Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.767
Filtrar
1.
Carbohydr Polym ; 343: 122450, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174127

RESUMO

Gelatinizing high-amylose maize starch (HAMSt) requires high temperatures to allow complexation with lipids, making it a challenging process. An octenylsuccinylation method was examined as a part of a strategy to decrease the gelatinization temperature of HAMSt, thereby promoting the complexation between HAMSt and myristic acid (MAc). Octenyl succinic anhydride (OSA) modification of HAMSt reduces the onset gelatinization temperature of HAMSt from 71.63 °C to 66.97 °C. Moreover, as the OSA concentration increased from 2 % to 11 %, the degree of substitution and molecular weights of the esterified HAMSt gradually increased from 0.0069 to 0.0184 and from 0.97 × 106 to 1.17 × 106 g/mol, respectively. Fourier transform infrared analysis indicated that the octenyl-succinate groups were grafted onto the HAMSt chains. The formation of HAMSt-MAc complexes improved the thermal stability of OSA-treated HAMSt (peak temperature increased by 0.11 °C-13.95 °C). Moreover, the diffraction intensity of the V-type peak of the 11 % sample was greater than that of other samples. Finally, the anti-retrogradation ability was in the order of OSA-HAMSt-MAc complexes > HAMSt-MAc complexes > HAMSt. Overall, our results indicate that octenylsuccinylation can be an effective strategy to promote the formation of OSA-HAMSt-MAc complexes and delay starch retrogradation.


Assuntos
Amilose , Ácido Mirístico , Amido , Succinatos , Zea mays , Zea mays/química , Amilose/química , Amido/química , Amido/análogos & derivados , Succinatos/química , Ácido Mirístico/química , Temperatura , Anidridos Succínicos/química
2.
Enzyme Microb Technol ; 180: 110497, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39154569

RESUMO

Substrate specificity in non-aqueous esterification catalyzed by commercial lipases activated by hydration-aggregation pretreatment was investigated. Four microbial lipases from Rhizopus japonicus, Burkholderia cepacia, Rhizomucor miehei, and Candida antarctica (fraction B) were used to study the effect of the carbon chain length of saturated fatty acid substrates on the esterification activity with methanol in n-hexane. Hydration-aggregation pretreatment had an activation effect on all lipases used, and different chain length dependencies of esterification activity for lipases from different origins were demonstrated. The effects of various acidic substrates with different degrees of unsaturation, aromatic rings, and alcohol substrates with different carbon chain lengths on esterification activity were examined using R. japonicus lipase, which demonstrated the most remarkable activity enhancement after hydration-aggregation pretreatment. Furthermore, in the esterification of myristic acid with methanol catalyzed by the hydrated-aggregated R. japonicus lipase, maximum reaction rate (5.43 × 10-5 mmol/(mg-biocat min)) and Michaelis constants for each substrate (48.5 mM for myristic acid, 24.7 mM for methanol) were determined by kinetic analysis based on the two-substrate Michaelis-Menten model.


Assuntos
Burkholderia cepacia , Proteínas Fúngicas , Lipase , Rhizomucor , Rhizopus , Especificidade por Substrato , Lipase/metabolismo , Lipase/química , Esterificação , Rhizomucor/enzimologia , Burkholderia cepacia/enzimologia , Rhizopus/enzimologia , Cinética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Metanol/metabolismo , Ácido Mirístico/metabolismo , Água/química , Água/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Hexanos/metabolismo , Hexanos/química
3.
Poult Sci ; 103(10): 104038, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079330

RESUMO

Fatty acids (FAs) can serve as energy for poultry, maintain normal cell structure and function, and support a healthy immune system. Although the addition of polyunsaturated fatty acids (PUFAs) to the diet has been extensively studied and reported, the mechanism of action of saturated fatty acids (SFAs) remains to be elucidated. We investigated the effect of 0.04% dietary myristic acid (MA) on slaughter performance, lipid components, tissue FAs, and the transcriptome profile in chickens. The results showed that dietary MA had no effect on slaughter performance (body weight, carcass weight, eviscerated weight, and pectoral muscle weight) (P > 0.05). Dietary MA enrichment increased MA (P < 0.001) and triglycerides (TGs) (P < 0.01) levels in the pectoral muscle. The levels of palmitic acid, linoleic acid (LA), arachidonic acid (AA), SFAs, monounsaturated fatty acids (MUFAs), and PUFAs were significantly higher (P < 0.01) in the MA supplementation group compared to the control group. However, there were no significant differences in the ratios of PUFA/SFA and n6/omega-3 (n3) between the two groups. The MA content was positively correlated with the contents of palmitic acid, LA, linolenic acid (ALA), n3, n6, SFAs, and unsaturated fatty acids (UFA). DHCR24, which is known to be involved in steroid metabolism and cholesterol biosynthesis pathways, was found to be a significantly lower in the MA supplementation group compared to the control group (P < 0.05, log2(fold change) = -0.85). Five overlapping co-expressed genes were identified at the intersection between the differential expressed genes and Weighted Gene Co­expression Network Analysis-derived hub genes associated with MA phenotype, namely BHLHE40, MSL1, PLAGL1, SRSF4, and ENSGALG00000026875. For the TG phenotype, a total of 28 genes were identified, including CHKA, KLF5, TGIF1, etc. Both sets included the gene PLAGL1, which has a negative correlation with the levels of MA and TG. This study provides valuable information to further understand the regulation of gene expression patterns by dietary supplementation with MA and examines at the molecular level the phenotypic changes induced by supplementation with MA.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Ácido Mirístico , Músculos Peitorais , Triglicerídeos , Animais , Galinhas/genética , Galinhas/fisiologia , Galinhas/metabolismo , Suplementos Nutricionais/análise , Ácido Mirístico/metabolismo , Músculos Peitorais/metabolismo , Músculos Peitorais/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Triglicerídeos/metabolismo , Masculino , Distribuição Aleatória , Ácidos Graxos/metabolismo , Transcriptoma/efeitos dos fármacos
4.
Acta Biochim Pol ; 71: 13014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027262

RESUMO

Fatty acid profiles are crucial for the functionality and viability of lactobacilli used in food applications. Tween 80™, a common culture media additive, is known to influence bacterial growth and composition. This study investigated how Tween 80™ supplementation impacts the fatty acid profiles of six mesophilic lactobacilli strains (Lacticaseibacillus spp., Limosilactobacillus spp., Lactiplantibacillus plantarum). Analysis of eleven strains revealed 29 distinct fatty acids. Tween 80™ supplementation significantly altered their fatty acid composition. Notably, there was a shift towards saturated fatty acids and changes within the unsaturated fatty acid profile. While some unsaturated fatty acids decreased, there was a concurrent rise in cyclic derivatives like lactobacillic acid (derived from vaccenic acid) and dihydrosterculic acid (derived from oleic acid). This suggests that despite the presence of Tween 80™ as an oleic acid source, lactobacilli prioritize the synthesis of these cyclic derivatives from precursor unsaturated fatty acids. Myristic acid and dihydrosterculic acid levels varied across strains. Interestingly, palmitic acid content increased, potentially reflecting enhanced incorporation of oleic acid from Tween 80™ into membranes. Conversely, cis-vaccenic acid levels consistently decreased across all strains. The observed fatty acid profiles differed from previous studies, likely due to a combination of factors including strain-specific variations and growth condition differences (media type, temperature, harvesting point). However, this study highlights the consistent impact of Tween 80™ on the fatty acid composition of lactobacilli, regardless of these variations. In conclusion, Tween 80™ significantly alters fatty acid profiles, influencing saturation levels and specific fatty acid proportions. This work reveals key factors, including stimulated synthesis of lactobacillic acid, competition for oleic acid incorporation, and strain-specific responses to myristic and dihydrosterculic acids. The consistent reduction in cis-vaccenic acid and the presence of cyclic derivatives warrant further investigation to elucidate their roles in response to Tween 80™ supplementation.


Assuntos
Ácidos Graxos , Lactobacillus , Polissorbatos , Polissorbatos/farmacologia , Ácidos Graxos/metabolismo , Lactobacillus/metabolismo , Ácidos Oleicos/metabolismo , Ácido Mirístico/metabolismo , Ácido Oleico/metabolismo , Meios de Cultura/química , Ácido Palmítico/metabolismo , Ácidos Graxos Insaturados/metabolismo
5.
Carbohydr Polym ; 342: 122352, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048217

RESUMO

Inspired by the citrus oil gland and cuticular wax, a multifunctional material that stably and continuously released the carvacrol and provided physical defenses was developed to address issues of fresh-cut fruits to microbial infestation and moisture loss. The results confirmed that low molecular weight and loose structure of starch nanoparticles prepared by the ultrasound-assisted Fenton system were preferable for octenyl succinic anhydride modification compared to native starch, achieving a higher degree of substitution (increased by 18.59 %), utilizing in preparing nanoemulsions (NEs) for encapsulating carvacrol (at 5 % level: 81.58 %). Furthermore, the NEs-based gelatin (G) film improved with surface hydrophobic modification by myristic acid (MA) successfully replicated the citrus oil gland and cuticular wax, providing superior antioxidant (enhanced by 3-4 times) and antimicrobial properties (95.99 % and 84.97 % against Staphylococcus aureus and Escherichia coli respectively), as well as the exceptional UV shielding (nearly 0 transmittance in the UV region), mechanical (72 % increase in tensile strength), and hydrophobic (WCA 133.63°). Moreover, the 5%NE-G@MA film inhibited foodborne microbial growth (reduced by 50 %) and water loss (controlled below 15 %), extending the shelf life of fresh-cut navel orange and kiwi. Thus, the multifunctional film was a potential shield for preserving perishable fresh-cut products.


Assuntos
Citrus , Emulsões , Escherichia coli , Frutas , Gelatina , Nanopartículas , Staphylococcus aureus , Amido , Ceras , Gelatina/química , Nanopartículas/química , Citrus/química , Emulsões/química , Amido/química , Amido/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Frutas/química , Ceras/química , Antioxidantes/química , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Cimenos/química , Cimenos/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Ácido Mirístico/química , Ácido Mirístico/farmacologia , Conservação de Alimentos/métodos
6.
J Huntingtons Dis ; 13(3): 267-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995796

RESUMO

 Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by impaired motor function and cognitive decline, ultimately leading to death. HD is caused by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein, which is linked to decreased HTT turnover, increased HTT proteolysis, increased HTT aggregation, and subsequent neuronal death. In this review, we explore the mechanism of the protective effect of blocking HTT proteolysis at D586, which has been shown to rescue the HD phenotype in HD mouse models. Until recently, the mechanism remained unclear. Herein, we discuss how blocking HTT proteolysis at D586 promotes HTT turnover by correcting autophagy, and making HTT a better autophagy substrate, through post-translational myristoylation of HTT at G553.


Assuntos
Autofagia , Proteína Huntingtina , Doença de Huntington , Processamento de Proteína Pós-Traducional , Proteólise , Doença de Huntington/metabolismo , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Autofagia/fisiologia , Humanos , Animais , Ácido Mirístico/metabolismo
7.
Talanta ; 276: 126300, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795647

RESUMO

N-myristoylation is one of the most widespread and important lipidation in eukaryotes and some prokaryotes, which is formed by covalently attaching various fatty acids (predominantly myristic acid C14:0) to the N-terminal glycine of proteins. Disorder of N-myristoylation is critically implicated in numerous physiological and pathological processes. Here, we presented a method for purification and comprehensive characterization of endogenous, intact N-glycine lipid-acylated peptides, which combined the negative selection method for N-terminome and the nanographite fluoride-based solid-phase extraction method (NeS-nGF SPE). After optimizing experimental conditions, we conducted the first global profiling of the endogenous and heterogeneous modification states for N-terminal glycine, pinpointing the precise sites and their associated lipid moieties. Totally, we obtained 76 N-glycine lipid-acylated peptides, including 51 peptides with myristate (C14:0), 10 with myristoleate (C14:1), 6 with tetradecadienoicate (C14:2), 5 with laurate (C12:0) and 4 with lauroleate (C12:1). Therefore, our proteomic methodology could significantly facilitate precise and in-depth analysis of the endogenous N-myristoylome and its heterogeneity.


Assuntos
Ácido Mirístico , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Ácido Mirístico/química , Ácido Mirístico/análise , Proteômica/métodos , Fluoretos/química , Fluoretos/análise , Glicina/química , Glicina/análise , Peptídeos/química , Peptídeos/análise
8.
J Biol Chem ; 300(7): 107358, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782206

RESUMO

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.


Assuntos
Ácidos Aristolóquicos , Albumina Sérica Humana , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Humanos , Cristalografia por Raios X , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Adutos de DNA/metabolismo , Adutos de DNA/química , Ligação Proteica , Ácido Mirístico/metabolismo , Ácido Mirístico/química
9.
J Transl Med ; 22(1): 431, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715059

RESUMO

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Assuntos
Aciltransferases , Neoplasias , Fosforilação Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Linhagem Celular Tumoral , Fosforilação Oxidativa/efeitos dos fármacos , Aciltransferases/metabolismo , Ácido Mirístico/metabolismo , Proteômica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
10.
PLoS One ; 19(4): e0295103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574162

RESUMO

The ADP-ribosylation factors (Arfs) constitute a family of small GTPases within the Ras superfamily, with a distinguishing structural feature of a hypervariable N-terminal extension of the G domain modified with myristate. Arf proteins, including Arf1, have roles in membrane trafficking and cytoskeletal dynamics. While screening for Arf1:small molecule co-crystals, we serendipitously solved the crystal structure of the non-myristoylated engineered mutation [L8K]Arf1 in complex with a GDP analogue. Like wild-type (WT) non-myristoylated Arf1•GDP, we observed that [L8K]Arf1 exhibited an N-terminal helix that occludes the hydrophobic cavity that is occupied by the myristoyl group in the GDP-bound state of the native protein. However, the helices were offset from one another due to the L8K mutation, with a significant change in position of the hinge region connecting the N-terminus to the G domain. Hypothesizing that the observed effects on behavior of the N-terminus affects interaction with regulatory proteins, we mutated two hydrophobic residues to examine the role of the N-terminal extension for interaction with guanine nucleotide exchange factors (GEFs) and GTPase Activating Proteins (GAPs. Different than previous studies, all mutations were examined in the context of myristoylated Arf. Mutations had little or no effect on spontaneous or GEF-catalyzed guanine nucleotide exchange but did affect interaction with GAPs. [F13A]myrArf1 was less than 1/2500, 1/1500, and 1/200 efficient as substrate for the GAPs ASAP1, ARAP1 and AGAP1; however, [L8A/F13A]myrArf1 was similar to WT myrArf1. Using molecular dynamics simulations, the effect of the mutations on forming alpha helices adjacent to a membrane surface was examined, yet no differences were detected. The results indicate that lipid modifications of GTPases and consequent anchoring to a membrane influences protein function beyond simple membrane localization. Hypothetical mechanisms are discussed.


Assuntos
Proteínas Ativadoras de GTPase , Miristatos , Proteínas Ativadoras de GTPase/metabolismo , Mutação Puntual , Ácido Mirístico , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
11.
Clin Chim Acta ; 556: 117852, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38438006

RESUMO

BACKGROUND: Coronary heart disease (CHD) is the most important complication of type 2 diabetes mellitus (T2DM) and the leading cause of death. Identifying the risk of CHD in T2DM patients is important for early clinical intervention. METHODS: A total of 213 participants, including 81 healthy controls (HCs), 69 T2DM patients and 63 T2DM patients complicated with CHD were recruited in this study. Serum metabolomics were conducted by using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Demographic information and clinical laboratory test results were also collected. RESULTS: Metabolic phenotypes were significantly altered among HC, T2DM and T2DM-CHD. Acylcarnitines were the most disturbed metabolites between T2DM patients and HCs. Lower levels of bile acids and higher levels of fatty acids in serum were closely associated with CHD risk in T2DM patients. Artificial neural network model was constructed for the discrimination of T2DM and T2DM complicated with CHD based on myristic acid, palmitic acid and heptanoylcarnitine, with accuracy larger than 0.95 in both training set and testing set. CONCLUSION: Altogether, these findings suggest that myristic acid, palmitic acid and heptanoylcarnitine have a good prospect for the warning of CHD complications in T2DM patients, and are superior to traditional lipid, blood glucose and blood pressure indicators.


Assuntos
Carnitina/análogos & derivados , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Doença da Artéria Coronariana/complicações , Ácido Palmítico , Espectrometria de Massas em Tandem , Ácido Mirístico , Artérias/metabolismo , Biomarcadores , Aprendizado de Máquina
12.
Plant Cell Physiol ; 65(5): 790-797, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38441322

RESUMO

Cyanobacteria inhabit areas with a broad range of light, temperature and nutrient conditions. The robustness of cyanobacterial cells, which can survive under different conditions, may depend on the resilience of photosynthetic activity. Cyanothece sp. PCC 8801 (Cyanothece), a freshwater cyanobacterium isolated from a Taiwanese rice field, had a higher repair activity of photodamaged photosystem II (PSII) under intense light than Synechocystis sp. PCC 6803 (Synechocystis), another freshwater cyanobacterium. Cyanothece contains myristic acid (14:0) as the major fatty acid at the sn-2 position of the glycerolipids. To investigate the role of 14:0 in the repair of photodamaged PSII, we used a Synechocystis transformant expressing a T-1274 encoding a lysophosphatidic acid acyltransferase (LPAAT) from Cyanothece. The wild-type and transformant cells contained 0.2 and 20.1 mol% of 14:0 in glycerolipids, respectively. The higher content of 14:0 in the transformants increased the fluidity of the thylakoid membrane. In the transformants, PSII repair was accelerated due to an enhancement in the de novo synthesis of D1 protein, and the production of singlet oxygen (1O2), which inhibited protein synthesis, was suppressed. The high content of 14:0 increased transfer of light energy received by phycobilisomes to PSI and CP47 in PSII and the content of carotenoids. These results indicated that an increase in 14:0 reduced 1O2 formation and enhanced PSII repair. The higher content of 14:0 in the glycerolipids may be required as a survival strategy for Cyanothece inhabiting a rice field under direct sunlight.


Assuntos
Luz , Ácido Mirístico , Complexo de Proteína do Fotossistema II , Synechocystis , Tilacoides , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Ácido Mirístico/metabolismo , Tilacoides/metabolismo , Fotossíntese , Aciltransferases/metabolismo , Aciltransferases/genética , Oxigênio Singlete/metabolismo
13.
Neurosci Res ; 205: 34-39, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38458493

RESUMO

Herein, we investigated the effects of Camembert cheese (CC) and its fatty acid contents on cognitive function in mice by employing the object recognition test to evaluate hippocampus-dependent memory. Orally administered CC improved the cognitive decline induced by a high-fat diet. Next, we focused on myristamide (MA), oleamide, and stearamide, which are fatty acid amides produced during the fermentation process of CC. We found that oral administration of MA improved cognitive decline. Notably, an improvement was not observed using myristic acid, a free fatty acid that is not amidated. Thus, fatty acid amidation may contribute to the physiological activity. Moreover, we investigated changes in gene expression related to neurogenesis in the hippocampus. After MA administration, mRNA expression analysis indicated that MA increased hippocampal brain-derived neurotrophic factor expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Queijo , Disfunção Cognitiva , Ácidos Graxos , Hipocampo , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Administração Oral , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Ácidos Oleicos/farmacologia , Amidas/farmacologia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Ácido Mirístico/farmacologia
14.
Chemosphere ; 352: 141359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309604

RESUMO

Dibutyl phthalate (DBP) is a widely used plasticizer to make plastic flexible and long-lasting. It is easily accessible in a broad spectrum of environments as a result of the rising level of plastic pollution. This compound is considered a top-priority toxicant and persistent organic pollutant by international environmental agencies for its endocrine disruptive and carcinogenic propensities. To mitigate the DBP in the soil, one DBP-degrading bacterial strain was isolated from a plastic-polluted landfill and identified as Paenarthrobacter ureafaciens PB10 by 16S rRNA gene sequence-based homology. The strain was found to develop a distinct transparent halo zone around grown colonies on an agar plate supplemented with DBP. The addition of yeast extract (100 mg/L) as a nutrient source accelerated cell biomass production and DBP degradation rate; however, the presence of glucose suppressed DBP degradation by the PB10 strain without affecting its ability to proliferate. The strain PB10 was efficient in eliminating DBP under various pH conditions (5.0-8.0). Maximum cell growth and degradation of 99.49% at 300 mg/L DBP were achieved in 72 h at the optimized mineral salt medium (MS) conditions of pH 7.0 and 32 °C. Despite that, when the concentration of DBP rose to 3000 mg/L, the DBP depletion rate was measured at 79.34% in 72 h. Some novel intermediate metabolites, like myristic acid, hexadecanoic acid, stearic acid, and the methyl derivative of 4-hydroxyphenyl acetate, along with monobutyl phthalate and phthalic acid, were detected in the downstream degradation process of DBP through GC-MS profiling. Furthermore, in synchronization with native soil microbes, this PB10 strain successfully removed a notable amount of DBP (up to 54.11%) from contaminated soil under microcosm study after 10 d. Thus, PB10 has effective DBP removal ability and is considered a potential candidate for bioremediation in DBP-contaminated sites.


Assuntos
Dibutilftalato , Micrococcaceae , Ácidos Ftálicos , Dibutilftalato/metabolismo , Biodegradação Ambiental , Ácido Mirístico , RNA Ribossômico 16S/genética , Ácidos Ftálicos/metabolismo , Solo
15.
J Sci Food Agric ; 104(3): 1813-1823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872732

RESUMO

BACKGROUND: Lipids and carbohydrates perform essential functions in foods. In recent decades, food scientists have studied the effects of carbohydrate-lipid interactions on the functional properties of food. However, the ways in which carbohydrate-lipid complex-derived materials affect the biological system are unknown. In this study, a myristic acid-potato starch complex was created using a simple cooking approach. The complex was employed as a precursor for the fabrication of myristic acid-potato starch complex-based nanostructured materials (MPS-NMs) through a liquid-liquid extraction approach. A study was conducted on the structural and cytotoxic features of the fabricated MPS-NMs. RESULTS: Transmission electron microscopy images confirmed the formation of spherical nanostructures, 3-60 nm in size. After 24 h exposure, the chloroform fraction-based and n-hexane fraction-based MPS-NMs increased cell death by ~90% and ~ 82%, respectively. Chloroform fraction-based MPS-NMs (CMPS-NMs) triggers apoptotic cell death in human mesenchymal stem cells (hMSCs). n-Hexane fraction-based MPS-NMs (HMPS-NMs) treated cells have red color-intact nuclei, attributed to necrotic cell death. The CMPS-NMs and HMPS-NMs significantly decreased the mitochondria membrane potential and increased the intracellular reactive oxygen species (ROS) levels. We observed significant downregulation in flavin-containing monooxygenase (FMO), Ataxia Telangiectasia Mutated (ATM), and uridine diphosphate glucuronosyltransferases (UGT) gene expression levels in the exposed cells of CMPS-NMs and HMPS- NMs. In addition, we found upregulation of glutathione-disulfide reductase (GSR) and glutathione S-transferase A4 (GSTA4) genes in CMPS-NMs, and HMPS-NMs exposure. CONCLUSION: The cooking process may lead to the formation of nanostructured material in food systems. Chloroform fraction-based MPS-NMs and HMPS-NMs may contribute to cell metabolic disorders. © 2023 Society of Chemical Industry.


Assuntos
Nanoestruturas , Solanum tuberosum , Humanos , Ácido Mirístico , Clorofórmio , Nanoestruturas/química , Amido , Carboidratos
16.
In Vivo ; 38(1): 107-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148048

RESUMO

BACKGROUND/AIM: Bone resolution due to tumor invasion often occurs on the surface of the jaw and is important for clinical prognosis. Although cytokines, such as TNF-α are known to impair osteoblasts, the underlying mechanism remains unclear. Protein myristoylation, a post-translational modification, plays an important role in the development of immune responses and cancerization of cells. A clear understanding of the mechanisms underlying this involvement will provide insights into molecular-targeted therapies. N-myristoyltransferase1 (NMT1), a specific enzyme involved in myristoylation, is expressed in cancer cells and in other normal cells, suggesting that changes in myristoylation may result from the regulation of NMT1 in cancer cells. MATERIALS AND METHODS: Using newly emerging state-of-the-art techniques such as the Click-it assay, RNA interference, mass spectrometry, immunoprecipitation, immunocytochemistry, and western blotting, the expression of myristoylated proteins and the role of TNF-α stimulation on NMT1 and Sorbs2 binding were evaluated in a murine osteoblastic cell line (MC3T3-E1). RESULTS: The expression of myristoylated proteins was detected; however, TNF-α stimulation resulted in their inhibition in MC3T3-E1 cells. The expression of NMT1 also increased. Immunoprecipitation and mass spectrometry identified Sorbs2 as a novel binding protein of NMT1, which upon TNF-α stimulation, inhibited myristoylation. CONCLUSION: The binding between NMT1 and Sorbs2 can regulate myristoylation, and NMT1 can be considered as a potential target molecule for tumor invasion.


Assuntos
Neoplasias , Fator de Necrose Tumoral alfa , Humanos , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Ácido Mirístico/metabolismo , Osteoblastos/metabolismo , Proteínas de Ligação a RNA , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
17.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067553

RESUMO

Seahorse is a valuable marine-animal drug widely used in traditional Chinese medicine (TCM), and which was first documented in the "Ben Cao Jing Ji Zhu" during the Liang Dynasty. Hippocampus kelloggi (HK) is the most common seahorse species in the medicinal material market and is one of the genuine sources of medicinal seahorse documented in the Chinese pharmacopeia. It is mainly cultivated in the Shandong, Fujian, and Guangxi Provinces in China. However, pseudo-HK, represented by Hippocampus ingens (HI) due to its similar appearance and traits, is often found in the market, compromising the safety and efficacy of clinical use. Currently, there is a lack of reliable methods for identifying these species based on their chemical composition. In this study, we employed, for the first time, a strategy combining gas chromatography-mass spectrometry (GC-MS) fingerprints and chemical patterns in order to identify HK and HI; it is also the first metabolomic study to date of HI as to chemical components. The obtained results revealed remarkable similarities in the chemical fingerprints, while significant differences were also observed. By employing hierarchical cluster analysis (HCA) and principal component analysis (PCA), based on the relative contents of their characteristic peaks, all 34 samples were successfully differentiated according to their species of origin, with samples from the same species forming distinct clusters. Moreover, nonadecanoic acid and behenic acid were exclusively detected in HK samples, further distinguishing them from HI samples. Additionally, the relative contents of lauric acid, tetradecanoic acid, pentadecanoic acid, n-hexadecanoic acid, palmitoleic acid, margaric acid, oleic acid, fenozan acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) exhibited significant differences between HK and HI (p < 0.0001), as determined by an unpaired t-test. Orthogonal partial least squares discriminant analysis (OPLS-DA) identified seven components (DHA, EPA, n-hexadecanoic acid, tetradecanoic acid, palmitoleic acid, octadecanoic acid, and margaric acid) with high discriminatory value (VIP value > 1). Thus, nonadecanoic acid, behenic acid, and these seven compounds can be utilized as chemical markers for distinguishing HK from HI. In conclusion, our study successfully developed a combined strategy of GC-MS fingerprinting and chemical pattern recognition for the identification of HK and HI, and we also discovered chemical markers that can directly differentiate between the two species. This study can provide a foundation for the authentication of Hippocampus and holds significant importance for the conservation of wild seahorse resources.


Assuntos
Smegmamorpha , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ácido Mirístico , China , Análise por Conglomerados , Cromatografia Líquida de Alta Pressão/métodos , Análise de Componente Principal
18.
Sci Rep ; 13(1): 22991, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151566

RESUMO

The present study examined human N-myristoylated proteins that specifically localize to mitochondria among the 1,705 human genes listed in MitoProteome, a mitochondrial protein database. We herein employed a strategy utilizing cellular metabolic labeling with a bioorthogonal myristic acid analog in transfected COS-1 cells established in our previous studies. Four proteins, DMAC1, HCCS, NDUFB7, and PLGRKT, were identified as N-myristoylated proteins that specifically localize to mitochondria. Among these proteins, DMAC1 and NDUFB7 play critical roles in the assembly of complex I of the mitochondrial respiratory chain. DMAC1 functions as an assembly factor, and NDUFB7 is an accessory subunit of complex I. An analysis of the intracellular localization of non-myristoylatable G2A mutants revealed that protein N-myristoylation occurring on NDUFB7 was important for the mitochondrial localization of this protein. Furthermore, an analysis of the role of the CHCH domain in NDUFB7 using Cys to Ser mutants revealed that it was essential for the mitochondrial localization of NDUFB7. Therefore, the present results showed that NDUFB7, a vital component of human mitochondrial complex I, was N-myristoylated, and protein N-myrisotylation and the CHCH domain were both indispensable for the specific targeting and localization of NDUFB7 to mitochondria.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Animais , Chlorocebus aethiops , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Células COS , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Ácido Mirístico/metabolismo , NADH NADPH Oxirredutases/metabolismo
19.
Mol Cell Proteomics ; 22(12): 100677, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949301

RESUMO

Proteins can be modified by lipids in various ways, for example, by myristoylation, palmitoylation, farnesylation, and geranylgeranylation-these processes are collectively referred to as lipidation. Current chemical proteomics using alkyne lipids has enabled the identification of lipidated protein candidates but does not identify endogenous lipidation sites and is not readily applicable to in vivo systems. Here, we introduce a proteomic methodology for global analysis of endogenous protein N-terminal myristoylation sites that combines liquid-liquid extraction of hydrophobic lipidated peptides with liquid chromatography-tandem mass spectrometry using a gradient program of acetonitrile in the high concentration range. We applied this method to explore myristoylation sites in HeLa cells and identified a total of 75 protein N-terminal myristoylation sites, which is more than the number of high-confidence myristoylated proteins identified by myristic acid analog-based chemical proteomics. Isolation of myristoylated peptides from HeLa digests prepared with different proteases enabled the identification of different myristoylated sites, extending the coverage of N-myristoylome. Finally, we analyzed in vivo myristoylation sites in mouse tissues and found that the lipidation profile is tissue-specific. This simple method (not requiring chemical labeling or affinity purification) should be a promising tool for global profiling of protein N-terminal myristoylation.


Assuntos
Proteínas , Proteômica , Humanos , Animais , Camundongos , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Células HeLa , Proteínas/metabolismo , Peptídeos/metabolismo , Extração Líquido-Líquido , Processamento de Proteína Pós-Traducional
20.
J Chem Inf Model ; 63(21): 6789-6806, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37917127

RESUMO

Liposomes are considered as advanced drug delivery systems for cancer treatment. A generation of pH-sensitive liposomes is being developed that use fatty acids (FAs) as a trigger for drug release in tumor tissues. However, FAs are also known to enhance permeability, and it is unclear whether FAs in liposomes may cause drug leakage or premature drug release. The passive permeability of the drug through the membrane of the liposome is thus a crucial factor for timely drug delivery. To investigate how the curvature and lipid composition of liposomes affect their passive permeability, coarse-grained molecular dynamics were performed. The permeability was determined with a counting method. Flat bilayers and three liposomes with varying diameters were studied, which had varying lipid compositions of dipalmitoylphosphatidylcholine, cholesterol, and deprotonated or neutral saturated FAs. The investigated permeants were water and two other small permeants, which have different free energy profiles (solubility) across the membrane. First, for the curvature effect, our results showed that curvature increases the water permeability by reducing the membrane thickness. The permeability increase for water is about a factor of 1.7 for the most curved membranes. However, a high curvature decreases permeability for permeants with free energy profiles that are a mix of wells and barriers in the headgroup region of the membrane. Importantly, the type of experimental setup is expected to play a dominant role in the permeability value, i.e., whether permeants are escaping or entering the liposomes. Second, for the composition effect, FAs decrease both the area per lipid (APL) and the membrane thickness, resulting in permeability increases of up to 55%. Cholesterol has a similar effect on the APL but has the opposite impact on membrane thickness and permeability. Therefore, FAs and cholesterol have opposing effects on permeability, with cholesterol's effect being slightly stronger in our simulated bilayers. As all permeability values were well within a factor of 2, and with liposomes usually being larger and less curved in experimental applications, it can be concluded that the passive drug release from a pH-sensitive liposome does not seem to be significantly affected by the presence of FAs.


Assuntos
Ácidos Decanoicos , Lipossomos , Ácido Mirístico , Permeabilidade , Água , Colesterol , Bicamadas Lipídicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA