Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Biomed Mater Eng ; 35(4): 387-399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38968040

RESUMO

BACKGROUND: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.


Assuntos
Aloe , Sobrevivência Celular , Gelatina , Mucilagem Vegetal , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Poliésteres/química , Engenharia Tecidual/métodos , Gelatina/química , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Aloe/química , Mucilagem Vegetal/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Humanos , Membranas Artificiais , Animais
2.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952166

RESUMO

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Assuntos
Ocimum basilicum , Mucilagem Vegetal , Reologia , Sementes , Ocimum basilicum/química , Sementes/química , Mucilagem Vegetal/química , Animais , Leite/química , Viscosidade , Transtornos de Deglutição , Malus/química , Sucos de Frutas e Vegetais/análise , Humanos , Água , Pós , Lubrificação
3.
Front Biosci (Elite Ed) ; 16(2): 11, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38939910

RESUMO

BACKGROUND: Flaxseed mucilage (FSM) is one of the healthy components of flaxseed. FSM is an example of a material that can be used in the food, cosmetic, and pharmaceutical industries due to its rheological properties. FSM consists mainly of two polysaccharides, arabinoxylan, and rhamnogalacturonan I, and it also contains protein components and minerals. The prospect of using FSM in food is due to its gelling, water binding, emulsifying, and foaming properties. In addition, valuable natural sources of phenolic compounds such as lignans, phenolic acids, flavonoids, phenylpropanoids, and tannins are partially extracted from flaxseed in FSM. These antioxidant components have pharmacological properties, including anti-diabetic, anti-hypertensive, immunomodulatory, anti-inflammatory and neuroprotective properties. A combination of FSM and lactobacilli in dairy foods can improve their functional properties. This study aimed to develop dairy products by adding of FSM and using two lactic acid bacteria (LAB). FSM (0.2%) was used as an ingredient to improve both the texture and antioxidant properties of the product. METHODS: Skim milk was fermented with 0.2% flaxseed mucilage using Lactobacillus delbrueckii subs. bulgaricus and the probiotic Lactiplantibacillus plantarum AG9. The finished fermented milk products were stored at 4 °C for 14 days. Quantitative chemical, textural, and antioxidant analyses were carried out. RESULTS: Adding 0.2% FSM to the dairy product stimulated the synthesis of lactic acid. FSM increased the viscosity and water-holding capacity of L. bulgaricus or L. bulgaricus/L. plantarum AG9 fermented milk products. Combining these starter strains with FSM promoted the formation of a hard, elastic, resilient casein matrix in the product. When only L. plantarum AG9 was used for the fermentation, the dairy product had a high syneresis and a low viscosity and firmness; such a product is inferior in textural characteristics to the variant with commercial L. bulgaricus. The addition of FSM improved the textural properties of this variant. The use of L. plantarum AG9 and FSM makes it possible to obtain a fermented milk product with the highest content of polyphenolic compounds, which have the highest antioxidant properties and stimulate lipase and α-glucosidase inhibitor synthesis. Combining of L. bulgaricus and L. plantarum AG9 in the starter (20% of the total mass of the starter) and adding of 0.2% FSM is the optimal combination for obtaining a dairy product with high textural and antioxidant properties. CONCLUSIONS: The physicochemical properties (viscosity, syneresis, water holding capacity, texture) and antioxidant properties of fermented milk were improved. In the future, as part of the work to investigate the functional properties of dairy products with FSM, studies will be conducted using in in vivo models.


Assuntos
Linho , Lactobacillus delbrueckii , Mucilagem Vegetal , Linho/química , Lactobacillus delbrueckii/metabolismo , Mucilagem Vegetal/química , Lactobacillus plantarum/metabolismo , Antioxidantes/química , Antioxidantes/análise , Produtos Fermentados do Leite/microbiologia , Produtos Fermentados do Leite/análise , Animais , Leite/química , Fermentação
4.
Microb Biotechnol ; 17(6): e14507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884488

RESUMO

Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.


Assuntos
Arabidopsis , Bacteriófagos , Doenças das Plantas , Pseudomonas syringae , Sementes , Sementes/microbiologia , Sementes/virologia , Pseudomonas syringae/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Arabidopsis/virologia , Arabidopsis/microbiologia , Xanthomonas/virologia , Mucilagem Vegetal/metabolismo , Mucilagem Vegetal/química , Agentes de Controle Biológico , Ligação Viral
5.
Int J Biol Macromol ; 273(Pt 1): 133109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871099

RESUMO

Green (Penicillium digitatum) mold can severely endanger the citrus fruits production and quality. Targeting the protection of lemon fruits from green mold infestations with nanobiotechnology approach, the fenugreek seed mucilage (FM) was extracted and exploited for biosynthesis of selenium (SeNPs) nanoparticles; their nanocomposites (NCs) with chitosan (CT) was constructed and employed as antifungal materials and edible coating (ECs) to protect lemon fruits against green mold. The nanoparticles formation and conjugations were verified by infrared (FTIR) analysis and electron microscopy. The FM-synthesized SeNPs had particles average of 8.35 nm, were the NCs of them with CT had size mean of 49.33 nm and charged with +22.8 mV. The CT/FM/SeNPs composite exhibited superior antifungal actions toward P. digitatum isolates, up to 32.2 mm inhibition diameter and 12.5 mg/mL inhibitory concentration, which exceeded the actions of imazilil. The microscopic screening of exposed P. digitatum to NCs clarified their mycelial destructive action within 30 h. The coating of infected lemons with fabricated NCs led to complete elimination of green mold development after 10 days of coating, without any infestation remarks. The innovative fabrication of NCs from CT/FM/SeNPs is strongly suggested to protect citrus crops from green mold and preserve fruits quality.


Assuntos
Quitosana , Citrus , Nanocompostos , Mucilagem Vegetal , Sementes , Selênio , Trigonella , Quitosana/química , Quitosana/farmacologia , Nanocompostos/química , Citrus/química , Citrus/microbiologia , Sementes/química , Trigonella/química , Selênio/química , Selênio/farmacologia , Mucilagem Vegetal/química , Antifúngicos/farmacologia , Antifúngicos/química , Nanopartículas/química , Penicillium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
6.
Int J Biol Macromol ; 273(Pt 2): 133016, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876235

RESUMO

Mucilage is a gelatinous mixture of polysaccharides secreted from the seed coat and/or pericarp of many plant seeds when soaked in water. Mucilage affected seed germination while maintaining hydration levels during scarcity. Cydonia oblonga (quince) seeds are natural hydrocolloids extruding biocompatible mucilage mainly composed of polysaccharides. Quince seed mucilage (QSM) has fascinated researchers due to its applications in the food and pharmaceutical industries. On a commercial scale, QSM preserved the sensory and physiochemical properties of various products such as yogurt, desserts, cakes, and burgers. QSM is responsive to salts, pH, and solvents and is mainly investigated as edible coatings in the food industry. In tablet formulations, modified and unmodified QSM as a binder sustained the release of various drugs such as cefixime, capecitabine, diclofenac sodium, theophylline, levosulpiride, diphenhydramine, metoprolol tartrate, and acyclovir sodium. QSM acted as a reducing and capping agent to prepare nanoparticles for good antimicrobial resistance, photocatalytic characteristics, and wound-healing potential. The present review discussed the extraction optimization, chemical composition, stimuli-responsiveness, and viscoelastic properties of mucilage. The potential of mucilage in edible films, tissue engineering, and water purification will also be discussed.


Assuntos
Embalagem de Alimentos , Sementes , Xilanos , Sementes/química , Embalagem de Alimentos/métodos , Xilanos/química , Rosaceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Mucilagem Vegetal/química
7.
Biomed Mater ; 19(5)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917835

RESUMO

Mucilage is a natural source of polysaccharides that has recently attracted attention for use in biomaterial production. It attracts attention with its easy and fast extraction, biocompatibility, high water retention capacity, and biodegradability. Although there are studies on the characterization of mucilage obtained from different plant sources, the interaction of this polymer with other polymers and its potential to form new biomaterials have not yet been sufficiently investigated. Based on this, in this study, the potential of mucilage extracted from flaxseed for the production of cryogels for tissue engineering applications was demonstrated. Firstly, yield, basic physicochemical properties, morphology, and surface charge-dependent isoelectric point determination studies were carried out for the characterization of the extracted mucilage. The successful preparation of mucilage was evaluated for the construction of cryo-scaffolds and 3D, spongy, and porous structures were obtained in the presence of chitosan and polyvinyl alcohol polymers. A heterogeneous morphology with interconnected macro and micro porosity in the range of approximately 85-115 m pore diameter was exhibited. Due to the high hydrophilic structure of the mucilage, which is attached to the structure with weak hydrogen bonds, the contact angle values of the scaffolds were obtained below 80° and they showed the ability to absorb 1000 times their dry weight in approximately 30 min. As a preliminary optimization study for the evaluation of mucilage in cryogel formation, this work introduced a new construct to be developed as wound dressing scaffold for deep and chronic wounds.


Assuntos
Materiais Biocompatíveis , Linho , Mucilagem Vegetal , Sementes , Engenharia Tecidual , Alicerces Teciduais , Linho/química , Alicerces Teciduais/química , Porosidade , Sementes/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Mucilagem Vegetal/química , Criogéis/química , Quitosana/química , Teste de Materiais , Polissacarídeos/química , Álcool de Polivinil/química , Polímeros/química
8.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823903

RESUMO

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Assuntos
Conservação de Alimentos , Produtos da Carne , Mucilagem Vegetal , Sementes , Sementes/química , Produtos da Carne/análise , Mucilagem Vegetal/química , Conservação de Alimentos/métodos , Linho/química , Biopolímeros/química , Polissacarídeos/química , Animais , Psyllium/química , Manipulação de Alimentos/métodos
9.
J Food Sci ; 89(7): 4430-4439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858741

RESUMO

Microwave-assisted extraction of mucilage from juá was investigated using response surface methodology. The optimal conditions for extraction were a power of 300 W, an extraction time of 240 s, a pH of 8.0, and a water/sample ratio of 1/6, which achieved a 26.43% yield. The monosaccharide composition and antioxidant activity of the mucilage from juá fruits from different regions of Caatinga were investigated. The fruits from Agreste Paraibano showed the highest mucilage extraction yield (18.64%) compared to that of fruits from Mata Paraibana (MP) (12.37%), Borborema (BB) (11.47%), and Sertão Paraibano (8.31%) (p < 0.05). Glucose (32.8%-50.8%) and arabinose (19.3%-32.9%) were the main monosaccharides found in juá mucilage. The mucilage from fruits in the MP presented the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl and oxygen radical absorbance capacity assays. Our results demonstrated the potential for the future exploration and application of juá mucilage in the food industry. PRACTICAL APPLICATION: Juá (Ziziphus joazeiro Mart.) mucilage contains phenolic compounds and antioxidant activity, and its extraction by MAE is efficient, as it contributed to a higher yield.


Assuntos
Antioxidantes , Frutas , Micro-Ondas , Mucilagem Vegetal , Antioxidantes/análise , Antioxidantes/química , Frutas/química , Mucilagem Vegetal/química , Extratos Vegetais/química , Monossacarídeos/análise , Picratos , Compostos de Bifenilo
10.
Int J Biol Macromol ; 270(Pt 2): 132390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754657

RESUMO

Mimosa pudica (MP) is an ornamental plant due to seismonastic movements that close leaves and fall petioles in response to touch, wind, light, heat, cold, and vibration. The seeds of MP secrete smart, biocompatible, and non-toxic mucilage that has captivated researchers due to its widespread use in various fields such as pharmaceuticals and biotechnology. The mucilage is responsive to pH, salt solutions, and solvents and acts as a binder in tablet formulations for targeted drug delivery. The mucilage is chemically modifiable via acetylation, succinylation, and graft polymerization. Chemically modified MP mucilage appeared supersorbent for heavy metal ion uptake. Nanoparticles synthesized using mucilage as a reducing and capping agent displayed significant antimicrobial and wound-healing potential. Crosslinking of mucilage using citric acid as a crosslinking agent offers a sustained release of drugs. The present review is aimed to discuss extraction optimization, structure, modification, and the stimuli-responsive nature of mucilage. The review article will cover the potential of mucilage as emulsifying, suspending, bio-adhesive, gelling, and thickening agent. The role of mucilage as a capping and reducing agent for nanoparticles will also be discussed.


Assuntos
Mimosa , Mucilagem Vegetal , Sementes , Sementes/química , Mimosa/química , Mucilagem Vegetal/química , Nanopartículas/química
11.
Int J Biol Macromol ; 269(Pt 2): 132186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723815

RESUMO

Trigonella foenum-graecum, known as fenugreek, belongs to the leguminous family of wild growth in Western Asia, Europe, the Mediterranean, and Asia; its ripe seeds contain a pool of bioactive substances with great potential in the food industry and medicine. In this study, fenugreek seed mucilage (FSM) was extracted and characterized in its structural properties by X-ray diffraction, nuclear magnetic resonance, and high-performance liquid chromatography. Then, the applicability of FSM as an antimicrobial agent was demonstrated via the development of novel, active, edible FSM-based biofilms containing carboxymethyl cellulose and rosemary essential oil (REO). Incorporating REO in the biofilms brought about specific changes in Fourier-transform infrared spectra, affecting thermal degradation behavior. Scanning electron microscopy and atomic force microscopy morphography showed an even distribution of REO and smoother surfaces in the loaded films. Besides, the solubility tests evidenced a reduction in water solubility with increasing REO concentration from 1 to 3 wt%. The biological assay evidenced the antimicrobial activity of REO-loaded biofilms against Staphylococcus aureus and Escherichia coli. Finally, whole apples were dip-coated with FSM-based solutions to showcase future edible systems. The REO-loaded biofilms extended the shelf life of apples to 30 days, demonstrating their potential for sustainable and active coatings.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Frutas , Sementes , Trigonella , Trigonella/química , Frutas/química , Sementes/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Mucilagem Vegetal/química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fenômenos Químicos , Solubilidade , Armazenamento de Alimentos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
12.
J Biosci Bioeng ; 138(1): 73-82, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643032

RESUMO

Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity. We heterologously expressed the AarhgA gene under the strong constitutive promoter, cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana. In a series of biochemical analyses of each mucilage fraction released from the water-imbibed seeds of the transgenic plants, we found the enhanced deposition of the transparent mucilage layer that existed in the peripheral regions of the adherent mucilage and was not stained with ruthenium red. This study demonstrated the feasibility of manipulating the mucilage organization by heterologous expression of the endo-RG-I hydrolase.


Assuntos
Arabidopsis , Aspergillus , Pectinas , Plantas Geneticamente Modificadas , Sementes , Arabidopsis/genética , Arabidopsis/metabolismo , Aspergillus/enzimologia , Aspergillus/genética , Aspergillus/metabolismo , Pectinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/metabolismo , Mucilagem Vegetal/metabolismo , Mucilagem Vegetal/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Regiões Promotoras Genéticas , Caulimovirus/genética , Caulimovirus/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Especificidade por Substrato
13.
Plant Biol (Stuttg) ; 26(4): 602-611, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634818

RESUMO

Seed coat mucilage plays an important role in promoting seed germination under adversity. Previous studies have shown that Arabidopsis thaliana MYB52 (AtMYB52) can positively regulate seed coat mucilage accumulation. However, the role of Brassica napus MYB52 (BnaMYB52) in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination remains largely unknown. We cloned the BnaA09.MYB52 coding domain sequence from B. napus cv ZS11, identified its conserved protein domains and elucidated its relationship with homologues from a range of plant species. Transgenic plants overexpressing BnaA09.MYB52 in the A. thaliana myb52-1 mutant were generated through Agrobacterium-mediated transformation and used to assess the possible roles of BnaA09.MYB52 in accumulation of seed coat mucilage and tolerance to osmotic stress during seed germination. Subcellular localization and transcriptional activity assays demonstrated that BnaA09.MYB52 functions as a transcription factor. RT-qPCR results indicate that BnaA09.MYB52 is predominantly expressed in roots and developing seeds of B. napus cv ZS11. Introduction of BnaA09.MYB52 into myb52-1 restored thinner seed coat mucilage in this mutant to levels in the wild type. Consistently, expression levels of three key genes participating in mucilage formation in developing seeds of myb52-1 were also restored to wild type levels by overexpressing BnaA09.MYB52. Furthermore, BnaA09.MYB52 was induced by osmotic stress during seed germination in B. napus, and ectopic expression of BnaA09.MYB52 successfully corrected sensitivity of the myb52-1 mutant to osmotic stress during seed germination. These findings enhance our understanding of the functions of BnaA09.MYB52 and provide a novel strategy for future B. napus breeding.


Assuntos
Arabidopsis , Brassica napus , Regulação da Expressão Gênica de Plantas , Germinação , Pressão Osmótica , Proteínas de Plantas , Plantas Geneticamente Modificadas , Sementes , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Germinação/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mucilagem Vegetal/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
14.
Int J Biol Macromol ; 268(Pt 2): 131647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653432

RESUMO

Herein, we describe a detailed protocol to extract the mucilage from different species of the genus Opuntia spp. (i.e., Opuntia Ficus (OFi), Opuntia Dillenii (ODi) and Opuntia Robusta (ORo)). The extracted mucilage was characterized by NMR, FTIR-ATR, HPLC, and TGA. OFi was found to have the highest phenolic content, 7.84 ± 1.93 mg catechol/g mucilage. The mucilage from the three species were characterized by having a high content of monosaccharides, being mannose and glucose the most abundant components (ca. 48-73 % and 23-35 %, respectively). In the context of biomass revalorization, the mucilage was proven to serve as a reducing and stabilizing agent in the synthesis of gold nanoparticles (AuNP/mucilage). The synthesis was optimized with a mucilage concentration of 2 mg/mL using 12.5 µL of KAuCl4 and was carried out at 80 °C for 90 min. This protocol afforded spherical nanoparticles with an average size of 9.7 ± 4.0 nm that were stable for at least 14 days, as demonstrated by TEM. Synthesized AuNP/mucilage was evaluated as a plasmonic catalyst for the reduction of 4-nitrophenol as model reaction, showing a considerable enhancement in its kapp of 97 % under white light and a decrease of 24.8 % in its activation energy.


Assuntos
Ouro , Opuntia , Mucilagem Vegetal , Opuntia/química , Mucilagem Vegetal/química , Ouro/química , Nanopartículas Metálicas/química , Fenóis/química , Extratos Vegetais/química , Monossacarídeos/química , Monossacarídeos/análise
15.
Int J Biol Macromol ; 268(Pt 2): 131832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663704

RESUMO

In this comprehensive investigation, a novel pH-responsive hydrogel system comprising mimosa seed mucilage (MSM), ß-cyclodextrin (ß-CD), and methacrylic acid (MAA) was developed via free radical polymerization technique to promote controlled drug delivery. The hydrogel synthesis involved strategic variations in polymer, monomer, and crosslinker content in fine-tuning its drug-release properties. The resultant hydrogel exhibited remarkable pH sensitivity, selectively liberating the model drug (Capecitabine = CAP) under basic conditions while significantly reducing release in an acidic environment. Morphological, thermal, and structural analyses proved that CAP has a porous texture, high stability, and an amorphous nature. In vitro drug release experiments showcased a sustained and controlled release profile. Optimum release (85.33 %) results were recorded over 24 h at pH 7.4 in the case of MMB9. Pharmacokinetic evaluation in healthy male rabbits confirmed bioavailability enhancement and sustained release capabilities. Furthermore, rigorous toxicity evaluations and histopathological analyses ensured the safety and biocompatibility of the hydrogel. This pH-triggered drug delivery system can be a promising carrier system for drugs involving frequent administrations.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Hidrogéis , Mimosa , Sementes , beta-Ciclodextrinas , Concentração de Íons de Hidrogênio , Animais , Coelhos , Hidrogéis/química , Mimosa/química , Sementes/química , beta-Ciclodextrinas/química , Masculino , Sistemas de Liberação de Medicamentos , Mucilagem Vegetal/química , Portadores de Fármacos/química , Ácidos Polimetacrílicos/química
16.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521333

RESUMO

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Assuntos
Antibacterianos , Glucanos , Goma Arábica , Nanofibras , Nanofibras/química , Glucanos/química , Glucanos/farmacologia , Goma Arábica/química , Antibacterianos/farmacologia , Antibacterianos/química , Salvia/química , Lactobacillus delbrueckii , Probióticos/química , Animais , Conservação de Alimentos/métodos , Carne Vermelha/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Mucilagem Vegetal/química , Escherichia coli/efeitos dos fármacos , Bovinos , Embalagem de Alimentos/métodos
17.
Int J Biol Macromol ; 266(Pt 1): 131173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554904

RESUMO

Chia seed mucilage (CSM) film incorporated with 2, 4, and 6 % (w/w) nanoemulsion of cinnamon essential oil (CSM-2, CSM-4, CSM-6) were developed, and their physicochemical, mechanical, antioxidant, and antimicrobial properties were determined. According to the results, cinnamon EO nanoemulsion (CEN) had droplet size 196.07 ± 1.39 nm with PDI 0.47 ± 0.04. Moreover, CSM film had higher water solubility (99.37 ± 0.05 %) and WVP (8.55 ± 1.10 g/kPa h m2) than reinforced CSM films with CENCEN. The lowest water solubility (98.02 ± 0.01 %) and WVP (3.75 ± 0.80 g/kPa h m2) was observed in CSM-6 film. Moreover, the addition of CEN improved the homogeneity and density of films and the smoothness of the surface, being observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The Fourier transform infrared (FTIR) spectroscopy also confirmed the incorporation of CEN within the film matrix. The CSM films' antioxidant (DPPH radical scavenging power) and antimicrobial (against Escherichia coli and Staphylococcus aureus) properties of CSM films were notably enhanced with the inclusion of CEN in a dose-dependent manner. The mechanical (tensile strength and elongation at break) of CSM films also was affected by the addition of CEN, TS decreased, and EAB increased (p < 0.05). The lowest TS (20.63 ± 1.39 MPa) and highest EAB (3.36 ± 0.61 %) was observed in CSM-4 film. However, CSM film was relatively dark with low opacity, and adding CEN slightly increased lightness (L*) and yellowness (b*) parameters. The superior antioxidant and barrier characteristics of the CSM edible film incorporated with CEN make it a potential candidate for product packaging and shelf-life extension.


Assuntos
Antioxidantes , Cinnamomum zeylanicum , Filmes Comestíveis , Emulsões , Óleos Voláteis , Mucilagem Vegetal , Sementes , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , Sementes/química , Antioxidantes/química , Antioxidantes/farmacologia , Mucilagem Vegetal/química , Solubilidade , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos
18.
Plant Physiol Biochem ; 207: 108375, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364630

RESUMO

The myxospermous species Arabidopsis thaliana extrudes a polysaccharidic mucilage from the seed coat epidermis during imbibition. The whole seed mucilage can be divided into a seed-adherent layer and a fully soluble layer, both layers presenting natural genetic variations. The adherent mucilage is variable in size and composition, while the soluble mucilage is variable in composition and physical properties. Studies reporting both the genetic architecture and the putative selective agents acting on this natural genetic variation are scarce. In this study, we set up a Genome Wide Association study (GWAS) based on 424 natural accessions collected from 166 natural populations of A. thaliana located south-west of France and previously characterized for a very important number of abiotic and biotic factors. We identified an extensive genetic variation for both mucilage layers. The adherent mucilage was mainly related to precipitation and temperature whereas the non-adherent mucilage was unrelated to any environmental factors. By combining a hierarchical Bayesian model with a local score approach, we identified 55 and 28 candidate genes, corresponding to 26 and 10 QTLs for the adherent and non-adherent mucilages, respectively. Putative or characterized function and expression data available in the literature were used to filter the candidate genes. Only one gene among our set of candidate genes was already described as a seed mucilage actor, leaving a large set of new candidates putatively implicated inseed mucilage synthesis or release. The present study lay out foundation to understand the influence of regional ecological factors acting on seed mucilage in A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Teorema de Bayes , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Mutação , Polissacarídeos/metabolismo , Sementes/genética , Sementes/metabolismo
19.
Int J Biol Macromol ; 263(Pt 2): 129787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296145

RESUMO

Two chia mucilages with different viscosities, obtained by extraction conditions optimized in a previous work, were homogenized by high pressure homogenization (HPH). Particle size, molecular weight, zeta potential, FTIR spectrum, rheological properties, water absorption capacity, water holding capacity and iron binding capacity were determined on both mucilages treated and without treatment. Homogenization led to a significant reduction in viscosity respect to chia mucilage controls, which can be related to the decrease in particle size and molecular weight. A high iron binding capacity was obtained for both mucilages. FTIR spectra of both mucilages with iron showed displacements in bands related with stretching of carboxylic uronic acids, suggesting the interaction site with this mineral. This interaction was also verified by particle size determination with a displacement to higher sizes in the presence of iron. Potential zeta showed a significant reduction in the presence of iron. A model to explain the binding between chia mucilage and iron is proposed. HPH appears as an alternative to expand chia mucilage functionality reducing the viscosity of chia mucilage solutions for the offer of a new ingredient also with optimal levels of hydration and iron binding capacity.


Assuntos
Mucilagem Vegetal , Salvia , Mucilagem Vegetal/química , Sementes/química , Salvia/química , Polissacarídeos/química , Ferro/análise , Água/análise
20.
Int J Biol Macromol ; 254(Pt 2): 127916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944740

RESUMO

Mucilage of C. pareira leaves was utilized, being manufactured for use in pharmaceutical products. Carrageenan and Eudragit® NE30D were used to combined. Glycerin was used as a plasticizer at a concentration of 20 % w/w based on the amount of polymer used. Computer software optimized its characteristics, including tensile properties, moisture uptake, and erosion; the optimal formulation was 1.4:1.2:2.8. The percentages of optimization error ranged from 8.48 to 13.80 %. Propranolol HCl was mixed to an optimal formulation. The film layer was tight, homogeneous, and smooth, with no holes. DSC thermogram showed no interaction peaks at 101.33 °C and 170.50 °C. Propranolol HCl concentration in the film ranged from 2.18 to 2.20 mg/cm2. Propranolol HCl was quickly released from the film. The kinetic model for the release profile was first-order kinetic. Although propranolol HCl had a high-release profile, its skin permeation was limited. The permeation lag time, Jss, and Kp were 1.60-2.65 h, 0.0182-0.0338 µg/cm2/h, and 9.10-15.35 cm/h, respectively. A significant amount of propranolol HCl residue was found on the skin's surface. Glycerin appeared to influence propranolol HCl permeability. Therefore, the plant leaf mucilage/carrageenan/Eudragit® NE30D blended film can be utilized in pharmaceutical applications to control drug release from its film layer.


Assuntos
Mucilagem Vegetal , Carragenina , Propranolol/química , Química Farmacêutica , Glicerol , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...