RESUMO
A key characteristic to be elucidated, to address the harmful health risks of environmental perfluorinated alkyl substances (PFAS), is their binding modes to serum albumin, the most abundant protein in blood. Hexafluoropropylene oxide-dimer acid (GenX or HFPO-DA) is a new industrial replacement for the widespread linear long-chain PFAS. However, the detailed interaction of new-generation short-chain PFAS with albumin is still lacking. Herein, the binding characteristics of bovine serum albumin (BSA) to GenX were explored at the molecular and cellular levels. It was found that this branched short-chain GenX could bind to BSA with affinity lower than that of legacy linear long-chain perfluorooctanoic acid (PFOA). Site marker competitive study and molecular docking simulation revealed that GenX interacted with subdomain IIIA to form BSA-GenX complex. Consistent with its weaker affinity to albumin protein, the cytotoxicity of branched short-chain GenX was less susceptible to BSA binding compared with that of the linear long-chain PFOA. In contrast to the significant effects of strong BSA-PFOA interaction, the weak affinity of BSA-GenX binding did not influence the structure of protein and the cytotoxicity of GenX. The detailed characterization and direct comparisons of serum albumin interaction with new generation short-chain GenX will provide a better understanding for the toxicological properties of this new alternative.
Assuntos
Fluorocarbonos , Soroalbumina Bovina , Animais , Humanos , Caprilatos/química , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Fluorocarbonos/química , Simulação de Acoplamento Molecular , Soroalbumina Bovina/químicaRESUMO
BACKGROUND: Upper respiratory tract infection (URTI), one of the most common respiratory diseases, has a high annual incidence. Trollius chinensis capsule has been used to treat URTI in China. However, the underlying-mechanisms remain unclear. METHODS: Network pharmacology was used to explore the potential mechanism of action of Trollius chinensis capsule in URTI treatment. The active compounds in Trollius chinensis were obtained from the TCMSP, SymMap, and ETCM databases. The TCMSP, PubChem, and SwissTargetPrediction databases were used to predict potential targets of Trollius chinensis. URTI-associated targets were gathered from GeneCards and DisGeNET databases. The key targets and signaling pathways associated with URTI were selected by network topology, GO, and KEGG pathway enrichment analysis. Molecular docking was used to verify the binding activity between active compounds and key targets. RESULTS: Quercetin, pectolinarigenin, beta-sitosterol, acacetin and cirsimaritin are major active compounds in Trollius chinensis capsule. Eighty one candidate therapeutic targets were confirmed to be involved in protection of Trollius chinensis capsule against URTI. Among them, 7 key targets (TP53, IL6, AKT1, CASP3, CXCL8, MMP9, and EGFR) were verified to have good binding affinities to the main active compounds. Furthermore, enrichment analyses suggested that inflammatory response, virus infection and oxidative stress related biological processes and pathways were possibly the potential mechanism. CONCLUSION: Overall, the present study clarified that quercetin, pectolinarigenin, beta-sitosterol, acacetin and cirsimaritin are proved to be the main effective compounds of Trollius chinensis capsule treating URTI, possibly by acting on the targets of IL6, AKT1, CASP3, CXCL8, MMP9 and EGFR to play anti-infectious, anti-viral, and anti-oxidative effects. This study provides a new understanding of the active compounds and mechanisms of Trollius chinensis capsule in URTI treatment from the perspective of network pharmacology.
Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Infecções Respiratórias , Farmacologia em Rede/métodos , Infecções Respiratórias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos , Ranunculaceae/química , Sitosteroides/farmacologia , Sitosteroides/uso terapêutico , Cápsulas , Medicina Tradicional Chinesa/métodosRESUMO
Tongxie Yaofang (TXYF), a classical traditional Chinese medicine, is commonly used in China to treat ulcerative colitis (UC). The aim of this study was to integrate network pharmacology with molecular docking and molecular dynamics simulations to explore the mechanism of Tongxie Yaofang in the treatment of UC. The traditional Chinese medicine systems pharmacology database was used to retrieve the relevant chemical compositions of the herbs contained in TXYF. The DisGeNET, GeneCards, Online Mendelian Inheritance in Man, and Therapeutic Target Database databases were used to retrieve UC-related targets. To construct protein-protein interaction networks and screen for key targets, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of the key targets of TXYF in the treatment of UC were performed using R 4.3.2 software. AutoDock Tools 1.5.7 was used for molecular docking. Molecular dynamics simulations of protein complexes and complexes of proteins with small-molecule ligands and eutectic ligands were carried out with Gromacs 2022 software. Network pharmacology analysis revealed that TXYF could act on UC through multiple targets and pathways. It may exert therapeutic effects mainly through the AGE/RAGE, TOLL, JAK/STAT, and Th17 signaling pathways. The possible targets of TXYF in the treatment of UC could be AKT1, BCL2, EGFR, HMOX1, HSP90AA1, and TGFß1. Molecular docking analysis revealed that AKT1 had the highest binding energy (-10.55 kcal/mol). Molecular dynamics simulations revealed that the complexes formed by the AKT1 protein and the chemical compounds MOL001910 and MOL00035 had good stability and high binding strength. AKT1 may be the most critical target of TXYF in treating UC, and the key chemical components of TXYF in treating UC may include ß-sitosterol (MOL000358) and 11alpha,12alpha-epoxy-3beta-23-dihydroxy-30-norolean-20-en-28,12beta-olide (MOL00 1910). This study revealed that TXYF may exert therapeutic effects on UC through multiple targets, multiple biological functions, and multiple signaling pathways. This study provides a new insight into the pharmacological mechanism of TXYF in treating UC.
Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia em Rede , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Humanos , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa/métodosRESUMO
BACKGROUND: Night sweats can occur independently or in association with a number of medical conditions and can significantly disrupt daily life. This study focuses on the treatment of primary night sweats. Despite the considerable interest in Danggui Liuhuang Tang (DGLHT), an effective traditional Chinese medicine formula, its mechanism of action remains unknown. There is also no existing literature on the subject. METHODS: Network pharmacology and molecular docking techniques. RESULTS: Network pharmacology techniques were employed to identify 109 active ingredients and 808 potential targets of DGLHT, as well as 2385 targets associated with night sweating diseases. The screening process yielded 375 common targets shared between DGLHT and night sweating. These included the active ingredients baicalein, quercetin, huarangiin, and tetrahydroafrican antipyrine, and the core targets interleukin 6, serine/threonine protein kinase 1, tumor necrosis factor, GAPDH enzyme, and Src protein kinase were identified. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that DGLHT exerts its therapeutic effects primarily by modulating the PI3K-Akt signaling pathway, neuroactive ligand-receptor interactions, lipid metabolism, and atherosclerosis pathways. Molecular docking revealed strong binding activity between the main active ingredients and their potential targets. CONCLUSION: The research identifies promising active ingredients and targets related to the effectiveness of DGLHT in controlling night sweats, thus contributing to the further exploration of potential therapeutics for this condition. In addition, the results of this experiment provide a basis for future research into night sweats.
Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Sudorese/efeitos dos fármacosRESUMO
Cytokine storm (CS) emerges as an exacerbated inflammatory response triggered by various factors such as pathogens and excessive immunotherapy, posing a significant threat to life if left unchecked. Quercetin, a monomer found in traditional Chinese medicine, exhibits notable anti-inflammatory and antiviral properties. This study endeavors to explore whether quercetin intervention could mitigate CS through a combination of network pharmacology analysis and experimental validation. First, common target genes and potential mechanisms affected by quercetin and CS were identified through network pharmacology, and molecular docking experiments confirmed quercetin and core targets. Subsequently, in vitro experiments of Raw264.7 cells stimulated by lipopolysaccharide (LPS) showed that quercetin could effectively inhibit the overexpression of pro-inflammatory mediators and regulate the AKT1-FoxO1 signaling pathway. At the same time, quercetin can reduce ROS through the Keap1-Nrf2 signaling pathway. In addition, in vivo studies of C57BL/6 mice injected with LPS further confirmed quercetin's inhibitory effect on CS. In conclusion, this investigation elucidated novel target genes and signaling pathways implicated in the therapeutic effects of quercetin on CS. Moreover, it provided compelling evidence supporting the efficacy of quercetin in reversing LPS-induced CS, primarily through the regulation of the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways.
Assuntos
Proteína Forkhead Box O1 , Proteína 1 Associada a ECH Semelhante a Kelch , Lipopolissacarídeos , Macrófagos , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Quercetina , Transdução de Sinais , Quercetina/farmacologia , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Células RAW 264.7 , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/prevenção & controle , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismoRESUMO
OBJECTIVE: To investigate the molecular characteristics of obacunone, and to screen and identify potential targets of obacunone against sepsis. METHODS: The pharmacological parameters and molecular characteristics of obacunone were analyzed with the aid of the Traditional Chinese Medicine Systems Pharmacology Database Analysis Platform (TCMSP). The potential targets of obacunone against sepsis were screened using SwissTargetPrediction and Drug Repositioning and Adverse Drug Reaction Chemical-Protein Interactome (DRAR-CPI) software, with a Z'-score < -0.5. The anti-sepsis targets of obacunone were selected by Online Mendelian Inheritance in Man (OMIM), Comparative Toxicogenomics Database (CTD) and Therapeutic Target Database (TTD). The anti-sepsis potential target was identified by molecular docking software. RESULTS: The oral bioavailability of obacunone was 81.58% and the drug-likeness was 0.57 indicating that obacunone showed good drug formation. A total of 242 potential targets were screened through SwissTargetPrediction and DRAR-CPI software, 13 targets were directly related to sepsis. Cathepsin G (CTSG), caspase-1 (CASP1), S100 calcium binding protein A9 (S100A9), protein C (inactivator of coagulation factors V a and VIII a, PROC), mitogen-activated protein kinase 1 (MAPK1), glucose-6-phosphate dehydrogenase (G6PD), interleukin-10 (IL-10), migration inhibitory factor (MIF), complement C5a receptor 1 (C5AR1), caspase-3 (CASP3), CXC chemokine receptor 2 (CXCR2), thrombin receptor (F2R), nicotinamide phosphoribosyltransferase (NAMPT) were identified as the potential targets for anti-sepsis of obacunone by molecular docking software, the free binding energies were -32.55, 1.26, -30.00, 300.08, -31.88, -30.29, -21.38, -30.79, 16 777.84, -21.80, 6 443.36, -20.38, -23.47 kJ/mol, respectively. CONCLUSIONS: Obacunone can inhibit blood coagulation and improve inflammatory response by regulating PROC and F2R. It regulates MIF, S100A9, G6PD and IL-10 to play a role in immune response. It regulates CTSG, CASP1, MAPK1, C5AR1 and CASP3 to protect sepsis-damaged organs. By regulating CXCR2, it can reduce the excessive migration of neutrophils to the site of inflammation, alleviate tissue damage. By regulating NAMPT, it improves cellular energy status, reduces oxidative stress, and protects cells from damage.
Assuntos
Simulação de Acoplamento Molecular , Sepse , Sepse/tratamento farmacológico , HumanosRESUMO
The accumulation of nisin in the fermentation medium can reduce the process's productivity. This research studied the potential of Nymphaea alba leaf powder (NALP) as a hydrophobic biosorbent for efficient in-situ nisin adsorption from the fermentation medium by docking and experimental analysis. Molecular docking analysis showed that di-galloyl ellagic acid, a phytochemical compound found in N. alba, had the highest affinity towards nisin. Enhancements in nisin adsorption were seen following pre-treatment of NAPL with HCl and MgCl2. A logistic growth model was employed to evaluate the growth dynamics of the biosorption capacity, offering valuable insights for process scalability. Furthermore, optimization through Response Surface Methodology elucidated optimal nisin desorption conditions by Liebig's law of the minimum, which posits that the scarcest resource governs production efficiency. Fourier Transform Infrared (FTIR) spectroscopy pinpointed vital functional groups involved in biosorption. Scanning electron microscopy revealed the changing physical characteristics of the biosorbent after exposure to nisin. The findings designate NALP as a feasible adsorbent for nisin removal from the fermentation broth, thus facilitating its application in the purification of other biotechnological products based on growth and production optimization principles.
Assuntos
Fermentação , Simulação de Acoplamento Molecular , Nisina , Folhas de Planta , Nisina/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Adsorção , Pós , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Herbs have been used as medicines since antiquity, and it has been discovered that the human body responds well to herbal remedies. Research on the effect of butin was conducted in the current study in the alloxan-induced diabetic rat paradigm. A total of 30 Wistar rats were randomly assigned into the following groups (n = 6): I-Normal; II-Alloxan-induced (50 mg/kg); III-Alloxan + butin 25 mg/kg; IV-Alloxan + butin 50 mg/kg; V-Butin per se 50 mg/kg. Various diabetic parameters (blood glucose, insulin, HbA1c), lipid profile, inflammatory (TNF-α, IL-1ß, IL-6 and NF-κB), antioxidant enzymes (CAT, SOD and GSH), oxidative stress indicators (MDA), apoptosis marker (caspase-3), hepatic markers (ALT and AST), and histopathological changes were assessed. Additionally, molecular docking and dynamics were performed to evaluate the interaction of butin with target proteins. Butin treatment, at both doses, significantly restored biochemical parameters and preserved pancreatic histopathology in diabetic rats. It effectively modulated blood parameters, lipid profiles, inflammatory markers, apoptosis, antioxidant enzyme activity, oxidative stress, and hepatic markers. Molecular docking revealed that butin binds to proteins such as caspase-3 (1NME), NF-κB (1SVC), and serum insulin (4IBM) with binding affinities of - 7.4, - 6.5, and - 8.2 kcal/mol, respectively. Molecular dynamics simulations further suggested that butin induces significant conformational changes in these proteins. Butin exhibits potential effects against alloxan-induced diabetic rats by restoring biochemical balance, reducing inflammation, and protecting pancreatic tissue. Its binding to key proteins involved in apoptosis and inflammation highlights its therapeutic potential in diabetes management.
Assuntos
Aloxano , Diabetes Mellitus Experimental , Simulação de Acoplamento Molecular , Ratos Wistar , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ratos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glicemia/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Apoptose/efeitos dos fármacos , Insulina/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Simulação de Dinâmica MolecularRESUMO
The soy isoflavone daidzin (DZN) has been considered a hopeful bioactive compound having diverse biological activities, including anxiolytic, memory-enhancing, and antiepileptic effects, in experimental animals. However, its sedative and hypnotic effects are yet to be discovered. This study aimed to evaluate its sedative/hypnotic effect on Swiss mice. Additionally, in silico studies were also performed to see the possible molecular mechanisms behind the tested neurological effect. For this, male Swiss albino mice were treated with DZN (5, 10, or 20 mg/kg) intraperitoneally (i.p.) with or without the standard GABAergic medication diazepam (DZP) and/or flumazenil (FLU) and checked for the onset and duration of sleeping time using thiopental sodium-induced as well as DZP-induced sleeping tests. A molecular docking study was also performed to check its interaction capacity with the α1 and ß2 subunits of the GABAA receptor. Findings suggest that DZN dose-dependently and significantly reduced the latency while increasing the duration of sleep in animals. In combination therapy, DZN shows synergistic effects with the DZP-2 and DZP-2 + FLU-0.01 groups, resulting in significantly (p < 0.05) reduced latency and increased sleep duration. Further, molecular docking studies demonstrate that DZN has a strong binding affinity of - 7.2 kcal/mol, which is closer to the standard ligand DZP (- 8.3 kcal/mol) against the GABAA (6X3X) receptor. Molecular dynamic simulations indicated stability and similar binding locations for DZP and DZN with 6X3X. In conclusion, DZN shows sedative effects on Swiss mice, possibly through the GABAA receptor interaction pathway.
Assuntos
Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Receptores de GABA-A , Animais , Receptores de GABA-A/metabolismo , Camundongos , Masculino , Hipnóticos e Sedativos/farmacologia , Sono/efeitos dos fármacos , Flumazenil/farmacologia , Diazepam/farmacologia , Simulação de Dinâmica MolecularRESUMO
Overexpression of matrix metalloproteinase-2 (MMP-2) possesses a correlation with leukemia especially chronic myeloid leukemia (CML). However, no such MMP-2 inhibitor has come out in the market to date for treating leukemia. In this study, synthesis, biological evaluation, and molecular modeling studies of a set of biphenylsulfonamide derivatives as promising MMP-2 inhibitors were performed, focusing on their potential applications as antileukemic therapeutics. Compounds DH-18 and DH-19 exerted the most effective MMP-2 inhibition (IC50 of 139.45 nM and 115.16 nM, respectively) with potent antileukemic efficacy against the CML cell line K562 (IC50 of 0.338 µM and 0.398 µM, respectively). The lead molecules DH-18 and DH-19 reduced the MMP-2 expression by 21.3% and 17.8%, respectively with effective apoptotic induction (45.4% and 39.8%, respectively) in the K562 cell line. Moreover, both these compounds significantly arrested different phases of the cell cycle. Again, both these molecules depicted promising antiangiogenic efficacy in the ACHN cell line. Nevertheless, the molecular docking and molecular dynamics (MD) simulation studies revealed that DH-18 formed strong bidentate chelation with the catalytic Zn2+ ion through the hydroxamate zinc binding group (ZBG). Apart from that, the MD simulation study also disclosed stable binding interactions of DH-18 and MMP-2 along with crucial interactions with active site amino acid residues namely His120, Glu121, His124, His130, Pro140, and Tyr142. In a nutshell, this study highlighted the importance of biphenylsulfonamide-based novel and promising MMP-2 inhibitors to open up a new avenue for potential therapy against CML.
Assuntos
Antineoplásicos , Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sulfonamidas , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/química , Sulfonamidas/síntese química , Metaloproteinase 2 da Matriz/metabolismo , Células K562 , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Knowledge of protein-ligand complexes is essential for efficient drug design. Virtual docking can bring important information on putative complexes but it is still far from being simultaneously fast and accurate. Receptors are flexible and adapt to the incoming small molecules while docking is highly sensitive to small conformational deviations. Conformation ensemble is providing a mean to simulate protein flexibility. However, modeling multiple protein structures for many targets is seldom connected to ligand screening in an efficient and straightforward manner. @TOME-3 is an updated version of our former pipeline @TOME-2, in which protein structure modeling is now directly interfaced with flexible ligand docking. Sequence-sequence profile comparisons identify suitable PDB templates for structure modeling and ligands from these templates are used to deduce binding sites to be screened. In addition, bound ligand can be used as pharmacophoric restraint during the virtual docking. The latter is performed by PLANTS while the docking poses are analysed through multiple chemoinformatics functions. This unique combination of tools allows rapid and efficient ligand docking on multiple receptor conformations in parallel. @TOME-3 is freely available on the web at https://atome.cbs.cnrs.fr.
Assuntos
Simulação de Acoplamento Molecular , Conformação Proteica , Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Ligação Proteica , Software , Desenho de Fármacos , Modelos MolecularesRESUMO
The DockThor-VS platform (https://dockthor.lncc.br/v2/) is a free protein-ligand docking server conceptualized to facilitate and assist drug discovery projects to perform docking-based virtual screening experiments accurately and using high-performance computing. The DockThor docking engine is a grid-based method designed for flexible-ligand and rigid-receptor docking. It employs a multiple-solution genetic algorithm and the MMFF94S molecular force field scoring function for pose prediction. This engine was engineered to handle highly flexible ligands, such as peptides. Affinity prediction and ranking of protein-ligand complexes are performed with the linear empirical scoring function DockTScore. The main steps of the ligand and protein preparation are available on the DockThor Portal, making it possible to change the protonation states of the amino acid residues, and include cofactors as rigid entities. The user can also customize and visualize the main parameters of the grid box. The results of docking experiments are automatically clustered and ordered, providing users with a diverse array of meaningful binding modes. The platform DockThor-VS offers a user-friendly interface and powerful algorithms, enabling researchers to conduct virtual screening experiments efficiently and accurately. The DockThor Portal utilizes the computational strength of the Brazilian high-performance platform SDumont, further amplifying the efficiency and speed of docking experiments. Additionally, the web server facilitates and enhances virtual screening experiments by offering curated structures of potential targets and compound datasets, such as proteins related to COVID-19 and FDA-approved drugs for repurposing studies. In summary, DockThor-VS is a dynamic and evolving solution for docking-based virtual screening to be applied in drug discovery projects.
Assuntos
Simulação de Acoplamento Molecular , Software , Ligantes , Algoritmos , Descoberta de Drogas/métodos , Ligação Proteica , Humanos , Proteínas/química , Proteínas/metabolismo , Interface Usuário-ComputadorRESUMO
Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.
Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Proteínas , Software , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Algoritmos , Mapeamento de Interação de Proteínas/métodos , Ligação ProteicaRESUMO
Calcium oxalate (CaOx) urolithiasis is a prevalent urinary disorder with significant clinical impact. This study investigates the therapeutic potential of Morin Hydrate (MH), a natural bioflavonoid, in preventing CaOx stone formation. Molecular docking studies revealed that MH binds strongly to glycolate oxidase (GO), suggesting its inhibitory effect on oxalate synthesis. In vitro assays demonstrated that MH effectively inhibits CaOx crystal nucleation, aggregation, and growth, altering crystal morphology to less stable forms. Diuretic activity studies in Wistar rats showed that MH substantially increased urine volume and ion excretion, indicating its moderate diuretic effect. In vivo experiments further supported these findings, with MH treatment improving urinary and serum markers, reducing oxidative stress, and protecting renal tissue, as evidenced by histopathological analysis. Notably, MH administration significantly decreased GO and lactate dehydrogenase activities in urolithiatic rats, indicating a reduction in oxalate production. These results suggest that MH is a promising candidate for the prevention and treatment of CaOx urolithiasis, with the potential for clinical application in reducing the risk and recurrence of kidney stones.
Assuntos
Oxalato de Cálcio , Flavonoides , Ratos Wistar , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/química , Ratos , Masculino , Simulação de Acoplamento Molecular , Cristalização , Urolitíase/prevenção & controle , Urolitíase/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , FlavonasRESUMO
A differential diet with royal jelly (RJ) during early larval development in honeybees shapes the phenotype, which is probably mediated by epigenetic regulation of gene expression. Evidence indicates that small molecules in RJ can modulate gene expression in mammalian cells, such as the fatty acid 10-hydroxy-2-decenoic acid (10-HDA), previously associated with the inhibition of histone deacetylase enzymes (HDACs). Therefore, we combined computational (molecular docking simulations) and experimental approaches for the screening of potential HDAC inhibitors (HDACi) among 32 RJ-derived fatty acids. Biochemical assays and gene expression analyses (Reverse Transcriptase - quantitative Polymerase Chain Reaction) were performed to evaluate the functional effects of the major RJ fatty acids, 10-HDA and 10-HDAA (10-hydroxy-decanoic acid), in two human cancer cell lines (HCT116 and MDA-MB-231). The molecular docking simulations indicate that these fatty acids might interact with class I HDACs, specifically with the catalytic domain of human HDAC2, likewise well-known HDAC inhibitors (HDACi) such as SAHA (suberoylanilide hydroxamic acid) and TSA (Trichostatin A). In addition, the combined treatment with 10-HDA and 10-HDAA inhibits the activity of human nuclear HDACs and leads to a slight increase in the expression of HDAC-coding genes in cancer cells. Our findings indicate that royal jelly fatty acids collectively contribute to HDAC inhibition and that 10-HDA and 10-HDAA are weak HDACi that facilitate the acetylation of lysine residues of chromatin, triggering an increase in gene expression levels in cancer cells.
Assuntos
Ácidos Graxos , Inibidores de Histona Desacetilases , Simulação de Acoplamento Molecular , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Graxos/metabolismo , Abelhas , Linhagem Celular Tumoral , Animais , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/química , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/antagonistas & inibidores , Células HCT116RESUMO
Elephantopus tomentosus (ET) Linn. was reported to be an anti-tumor plant. However, the chemical composition of ET and its anti-tumor compounds and potential mechanisms still unclear. In this paper, UPLC-Q-TOF-MS/MS was firstly used to identified the ingredients in ET and UPLC was used to determine the main compounds of ET. Network pharmacology was applied to predict the potential mechanisms of anti-liver cancer. Anti-tumor nuclear activate compounds and targets of ET were obtained and the anti-liver cancer effect was validated on HepG2. Finally, Molecule docking, RT-qPCR, and western blotting were used for verification of the relationship between nuclear activate compounds and nuclear targets and the potential anti-cancer mechanisms. The result showed that 42 compounds were identified in ET, which consisted of sesquiterpene lactones, flavonoids, and phenylpropanoid compounds. Scabertopin (ST), chlorogenic acid, Isochlorogenic acid B, Isochlorogenic acid A and Isochlorogenic acid C were identified as main compounds and were determined as 0.426%, 0.457%, 0.159%, 0.701%, and 0.103% respectively. 24 compounds showed high pharmacokinetics and good drug-likeness. 520 overlapping targets of the ET compounds and liver cancer were collected. The targets were used for KEGG and GO analysis. GO enrichment analysis suggested that the targets of 24 active compound closed related to promote apoptosis, inhibit proliferation, and regulate oxidative levels. KEGG enrichment analysis suggested that pathway in cancer was enriched most and p38 MAPK/p53 signaling pathway, which closely related to promoting apoptosis and inhibiting proliferation. Compounds-targets analysis based on the parameter of Betweenness, Closeness, Information, Eigenvector, Degree, and component content indicated that ST was the nucleus anti-tumor active compound of ET. HepG2 was first used to validated the anti-tumor effect of ST and the result showed that ST significantly inhibited HepG2 proliferation with a low IC50 less than 5 µM. Nucleus active compound targets, including TP53, CASP3, BCL2, EGFR, TNF-a, IL-1ß, and IL-6 were enriched based on degree value of PPI analysis. Molecule docking suggested that ST showed a good combination to TGFBR1 with the combination energy less than - 5 kcal/mol. RT-qPCR result also suggested that ST significantly medicated the mRNA expression level of TP53, CASP3, BCL2, EGFR, TNF-a, IL-1ß, and IL-6. Protein expression of p-p38/p38 and p-p53/p53 notable increased by ST treatment. In conclude, combining with UPLC-Q-TOF-MS/MS qualitative analysis, UPLC quantitative analysis, network pharmacology analysis, molecule docking, and in vitro experiments on HepG2, we suggest that ST is an anti-tumor ingredient of ET, which may target to TGFBR1 and promote apoptosis and inhibited proliferation of HepG2 by activating p38 MAPK/p53 signaling pathway. ST can be regarded as a quality marker of ET.
Assuntos
Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Humanos , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Asteraceae/química , Simulação por Computador , Espectrometria de Massas em Tandem , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacosRESUMO
The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively. It is therefore notably challenging to find selective inhibitors of MTHFD2 due to the structural similarity, in particular protein binding site similarity with MTHFD1 and MTHFD2L. Tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported till date. Nanomolar potent diaminopyrimidine-based inhibitors of MTHFD2 have been reported recently, however, they also demonstrate significant inhibitory activities against MTHFD1 and MTHFD2L. In this study, we have employed extensive computational modeling involving molecular docking and molecular dynamics simulations in order to investigate the binding modes and key interactions of diaminopyrimidine-based inhibitors at the substrate binding sites of MTHFD1, MTHFD2 and MTHFD2L, and compare with the tricyclic coumarin-based selective MTHFD2 inhibitor. The outcomes of our study provide significant insights into desirable and undesirable structural elements for rational structure-based design of new and selective inhibitors of MTHFD2 against cancer.
Assuntos
Aminoidrolases , Inibidores Enzimáticos , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Antígenos de Histocompatibilidade Menor , Enzimas Multifuncionais , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/química , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/química , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/antagonistas & inibidores , Enzimas Multifuncionais/metabolismo , Enzimas Multifuncionais/química , Aminoidrolases/genética , Aminoidrolases/metabolismo , Aminoidrolases/antagonistas & inibidores , Aminoidrolases/química , Pirimidinas/farmacologia , Pirimidinas/química , Simulação de Acoplamento Molecular , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Sítios de Ligação , Ligação ProteicaRESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects the elderly population globally and there is an urgent demand for developing novel anti-AD agents. In this study, a new series of indole-isoxazole carbohydrazides were designed and synthesized. The structure of all compounds was elucidated using spectroscopic methods including FTIR, 1H NMR, and 13C NMR as well as mass spectrometry and elemental analysis. All derivatives were screened for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Out of all synthesized compounds, compound 5d exhibited the highest potency as AChE inhibitor with an IC50 value of 29.46 ± 0.31 µM. It showed significant selectivity towards AChE, with no notable inhibition against BuChE. A kinetic study on AChE for compound 5d indicated a competitive inhibition pattern. Also, 5d exhibited promising BACE1 inhibitory potential with an IC50 value of 2.85 ± 0.09 µM and in vitro metal chelating ability against Fe3+. The molecular dynamic studies of 5d against both AChE and BACE1 were executed to evaluate the behavior of this derivative in the binding site. The results showed that the new compounds deserve further chemical optimization to be considered potential anti-AD agents.
Assuntos
Acetilcolinesterase , Doença de Alzheimer , Butirilcolinesterase , Inibidores da Colinesterase , Indóis , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Humanos , Simulação de Acoplamento Molecular , Isoxazóis/química , Isoxazóis/farmacologia , Isoxazóis/síntese química , Relação Estrutura-Atividade , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Modelos Moleculares , Sítios de Ligação , Simulação de Dinâmica Molecular , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Cinética , HidrazinasRESUMO
To find potential α-glucosidase inhibitors, a series of 2ß-acetoxyferuginol derivatives containing cinnamic acid (WXC-1 â¼ 25) were synthesized and investigated their biological activity. All derivatives (WXC-1 â¼ 25) displayed better inhibitory activity (IC50 values: 7.56 ± 1.35 â¼ 25.63 ± 1.72 µM) compared to acarbose (IC50 vaule: 564.28 ± 48.68 µM). In particularly, WXC-25 with 4-hydroxycinnamic acid section showed the best inhibitory activity (IC50 vaule: 2.02 ± 0.14 µM), â¼75-fold stronger than acarbose. Kinetics results suggested WXC-25 being one reversible non-competition inhibitors. Fluorescence quenching results indicated that WXC-25 quenched the fluorescence of α-glucosidase in a static manner. 3D fluorescence spectra results indicated that WXC-25 treatment could cause the conformation changes of α-glucosidase. Moreover, molecular docking simulated the detailed interaction of WXC25 with α-glucosidase.
Assuntos
Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/síntese química , CinéticaRESUMO
1,4-Naphthoquinone scaffold-derived compounds has shown considerable pharmacological properties against cancer, including acute myeloid leukemia (AML) However, its impact and mechanisms in AML are uncertain. In this study, the mechanisms of 1,4-naphthoquinone scaffold-derived compounds against AML were investigated via network pharmacology, molecular docking and molecular dynamics simulation. ASINEX database was used to collect the 1,4-naphthoquinone scaffold-derived compounds, and compounds were extracted from the software to evaluate their drug similarity and toxicity. The potential targets of compounds were retrieved from the SwissTargetPrediction Database and the Similarity Ensemble Approach Database, while the potential targets of AML were obtained from the GeneCards databases and Gene Expression Omnibus. The STRING database was used to construct a protein-protein interaction (PPI) network, topologically and Cyto Hubb plugin of Cytoscape screen the central targets. After selecting the potential key targets, the gene ontology (GO) function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for the intersection targets, and a network map of "compounds-potential targets-pathway-disease" were constructed. Molecular docking of the compounds with the core target was performed, and core target with the strongest binding force and 1,4-naphthoquinone scaffold-derived compounds was selected for further molecular dynamics simulation and further molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach verification. In addition, the Bloodspot database was applied to perform the overall survival of core targets. A total of 19 1,4-naphthoquinone scaffold-derived compounds were chosen out, and then 836 targets of compounds, 96 intersection targets of AML were screened. Core targets include STAT3, TLR4, HSP90AA1, JUN, MMP9, PTPRC, JAK2, PTGS2, KIT and CSF1R. GO functional enrichment analysis revealed that 90 biological processes, 10 cell components and 12 molecular functions were enriched while KEGG pathway enrichment analysis revealed 34 enriched signaling pathways. Analysis of KEGG enrichment hinted that these 10 core genes were located in the pathways in cancer, suggesting that 1,4-naphthoquinone scaffold-derived compounds had potential activity against AML. Molecular docking analysis revealed that the binding energies between 1,4-naphthoquinone scaffold-derived compounds and the core proteins were all higher than - 6 kcal/mol, indicating that the 10 core targets all had strong binding ability with compounds. Moreover, a good binding capacity was inferred from molecular dynamics simulations between compound 7 and MMP9. The total binding free energy calculated using the MM/GBSA approach revealed values of - 6356.865 kcal/mol for the MMP9-7 complex. In addition, Bloodspot database results exhibited that HSP90AA1, MMP9 and PTPRC were associated with overall survival. The findings provide foundations for future studies into the interaction underlying the anti-AML potential of compounds with 1,4-naphthoquinone-based scaffold structures. Compounds with 1,4-naphthoquinone-based scaffold structures exhibits considerable potential in mitigating and treating AML through multiple targets and pathways.