Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.130
Filtrar
1.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190013

RESUMO

The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística , Mucosa Respiratória/patologia , Inflamação/patologia , Concentração de Íons de Hidrogênio
2.
J Physiol ; 601(9): 1555-1572, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37009787

RESUMO

During recent years chemosensory cells in extraoral tissues have been established as mediators for the detection and regulation of innate immune processes in response to pathogens. Under physiological conditions, chemosensory cells are present throughout the respiratory epithelium of the upper and lower airways as well as in the main olfactory epithelium. Additionally, they emerge in the alveolar region of the lung upon viral infections. Chemosensory cells in the upper and the lower airways detect signalling molecules from gram-positive and gram-negative bacteria as well as aeroallergens and fungi. Upon stimulation they release multiple molecules, such as the transmitter acetylcholine, the cysteinyl leukotriene E4 and the cytokine interleukin-25, which act as autocrine and paracrine signals and thereby orchestrate the innate immune responses in the respiratory system. Activation of chemosensory cells stimulates various immune cells, e.g. type 2 innate lymphoid cells, modulates mucociliary clearance and induces a protective neurogenic inflammation. This review compiles and discusses recent findings regarding chemosensory cell function in the respiratory tract.


Assuntos
Antibacterianos , Imunidade Inata , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Linfócitos , Mucosa Respiratória
3.
ACS Biomater Sci Eng ; 9(5): 2780-2792, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37019688

RESUMO

Cystic fibrosis (CF) is one of the most frequent genetic diseases, caused by dysfunction of the CF transmembrane conductance regulator (CFTR) chloride channel. CF particularly affects the epithelium of the respiratory system. Therapies aim at rescuing CFTR defects in the epithelium, but CF genetic heterogeneity hinders the finding of a single and generally effective treatment. Therefore, in vitro models have been developed to study CF and guide patient therapy. Here, we show a CF model on-chip by coupling the feasibility of the human bronchial epithelium differentiated in vitro at the air-liquid interface and the innovation of microfluidics. We demonstrate that the dynamic flow enhanced cilia distribution and increased mucus quantity, thus promoting tissue differentiation in a short time. The microfluidic devices highlighted differences between CF and non-CF epithelia, as shown by electrophysiological measures, mucus quantity, viscosity, and the analysis of ciliary beat frequency. The described model on-chip may be a handy instrument for studying CF and setting up therapies. As a proof of principle, we administrated the corrector VX-809 on-chip and observed a decrease in mucus thickness and viscosity.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Microfluídica , Células Cultivadas , Mucosa Respiratória
4.
Eur Respir J ; 61(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37003609

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel for transport of chloride and bicarbonate anions. Functional roles of CFTR have been identified in a broad range of cell types including epithelial, endothelial, immune and structural cells. While CFTR has been investigated largely in the context of inborn dysfunction in cystic fibrosis, recent evidence shows that CFTR is also affected by acquired dysfunction in COPD. In patients with COPD and smokers, CFTR impairment has been demonstrated in the upper and lower airways, sweat glands and intestines, suggesting both pulmonary and systemic defects. Cigarette smoke, a key factor in COPD development, is the major cause of acquired CFTR dysfunction. Inflammation, bacterial byproducts and reactive oxygen species can further impair CFTR expression and function. CFTR dysfunction could contribute directly to disease manifestation and progression of COPD including disturbed airway surface liquid homeostasis, airway mucus obstruction, pathogen colonisation and inflammation. Mucus plugging and neutrophilic inflammation contribute to tissue destruction, development of dysfunction at the level of the small airways and COPD progression. Acquired CFTR dysfunction in extrapulmonary organs could add to common comorbidities and the disease burden. This review explores how CFTR dysfunction may be acquired and its potential effects on patients with COPD, particularly those with chronic bronchitis. The development of CFTR potentiators and the probable benefits of CFTR potentiation to improve tissue homeostasis, reduce inflammation, improve host defence and potentially reduce remodelling in the lungs will be discussed.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Inflamação
5.
Viruses ; 15(4)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112941

RESUMO

Respiratory tract epithelium infection plays a primary role in Nipah virus (NiV) pathogenesis and transmission. Knowledge about infection dynamics and host responses to NiV infection in respiratory tract epithelia is scarce. Studies in non-differentiated primary respiratory tract cells or cell lines indicate insufficient interferon (IFN) responses. However, studies are lacking in the determination of complex host response patterns in differentiated respiratory tract epithelia for the understanding of NiV replication and spread in swine. Here we characterized infection and spread of NiV in differentiated primary porcine bronchial epithelial cells (PBEC) cultivated at the air-liquid interface (ALI). After the initial infection of only a few apical cells, lateral spread for 12 days with epithelium disruption was observed without releasing substantial amounts of infectious virus from the apical or basal sides. Deep time course proteomics revealed pronounced upregulation of genes related to type I/II IFN, immunoproteasomal subunits, transporter associated with antigen processing (TAP)-mediated peptide transport, and major histocompatibility complex (MHC) I antigen presentation. Spliceosomal factors were downregulated. We propose a model in which NiV replication in PBEC is slowed by a potent and broad type I/II IFN host response with conversion from 26S proteasomes to immunoproteasomal antigen processing and improved MHC I presentation for adaptive immunity priming. NiV induced cytopathic effects could reflect the focal release of cell-associated NiV, which may contribute to efficient airborne viral spread between pigs.


Assuntos
Vírus Nipah , Animais , Suínos , Vírus Nipah/fisiologia , Proteoma/metabolismo , Células Epiteliais , Replicação Viral , Mucosa Respiratória , Células Cultivadas
6.
Sci Rep ; 13(1): 5537, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016030

RESUMO

Clinical studies have proven antiviral effectiveness of treatment with a Designed Ankyrin Repeat Protein (DARPin) specific against the spike protein of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). More information on transport mechanisms and efficiency to the site of action is desirable. Transepithelial migration through air-liquid interface (ALI) cultures of reconstituted human bronchial epithelia (HBE) was assessed by Enzyme-Linked Immunosorbent Assays and Confocal Laser Scanning Microscopy for different DARPin designs in comparison to a monoclonal antibody. Antiviral efficacy against authentic SARS-CoV-2, applied apically on HBE, was investigated based on viral titers and genome equivalents, after administration of therapeutic candidates on the basal side. Transepithelial translocation of all DARPin candidates and the monoclonal antibody was efficient and dose dependent. Small DARPins and the antibody migrated more efficiently than larger molecules, indicating different transport mechanisms involved. Microscopic analyses support this, demonstrating passive paracellular transport of smaller DARPins and transcellular migration of the larger molecules. All therapeutic candidates applied to the basal side of HBE conferred effective protection against SARS-CoV-2 infection. In summary, we have shown that DARPins specific against SARS-CoV-2 translocate across intact airway epithelia and confer effective protection against infection and viral replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas de Repetição de Anquirina Projetadas , Mucosa Respiratória , Anticorpos Monoclonais , Antivirais/farmacologia
7.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919698

RESUMO

Pathogens and inflammatory conditions rapidly induce the expression of immune-responsive gene 1 (IRG1) in cells of myeloid lineage. IRG1 encodes an aconitate decarboxylase (ACOD1) that produces the immunomodulatory metabolite itaconate (ITA). In addition to rapid intracellular accumulation, ITA is also secreted from the cell, but whether secreted ITA functions as a signaling molecule is unclear. Here, we identified ITA as an orthosteric agonist of the GPCR OXGR1, with an EC50 of approximately 0.3 mM, which was in the same range as the physiological concentration of extracellular ITA upon macrophage activation. ITA activated OXGR1 to induce Ca2+ mobilization, ERK phosphorylation, and endocytosis of the receptor. In a mouse model of pulmonary infection with bacterial Pseudomonas aeruginosa, ITA stimulated Oxgr1-dependent mucus secretion and transport in respiratory epithelium, the primary innate defense mechanism of the airway. Our study thus identifies ITA as a bona fide ligand for OXGR1 and the ITA/OXGR1 paracrine signaling pathway during the pulmonary innate immune response.


Assuntos
Depuração Mucociliar , Succinatos , Camundongos , Animais , Succinatos/farmacologia , Imunidade Inata , Mucosa Respiratória
8.
Int J Pharm ; 638: 122889, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36990172

RESUMO

Hyaluronic acid (HA) is a key component of the respiratory mucosa. By acting as a natural moisturizer, it provides hydration to the airways. In normal conditions, high molecular weight HA molecules form viscous gels providing a protective shield against external insults. This is particularly important in the upper airways where the HA protective barrier helps to prevent environmental agents to reach the lungs. Most respiratory diseases are characterized by inflammatory processes causing degradation of HA into small fragments which reduces the HA barrier effect and increases the risk of exposure to external insults. Dry powder inhalers (DPIs) are efficient devices used to deliver therapeutic molecules in the form of dry powder to the respiratory tract. PolmonYDEFENCE/DYFESA™ is a novel formulation based on HA delivered to the airways using the PillHaler® DPI device. In this study we report the results of in vitro inhalation performances of PolmonYDEFENCE/DYFESA™ as well as its mechanism of action in human cells. We found that the product targets the upper airways and that HA molecules form a protective barrier on cell surface. Furthermore, exposure to the device is safe in animal models. The promising pre-clinical results of this study provide the bases for future clinical investigation.


Assuntos
Ácido Hialurônico , Pulmão , Animais , Humanos , Pós/metabolismo , Ácido Hialurônico/metabolismo , Pulmão/metabolismo , Administração por Inalação , Aerossóis , Inaladores de Pó Seco , Mucosa Respiratória , Mucosa , Tamanho da Partícula
9.
J Med Virol ; 95(3): e28666, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912368

RESUMO

The study was planned to carry out the molecular characterization of the respiratory syncytial virus (RSV) circulating strains and to elucidate the gene expression of autophagy and mammalian target of rapamycin (mTOR) signaling pathways in children with acute lower respiratory tract infection (ALRTI). Nasopharyngeal aspirate (NPA) samples (n = 145) from children suffering from ALRTI were subjected to the detection of RSV. Of them, 31 RSV positive strains were subjected for sequencing. Semi-quantitative gene expression analysis for mTOR signaling and autophagy pathway genes was performed in respiratory tract epithelial cells using 25 RSV positive cases, and 10 age and sex matched healthy control subjects. Five representative genes were selected for each pathway and subjected to SYBR green real-time polymerase chain reaction. RSV was positive in 69 (47.6%) samples and the representative (n = 31) RSV strains belonged to RSV-A. Thirty-one strains of RSV-A on phylogenetic analysis clustered with the novel ON1 genotype having 72 bp nucleotide duplicationby targeting the ecto-domain portion of the G gene. Further, the stains belonged to lineage 1 (51.6%), followed by lineage 3 (29%) and lineage 2 (19.4%). Autophagy gene expression analysis revealed significant upregulation in NPC1 and ATG3 autophagy genes. mTOR, AKT1, and TSC1 genes of the mTOR pathway were significantly downregulated in RSV positive patients. Thus, RSV infection inducing autophagy pathway genes (NPC1 and ATG3) and suppressing mTOR signaling pathway genes (AKT1, mTOR, and TSC1) to possibly evade the host immune system through dysregulating these pathways for its way of survival within the host.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Humanos , Criança , Lactente , Filogenia , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/genética , Genótipo , Serina-Treonina Quinases TOR/genética , Transdução de Sinais , Mucosa Respiratória , Autofagia/genética
10.
Toxicol Lett ; 379: 1-10, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907250

RESUMO

Printer toner particles (TPs) are a common, potentially hazardous substance, with an unclear toxicological impact on the respiratory mucosa. Most of the airways surface is covered by a ciliated respiratory mucosa, therefore appropriate tissue models of the respiratory epithelium with a high in vivo correlation are necessary for in vitro evaluation of airborne pollutants toxicology and the impact on the functional integrity. The aim of this study is the evaluation of TPs toxicology in a human primary cell-based air-liquid-interface (ALI) model of respiratory mucosa. The TPs were analyzed and characterized by scanning electron microscopy, pyrolysis and X-ray fluorescence spectrometry. ALI models of 10 patients were created using the epithelial cells and fibroblasts derived from nasal mucosa samples. TPs were applied to the ALI models via a modified Vitrocell® cloud and submerged in the dosing 0.89 - 892.96 µg/ cm2. Particle exposure and intracellular distribution were evaluated by electron microscopy. The MTT assay and the comet assay were used to investigate cytotoxicity and genotoxicity, respectively. The used TPs showed an average particle size of 3 - 8 µm. Mainly carbon, hydrogen, silicon, nitrogen, tin, benzene and benzene derivates were detected as chemical ingredients. By histomorphology and electron microscopy we observed the development of a highly functional, pseudostratified epithelium with a continuous layer of cilia. Using electron microscopy, TPs could be detected on the cilia surface and also intracellularly. Cytotoxicity was detected from 9 µg/ cm2 and higher, but no genotoxicity after ALI and submerged exposure. The ALI with primary nasal cells represents a highly functional model of the respiratory epithelium in terms of histomorphology and mucociliary differentiation. The toxicological results indicate a weak TP-concentration-dependent cytotoxicity. AVAILABILITY OF DATA AND MATERIALS: The datasets used and analysed during the current study are available from the corresponding author on reasonable request.


Assuntos
Benzeno , Células Epiteliais , Humanos , Mucosa Nasal , Mucosa Respiratória , Cílios
11.
Rev Mal Respir ; 40(3): 247-249, 2023 Mar.
Artigo em Francês | MEDLINE | ID: mdl-36781344

RESUMO

Asthma is a frequent respiratory disease, with severe asthma occurring in 3 to 5% of cases. Chronic inflammation of the bronchial epithelium is essential to its pathophysiology. When activated by the bronchial environment, the peripheral sensory nervous system contributes to inflammation of the airways. However, due to a lack of reliable models, the mechanisms of action remain largely unknown. Using induced pluripotent stem cells reprogrammed from blood cells, we have set up a model of bronchial epithelium innervated by sensory neurons. This model will ensure better understanding of the mechanisms of action underlying neurogenic inflammation.


Assuntos
Asma , Humanos , Brônquios , Mucosa Respiratória , Inflamação , Epitélio
12.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835202

RESUMO

Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial-mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-ß/Smad2/3, E2F/Rb, and Wnt/ß-catenin).


Assuntos
Asma , Eosinofilia Pulmonar , Mucosa Respiratória , Humanos , Remodelação das Vias Aéreas/genética , Asma/genética , Proteínas de Ligação a Calmodulina , Proteínas Ligadas por GPI , Inflamação , Eosinofilia Pulmonar/genética , Fatores de Transcrição SOXB2 , Transcriptoma , Mucosa Respiratória/metabolismo
13.
Nat Commun ; 14(1): 721, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781848

RESUMO

Epithelial tissues provide front-line barriers shielding the organism from invading pathogens and harmful substances. In the airway epithelium, the combined action of multiciliated and secretory cells sustains the mucociliary escalator required for clearance of microbes and particles from the airways. Defects in components of mucociliary clearance or barrier integrity are associated with recurring infections and chronic inflammation. The timely and balanced differentiation of basal cells into mature epithelial cell subsets is therefore tightly controlled. While different growth factors regulating progenitor cell proliferation have been described, little is known about the role of metabolism in these regenerative processes. Here we show that basal cell differentiation correlates with a shift in cellular metabolism from glycolysis to fatty acid oxidation (FAO). We demonstrate both in vitro and in vivo that pharmacological and genetic impairment of FAO blocks the development of fully differentiated airway epithelial cells, compromising the repair of airway epithelia. Mechanistically, FAO links to the hexosamine biosynthesis pathway to support protein glycosylation in airway epithelial cells. Our findings unveil the metabolic network underpinning the differentiation of airway epithelia and identify novel targets for intervention to promote lung repair.


Assuntos
Células Epiteliais , Sistema Respiratório , Epitélio/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/fisiologia , Ácidos Graxos/metabolismo , Mucosa Respiratória/metabolismo
14.
Allergol. immunopatol ; 51(1): 116-125, ene. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-214027

RESUMO

Background: Asthma is a chronic inflammatory airway disease that causes damage to and exfoliation of the airway epithelium. The continuous damage to the airway epithelium in asthma cannot be repaired quickly and generates irreversible damage, repeated attacks, and aggravation. Vitamin A (VA) has multifarious biological functions that include maintaining membrane stability and integrity of the structure and function of epithelial cells. Our research explored the role of VA in repairing the airway epithelium and provided a novel treatment strategy for asthma. Methods: A mouse asthma model was established by house dust mite (HDM) and treated with VA by gavage. Human bronchial epithelial (16HBE) cells were treated with HDM and all-trans retinoic acid (ATRA) in vitro. We analyzed the mRNA and protein expression of characteristic markers, such as acetyl-α-tubulin (Ac-TUB) and FOXJ1 in ciliated cells and MUC5AC in secretory cells, mucus secretion, airway inflammation, the morphology of cilia, and the integrity of the airway epithelium. Results: Findings showed destruction of airway epithelial integrity, damaged cilia, high mucus secretion, increased MUC5AC expression, and decreased Ac-TUB and FOXJ1 expression in asthmatic mice. The VA intervention reversed the effect on Ac-TUB and FOXJ1 and promoted ciliated cells to repair the damage and maintain airway epithelial integrity. In 16HBE cells, we could confirm that ATRA promoted the expression of Ac-TUB and FOXJ1. Conclusion: These results demonstrated that VA-regulated ciliated cells to repair the damaged airway epithelium caused by asthma and maintain airway epithelial integrity. VA intervention is a potential adjunct to conventional treatment for asthma (AU)


Assuntos
Animais , Feminino , Camundongos , Asma/tratamento farmacológico , Mucosa Respiratória/imunologia , Vitamina A/administração & dosagem , Glucocorticoides/administração & dosagem , Modelos Animais de Doenças , Mucosa Respiratória/efeitos dos fármacos
15.
Allergol Immunopathol (Madr) ; 51(1): 116-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36617830

RESUMO

BACKGROUND: Asthma is a chronic inflammatory airway disease that causes damage to and exfoliation of the airway epithelium. The continuous damage to the airway epithelium in asthma cannot be repaired quickly and generates irreversible damage, repeated attacks, and aggravation. Vitamin A (VA) has multifarious biological functions that include maintaining membrane stability and integrity of the structure and function of epithelial cells. Our research explored the role of VA in repairing the airway epithelium and provided a novel treatment strategy for asthma. METHODS: A mouse asthma model was established by house dust mite (HDM) and treated with VA by gavage. Human bronchial epithelial (16HBE) cells were treated with HDM and all-trans retinoic acid (ATRA) in vitro. We analyzed the mRNA and protein expression of characteristic markers, such as acetyl-α-tubulin (Ac-TUB) and FOXJ1 in ciliated cells and MUC5AC in secretory cells, mucus secretion, airway inflammation, the morphology of cilia, and the integrity of the airway epithelium. RESULTS: Findings showed destruction of airway epithelial integrity, damaged cilia, high mucus secretion, increased MUC5AC expression, and decreased Ac-TUB and FOXJ1 expression in asthmatic mice. The VA intervention reversed the effect on Ac-TUB and FOXJ1 and promoted ciliated cells to repair the damage and maintain airway epithelial integrity. In 16HBE cells, we could confirm that ATRA promoted the expression of Ac-TUB and FOXJ1. CONCLUSION: These results demonstrated that VA-regulated ciliated cells to repair the damaged airway epithelium caused by asthma and maintain airway epithelial integrity. VA intervention is a potential adjunct to conventional treatment for asthma.


Assuntos
Asma , Vitamina A , Camundongos , Humanos , Animais , Vitamina A/uso terapêutico , Mucosa Respiratória , Asma/etiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo
16.
Exp Biol Med (Maywood) ; 248(3): 271-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36628928

RESUMO

Epidemiological evidence links lower air quality with increased incidence and severity of COVID-19; however, mechanistic data have yet to be published. We hypothesized air pollution-induced oxidative stress in the nasal epithelium increased viral replication and inflammation. Nasal epithelial cells (NECs), collected from healthy adults, were grown into a fully differentiated epithelium. NECs were infected with the ancestral strain of SARS-CoV-2. An oxidant combustion by-product found in air pollution, the environmentally persistent free radical (EPFR) DCB230, was used to mimic pollution exposure four hours prior to infection. Some wells were pretreated with antioxidant, astaxanthin, for 24 hours prior to EPFR-DCB230 exposure and/or SARS-CoV-2 infection. Outcomes included viral replication, epithelial integrity, surface receptor expression (ACE2, TMPRSS2), cytokine mRNA expression (TNF-α, IFN-ß), intracellular signaling pathways, and oxidative defense enzymes. SARS-CoV-2 infection induced a mild phenotype in NECs, with some cell death, upregulation of the antiviral cytokine IFN-ß, but had little effect on intracellular pathways or oxidative defense enzymes. Prior exposure to EPFR-DCB230 increased SARS-CoV-2 replication, upregulated TMPRSS2 expression, increased secretion of the proinflammatory cytokine TNF-α, inhibited expression of the mucus producing MUC5AC gene, upregulated expression of p21 (apoptosis pathway), PINK1 (mitophagy pathway), and reduced levels of antioxidant enzymes. Pretreatment with astaxanthin reduced SARS-CoV-2 replication, downregulated ACE2 expression, and prevented most, but not all EPFR-DCB230 effects. Our data suggest that oxidant damage to the respiratory epithelium may underly the link between poor air quality and increased COVID-19. The apparent protection by antioxidants warrants further research.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Antioxidantes/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Radicais Livres/metabolismo , Citocinas/metabolismo , Mucosa Respiratória/metabolismo , Oxidantes/metabolismo
17.
Eur J Pharm Biopharm ; 184: 62-82, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696943

RESUMO

The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.


Assuntos
Técnicas de Cultura de Células , Mucosa Respiratória , Humanos , Mucosa Respiratória/metabolismo , Linhagem Celular , Pulmão , Mucosa Nasal , Células Epiteliais/metabolismo
18.
J Virol ; 97(2): e0147822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656015

RESUMO

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Assuntos
COVID-19 , Expressão Gênica , Mucosa Respiratória , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiologia , COVID-19/imunologia , COVID-19/virologia , Expressão Gênica/imunologia , Imunidade nas Mucosas/imunologia , Interferons/fisiologia , SARS-CoV-2/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia
19.
Nat Genet ; 55(1): 66-77, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543915

RESUMO

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.


Assuntos
Pulmão , Mucosa Respiratória , Humanos , Mucosa Respiratória/metabolismo , Células Epiteliais/metabolismo , Linfócitos B , Imunoglobulina A/metabolismo
20.
Front Cell Infect Microbiol ; 12: 1035566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519134

RESUMO

In vitro culture and differentiation of human-derived airway basal cells under air-liquid interface (ALI) into a pseudostratified mucociliated mucosal barrier has proven to be a powerful preclinical tool to study pathophysiology of respiratory epithelium. As such, identifying differentiation stage-specific biomarkers can help investigators better characterize, standardize, and validate populations of regenerating epithelial cells prior to experimentation. Here, we applied longitudinal transcriptomic analysis and observed that the pattern and the magnitude of OMG, KRT14, STC1, BPIFA1, PLA2G7, TXNIP, S100A7 expression create a unique biosignature that robustly indicates the stage of epithelial cell differentiation. We then validated our findings by quantitative hemi-nested real-time PCR from in vitro cultures sourced from multiple donors. In addition, we demonstrated that at protein-level secretion of BPIFA1 accurately reflects the gene expression profile, with very low quantities present at the time of ALI induction but escalating levels were detectable as the epithelial cells terminally differentiated. Moreover, we observed that increase in BPIFA1 secretion closely correlates with emergence of secretory cells and an anti-inflammatory phenotype as airway epithelial cells undergo mucociliary differentiation under air-liquid interface in vitro.


Assuntos
Células Epiteliais , Mucosa Respiratória , Humanos , Células Cultivadas , Células Epiteliais/metabolismo , Diferenciação Celular , Epitélio , Biomarcadores/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fosfoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...