen peroxide during FET (site IQf), or alternatively, whether RET and associated S1QEL-sensitive superoxide/hydrogen peroxide production (site IQr) occurs in cells under normal conditions. We introduce an assay to determine if electron flow through complex I is thermodynamically forward or reverse: on blocking electron flow through complex I, the endogenous matrix NAD pool will become more reduced if flow before the challenge was forward, but more oxidised if flow was reverse. Using this assay we show in the model system of isolated rat skeletal muscle mitochondria that superoxide/hydrogen peroxide production by site IQ can be equally great whether RET or FET is running. We show that sites IQr and IQf are equally sensitive to S1QELs, and to rotenone and piericidin A, inhibitors that block the Q-site of complex I. We exclude the possibility that some sub-fraction of the mitochondrial population running site IQr during FET is responsible for S1QEL-sensitive superoxide/hydrogen peroxide production by site IQ. Finally, we show that superoxide/hydrogen peroxide production by site IQ in cells occurs during FET, and is S1QEL-sensitive.
Assuntos
Peróxido de Hidrogênio , Superóxidos , Ratos , Animais , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , Mitocôndrias/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/farmacologiaRESUMO
Oxygen is toxic across all three domains of life. Yet, the underlying molecular mechanisms remain largely unknown. Here, we systematically investigate the major cellular pathways affected by excess molecular oxygen. We find that hyperoxia destabilizes a specific subset of Fe-S cluster (ISC)-containing proteins, resulting in impaired diphthamide synthesis, purine metabolism, nucleotide excision repair, and electron transport chain (ETC) function. Our findings translate to primary human lung cells and a mouse model of pulmonary oxygen toxicity. We demonstrate that the ETC is the most vulnerable to damage, resulting in decreased mitochondrial oxygen consumption. This leads to further tissue hyperoxia and cyclic damage of the additional ISC-containing pathways. In support of this model, primary ETC dysfunction in the Ndufs4 KO mouse model causes lung tissue hyperoxia and dramatically increases sensitivity to hyperoxia-mediated ISC damage. This work has important implications for hyperoxia pathologies, including bronchopulmonary dysplasia, ischemia-reperfusion injury, aging, and mitochondrial disorders.
Assuntos
Hiperóxia , Doenças Mitocondriais , Animais , Humanos , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Oxigênio/metabolismoRESUMO
Mitochondrial carriers (MCs) belong to a eukaryotic protein family of transporters that in higher organisms is called the solute carrier family 25 (SLC25). All MCs have characteristic triplicated sequence repeats forming a 3-fold symmetrical structure of a six-transmembrane α-helix bundle with a centrally located substrate-binding site. Biochemical characterization has shown that MCs altogether transport a wide variety of substrates but can be divided into subfamilies, each transporting a few specific substrates. We have investigated the intron positions in the human MC genes and their orthologs of highly diversified organisms. The results demonstrate that several intron positions are present in numerous MC sequences at the same specific points, of which some are 3-fold symmetry related. Many of these frequent intron positions are also conserved in subfamilies or in groups of subfamilies transporting similar substrates. The analyses of the frequent and conserved intron positions in MCs suggest phylogenetic relationships not only between close but also distant homologs as well as a possible involvement of the intron positions in the evolution of the substrate specificity diversification of the MC family members.
Assuntos
Proteínas de Membrana Transportadoras , Mitocôndrias , Humanos , Íntrons , Filogenia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Membrana Transportadoras/genética , Eucariotos/genética , Evolução Molecular , Sequência ConservadaRESUMO
To cope with the requirements of energy and building blocks for rapid proliferation, cancer cells reprogram their metabolic pathways profoundly, especially in oxygen- and nutrients-deficient tumor microenvironments. However, functional mitochondria and mitochondria-dependent oxidative phosphorylation are still necessary for the tumorigenesis and metastasis of cancer cells. We show here that mitochondrial elongation factor 4 (mtEF4) is commonly upregulated in breast tumors compared to adjacent non-cancerous tissues, and is relevant to tumor progression and poor prognosis. Down regulation of mtEF4 in breast cancer cells impairs the assembly of mitochondrial respiration complexes, decreases mitochondrial respiration, reduces ATP production, attenuates the formation of lamellipodia, and suppresses cell motility in vitro and cancer metastasis in vivo. On the contrary, upregulation of mtEF4 elevates the mitochondrial oxidative phosphorylation, which contributes to the migratory capacities of breast cancer cells. mtEF4 also increases the potential of glycolysis, probably via an AMPK-related mechanism. In summary, we provide direct evidences that the aberrantly upregulated mtEF4 contributes to the metastasis of breast cancer by coordinating metabolic pathways.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fatores de Alongamento de Peptídeos/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Glicólise , Fosforilação Oxidativa , Linhagem Celular Tumoral , Microambiente TumoralRESUMO
Malonyl-CoA-acyl carrier protein transacylase (MCAT) is an enzyme involved in mitochondrial fatty acid synthesis (mtFAS) and catalyzes the transfer of the malonyl moiety of malonyl-CoA to the mitochondrial acyl carrier protein (ACP). Previously, we showed that loss-of-function of mtFAS genes, including Mcat, is associated with severe loss of electron transport chain (ETC) complexes in mouse immortalized skeletal myoblasts (Nowinski et al., 2020). Here, we report a proband presenting with hypotonia, failure to thrive, nystagmus, and abnormal brain MRI findings. Using whole exome sequencing, we identified biallelic variants in MCAT. Protein levels for NDUFB8 and COXII, subunits of complex I and IV respectively, were markedly reduced in lymphoblasts and fibroblasts, as well as SDHB for complex II in fibroblasts. ETC enzyme activities were decreased in parallel. Re-expression of wild-type MCAT rescued the phenotype in patient fibroblasts. This is the first report of a patient with MCAT pathogenic variants and combined oxidative phosphorylation deficiency.
Assuntos
Proteína de Transporte de Acila S-Maloniltransferase , Doenças Mitocondriais , Animais , Camundongos , Adipogenia , Encéfalo , Mitocôndrias , Doenças Mitocondriais/genética , Proteína de Transporte de Acila S-Maloniltransferase/genéticaRESUMO
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Humanos , Dinâmica Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Morte Celular , Transdução de Sinais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismoRESUMO
Myocardial ischemia-reperfusion (I/R) damage is characterized by mitochondrial damage in cardiomyocytes. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) and presenilin-2 (PS2) participate in multiple mitochondrial pathways; thus, we investigated the impact of these proteins on mitochondrial homeostasis during an acute reperfusion injury. Myocardial post-ischemic reperfusion stress impaired myocardial function, induced structural abnormalities and promoted cardiomyocyte death by disrupting the mitochondrial integrity in wild-type mice, but not in TMBIM6 transgenic mice. We found that TMBIM6 bound directly to PS2 and promoted its post-transcriptional degradation. Knocking out PS2 in mice reduced I/R injury-induced cardiac dysfunction, inflammatory responses, myocardial swelling and cardiomyocyte death by improving the mitochondrial integrity. These findings demonstrate that sufficient TMBIM6 expression can prevent PS2 accumulation during cardiac I/R injury, thus suppressing reperfusion-induced mitochondrial damage. Therefore, TMBIM6 and PS2 are promising therapeutic targets for the treatment of cardiac reperfusion damage.
Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Proteína X Associada a bcl-2/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismoRESUMO
Alleles within the chr19p13.1 locus are associated with increased risk of both ovarian and breast cancer and increased expression of the ANKLE1 gene. ANKLE1 is molecularly characterized as an endonuclease that efficiently cuts branched DNA and shuttles between the nucleus and cytoplasm. However, the role of ANKLE1 in mammalian development and homeostasis remains unknown. In normal development ANKLE1 expression is limited to the erythroblast lineage and we found that ANKLE1's role is to cleave the mitochondrial genome during erythropoiesis. We show that ectopic expression of ANKLE1 in breast epithelial-derived cells leads to genome instability and mitochondrial DNA (mtDNA) cleavage. mtDNA degradation then leads to mitophagy and causes a shift from oxidative phosphorylation to glycolysis (Warburg effect). Moreover, mtDNA degradation activates STAT1 and expression of epithelial-mesenchymal transition (EMT) genes. Reduction in mitochondrial content contributes to apoptosis resistance, which may allow precancerous cells to avoid apoptotic checkpoints and proliferate. These findings provide evidence that ANKLE1 is the causal cancer susceptibility gene in the chr19p13.1 locus and describe mechanisms by which higher ANKLE1 expression promotes cancer risk.
Assuntos
DNA Mitocondrial , Neoplasias , Animais , Mitocôndrias , Núcleo Celular , Apoptose , MamíferosRESUMO
Nonalcoholic fatty liver disease (NAFLD) is a metabolic syndrome disorder. Here, hepatic parenchymal cell and mitochondrial-targeted nanocarriers were constructed to deliver astaxanthin (AST) to liver tissue to maximize AST intervention efficiency. The hepatic parenchymal cell-targeting was achieved using galactose (Gal) conjugated onto whey protein isolate (WPI) through the Maillard reaction by recognizing asialoglycoprotein receptors specifically expressed in hepatocytes. Grafting triphenylphosphonium (TPP) onto glycosylated WPI by an amidation reaction enabled the nanocarriers (AST@TPP-WPI-Gal) to achieve dual targeting capability. The AST@TPP-WPI-Gal nanocarriers could target mitochondria in steatotic HepG2 cells with an enhanced anti-oxidative and anti-adipogenesis effect. The ability of AST@TPP-WPI-Gal to target liver tissue was verified by an NAFLD mice model, and the results showed that AST@TPP-WPI-Gal could regulate blood lipid disorders, protect liver function, and remarkably reduce liver lipid accumulation (40%) compared with that of free AST. Therefore, AST@TPP-WPI-Gal might have potential as a dual targeting hepatic agent for nutritional intervention for NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Hepatócitos , Mitocôndrias , Camundongos Endogâmicos C57BLRESUMO
In situ visualization of lipid composition diversity in lipid droplets (LDs) is essential for decoding lipid metabolism and function. However, effective probes for simultaneously localizing and reflecting the lipid composition of LDs are currently lacking. Here, we synthesized full-color bifunctional carbon dots (CDs) that can target LDs as well as respond to the nuance in internal lipid compositions with highly sensitive fluorescence signals, due to lipophilicity and surface state luminescence. Combined with microscopic imaging, uniform manifold approximation and projection, and sensor array concept, the capacity of cells to produce and maintain LD subgroups with varying lipid composition was clarified. Moreover, in oxidative stress cells, LDs with characteristic lipid compositions were deployed around mitochondria, and the proportion of LD subgroups changed, which gradually disappeared when treated with oxidative stress therapeutics. The CDs demonstrate great potential for in situ investigation of the LD subgroups and metabolic regulations.
Assuntos
Gotículas Lipídicas , Mitocôndrias , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Metabolismo dos Lipídeos , LipídeosRESUMO
Dual-channel fluorescent probes could respond to a specific target and emit different wavelengths of fluorescence before and after the response. Such probes could alleviate the influence caused by the variation of the probe concentration, excitation intensity, and so on. However, for most dual-channel fluorescent probes, the probe and fluorophore faced spectral overlap, which reduced sensitivity and accuracy. Herein, we introduced a cysteine (Cys)-responsive and near-infrared (NIR) emissive AIEgen (named TSQC) with good biocompatibility to dual-channel monitor Cys in mitochondria and lipid droplets (LDs) during cell apoptosis through wash-free fluorescence bio-imaging. TSQC can label mitochondria with bright fluorescence around 750 nm, and after reacting with Cys, the reaction product TSQ could spontaneously target LDs with emissions around 650 nm. Such spatially separated dual-channel fluorescence responses could significantly improve detection sensitivity and accuracy. Furthermore, the Cys-triggered dual-channel fluorescence imaging in LDs and mitochondria during apoptosis induced by UV light exposure, H2O2, or LPS treatment is clearly observed for the first time. Besides, we also report here that TSQC can be used to image subcellular Cys in different cell lines by measuring the fluorescence intensities of different emission channels. In particular, TSQC shows superior utility for the in vivo imaging of apoptosis in acute and chronic epilepsy mice. In brief, the newly designed NIR AIEgen TSQC can respond to Cys and separate two fluorescence signals to mitochondria and LDs, respectively, to study Cys-related apoptosis.
Assuntos
Cisteína , Epilepsia , Humanos , Camundongos , Animais , Cisteína/metabolismo , Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/metabolismo , Gotículas Lipídicas/metabolismo , Limite de Detecção , Células HeLa , Epilepsia/diagnóstico por imagem , Epilepsia/metabolismo , Mitocôndrias/metabolismoRESUMO
OBJECTIVE: Metabolic reprogramming is a main feature of proinflammatory macrophage polarization, a process that leads to inflammation in dysfunctional adipose tissue. Therefore, the study aim was to explore whether sirtuin 3 (SIRT3), a mitochondrial deacetylase, participates in this pathophysiological process. METHODS: Macrophage-specific Sirt3 knockout (Sirt3-MKO) mice and wild-type littermates were treated with a high-fat diet. Body weight, glucose tolerance, and inflammation were evaluated. Bone marrow-derived macrophages and RAW264.7 cells were treated with palmitic acid to explore the mechanism of SIRT3 on inflammation. RESULTS: The expression of SIRT3 was significantly repressed in both bone marrow-derived macrophages and adipose tissue macrophages in mice fed with a high-fat diet. Sirt3-MKO mice exhibited accelerated body weight and severe inflammation, accompanied with reduced energy expenditure and worsened glucose metabolism. In vitro experiments showed that SIRT3 inhibition or knockdown exacerbated palmitic acid-induced proinflammatory macrophage polarization, whereas SIRT3 restoration displayed opposite effects. Mechanistically, SIRT3 deficiency resulted in hyperacetylation of succinate dehydrogenase that led to succinate accumulation, which suppressed the transcription of Kruppel-like factor 4 via increasing histone methylation on its promoter, thus evoking proinflammatory macrophages. CONCLUSIONS: This study emphasizes an important preventive role of SIRT3 in macrophage polarization and implies that SIRT3 is a promising therapeutic target for obesity.
Assuntos
Resistência à Insulina , Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Ácido Palmítico/farmacologia , Obesidade/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Peso Corporal , Camundongos Knockout , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Adenosine triphosphate (ATP), as an important intracellular energy currency produced in mitochondria, is closely related to various diseases in living organisms. Currently, the biological application of AIE fluorophore as a fluorescent probe for ATP detection in mitochondria is rarely reported. Herein, D-π-A and D-A structure-based tetraphenylethylene (TPE) fluorophores were employed to synthesize six different ATP probes (P1-P6), and the phenylboronic acid groups and dual positive charge sites of probes could interact with the vicinal diol of ribose and negatively charged triphosphate structure of ATP, respectively. However, P1 and P4 with a boronic acid group and a positive charge site had poor selectivity for ATP detection. In contrast, P2, P3, P5, and P6 with dual positive charge sites exhibited better selectivity than P1 and P4. In particular, P2 had more advantages of high sensitivity, selectivity, and good time stability for ATP detection than P3, P5, and P6, which was ascribed to its D-π-A structure, linker 1 (1,4-bis(bromomethyl)benzene), and dual positive charge recognition sites. Then, P2 was employed to detect ATP, and it exhibited a low detection limit of 3.62 µM. Moreover, P2 showed utility in the monitoring of mitochondrial ATP level fluctuations.
Assuntos
Corantes Fluorescentes , Estilbenos , Corantes Fluorescentes/química , Trifosfato de Adenosina , MitocôndriasRESUMO
Empagliflozin, a sodium-glucose co-transporter 2 inhibitor developed, has been shown to reduce cardiovascular events in patients with type 2 diabetes and established cardiovascular disease. Several studies have suggested that empagliflozin improves the cardiac energy state which is a partial cause of its potency. However, the detailed mechanism remains unclear. To address this issue, we used a mouse model that enabled direct measurement of cytosolic and mitochondrial ATP levels. Empagliflozin treatment significantly increased cytosolic and mitochondrial ATP levels in the hearts of db/db mice. Empagliflozin also enhanced cardiac robustness by maintaining intracellular ATP levels and the recovery capacity in the infarcted area during ischemic-reperfusion. Our findings suggest that empagliflozin enters cardiac mitochondria and directly causes these effects by increasing mitochondrial ATP via inhibition of NHE1 and Nav1.5 or their common downstream sites. These cardioprotective effects may be involved in the beneficial effects on heart failure seen in clinical trials.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Mitocôndrias , Trifosfato de AdenosinaRESUMO
Much more than the "powerhouse" of the cell, mitochondria have emerged as critical hubs involved in metabolism, cell death, inflammation, signaling, and stress responses. To open our mitochondria focus issue, we asked several scientists to share the unanswered questions, emerging themes, and topics of investigation that excite them.
Assuntos
Mitocôndrias , Transdução de Sinais , Humanos , Mitocôndrias/metabolismo , Morte Celular , Inflamação/metabolismoRESUMO
Mitochondria have emerged as signaling organelles with roles beyond their well-established function in generating ATP and metabolites for macromolecule synthesis. Healthy mitochondria integrate various physiologic inputs and communicate signals that control cell function or fate as well as adaptation to stress. Dysregulation of these mitochondrial signaling networks are linked to pathology. Here we outline a few modes of signaling between the mitochondrion and the cytoplasm. To view this SnapShot, open or download the PDF.