Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.637
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175754

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a critical cofactor essential for various cellular processes. Abnormalities in NAD+ metabolism have also been associated with a number of metabolic disorders. The regulation and interconnection of NAD+ metabolic pathways are not yet completely understood. By employing an NAD+ intermediate-specific genetic system established in the model organism S. cerevisiae, we show that histone deacetylases (HDACs) Hst1 and Rpd3 link the regulation of the de novo NAD+ metabolism-mediating BNA genes with certain aspects of the phosphate (Pi)-sensing PHO pathway. Our genetic and gene expression studies suggest that the Bas1-Pho2 and Pho2-Pho4 transcription activator complexes play a role in this co-regulation. Our results suggest a model in which competition for Pho2 usage between the BNA-activating Bas1-Pho2 complex and the PHO-activating Pho2-Pho4 complex helps balance de novo activity with PHO activity in response to NAD+ or phosphate depletion. Interestingly, both the Bas1-Pho2 and Pho2-Pho4 complexes appear to also regulate the expression of the salvage-mediating PNC1 gene negatively. These results suggest a mechanism for the inverse regulation between the NAD+ salvage pathways and the de novo pathway observed in our genetic models. Our findings help provide a molecular basis for the complex interplay of two different aspects of cellular metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , NAD/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Transativadores/metabolismo , Proteínas de Homeodomínio/metabolismo
2.
J Neuroinflammation ; 20(1): 117, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208728

RESUMO

BACKGROUND: New data are accumulating on gut microbial dysbiosis in Parkinson's disease (PD), while the specific mechanism remains uncharacterized. This study aims to investigate the potential role and pathophysiological mechanism of dysbiosis of gut microbiota in 6-hydroxydopamine (6-OHDA)-induced PD rat models. METHODS: The shotgun metagenome sequencing data of fecal samples from PD patients and healthy individuals were obtained from the Sequence Read Archive (SRA) database. The diversity, abundance, and functional composition of gut microbiota were further analyzed in these data. After the exploration of the functional pathway-related genes, KEGG and GEO databases were used to obtain PD-related microarray datasets for differential expression analysis. Finally, in vivo experiments were performed to confirm the roles of fecal microbiota transplantation (FMT) and upregulated NMNAT2 in neurobehavioral symptoms and oxidative stress response in 6-OHDA-lesioned rats. RESULTS: Significant differences were found in the diversity, abundance, and functional composition of gut microbiota between PD patients and healthy individuals. Dysbiosis of gut microbiota could regulate NAD+ anabolic pathway to affect the occurrence and development of PD. As a NAD+ anabolic pathway-related gene, NMNAT2 was poorly expressed in the brain tissues of PD patients. More importantly, FMT or overexpression of NMNAT2 alleviated neurobehavioral deficits and reduced oxidative stress in 6-OHDA-lesioned rats. CONCLUSIONS: Taken together, we demonstrated that dysbiosis of gut microbiota suppressed NMNAT2 expression, thus exacerbating neurobehavioral deficits and oxidative stress response in 6-OHDA-lesioned rats, which could be rescued by FMT or NMNAT2 restoration.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Oxidopamina/toxicidade , Microbioma Gastrointestinal/fisiologia , Disbiose/terapia , Disbiose/metabolismo , NAD , Estresse Oxidativo
3.
Front Immunol ; 14: 1146791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180151

RESUMO

CD38, a nicotinamide adenine dinucleotide (NAD)+ glycohydrolase, is considered an activation marker of T lymphocytes in humans that is highly expressed during certain chronic viral infections. T cells constitute a heterogeneous population; however, the expression and function of CD38 has been poorly defined in distinct T cell compartments. We investigated the expression and function of CD38 in naïve and effector T cell subsets in the peripheral blood mononuclear cells (PBMCs) from healthy donors and people with HIV (PWH) using flow cytometry. Further, we examined the impact of CD38 expression on intracellular NAD+ levels, mitochondrial function, and intracellular cytokine production in response to virus-specific peptide stimulation (HIV Group specific antigen; Gag). Naïve T cells from healthy donors showed remarkably higher levels of CD38 expression than those of effector cells with concomitant reduced intracellular NAD+ levels, decreased mitochondrial membrane potential and lower metabolic activity. Blockade of CD38 by a small molecule inhibitor, 78c, increased metabolic function, mitochondrial mass and mitochondrial membrane potential in the naïve T lymphocytes. PWH exhibited similar frequencies of CD38+ cells in the T cell subsets. However, CD38 expression increased on Gag-specific IFN-γ and TNF-α producing cell compartments among effector T cells. 78c treatment resulted in reduced cytokine production, indicating its distinct expression and functional profile in different T cell subsets. In summary, in naïve cells high CD38 expression reflects lower metabolic activity, while in effector cells it preferentially contributes to immunopathogenesis by increasing inflammatory cytokine production. Thus, CD38 may be considered as a therapeutic target in chronic viral infections to reduce ongoing immune activation.


Assuntos
Infecções por HIV , Viroses , Humanos , ADP-Ribosil Ciclase 1/metabolismo , NAD/metabolismo , Leucócitos Mononucleares/metabolismo , Citocinas
4.
Nat Commun ; 14(1): 2772, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188719

RESUMO

The use of gaseous and air-captured CO2 for technical biosynthesis is highly desired, but elusive so far due to several obstacles including high energy (ATP, NADPH) demand, low thermodynamic driving force and limited biosynthesis rate. Here, we present an ATP and NAD(P)H-free chemoenzymatic system for amino acid and pyruvate biosynthesis by coupling methanol with CO2. It relies on a re-engineered glycine cleavage system with the NAD(P)H-dependent L protein replaced by biocompatible chemical reduction of protein H with dithiothreitol. The latter provides a higher thermodynamic driving force, determines the reaction direction, and avoids protein polymerization of the rate-limiting enzyme carboxylase. Engineering of H protein to effectively release the lipoamide arm from a protected state further enhanced the system performance, achieving the synthesis of glycine, serine and pyruvate at g/L level from methanol and air-captured CO2. This work opens up the door for biosynthesis of amino acids and derived products from air.


Assuntos
NAD , Ácido Pirúvico , Ácido Pirúvico/metabolismo , NAD/metabolismo , Aminoácidos , Dióxido de Carbono , Metanol , Trifosfato de Adenosina
5.
Front Endocrinol (Lausanne) ; 14: 1110369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152948

RESUMO

Introduction: Estrogens inhibit bone resorption and preserve bone mass, at least in part, via direct effects on osteoclasts. The binding of RANKL, the critical cytokine for osteoclast differentiation, to its receptor in osteoclast precursor cells of the monocyte lineage recruits the adaptor protein TRAF6 and activates multiple signaling pathways. Early effects of RANKL include stimulation of mitochondria. 17ß-estradiol (E2) prevents the effects of RANKL on mitochondria and promotes mitochondria mediated apoptotic cell death. However, the molecular mechanisms responsible for the actions of RANKL and estrogens on mitochondria remain unknown. Evolutionarily Conserved Signaling Intermediate in Toll Pathway (ECSIT) is a complex I-associated protein that regulates immune responses in macrophages following the engagement of Toll-like receptors, which also recruit TRAF6. Here, we examined whether ECSIT could be implicated in the rapid effects of RANKL and E2 on osteoclast progenitors. Methods: Bone marrow-derived macrophages (BMMs) from C57BL/6 mice were cultured with RANKL (30 ng/ml) with or without E2 (10-8 M). ECSIT-TRAF6 interaction was evaluated by co-immunoprecipitation and ECSIT levels in mitochondria and cytosolic fractions by Western blot. ShRNA lentivirus particles were used to knockdown ECSIT. Osteoclasts were enumerated after tartrate-resistant acid phosphatase staining. Oxygen consumption and extracellular acidification rates were measured with Seahorse XFe96 Analyzer. ATP, lactate, and NAD/NADH were measured with commercial assay kits. NADH oxidation to NAD was used to evaluate Complex I activity. Total and mitochondrial ROS, and mitochondrial membrane potential were measured with H2DCFDA, MitoSOX, and TMRM probes, respectively. Degradation of DEVD-AFC was used to measure Caspase-3 activity. Results: We found that RANKL promoted ECSIT-TRAF6 interaction and increased the levels of ECSIT in mitochondria. E2 abrogated these effects of RANKL. Silencing of ECSIT decreased osteoclast differentiation and abrogated the inhibitory effects of E2 on osteoclastogenesis. Loss of ECSIT decreased complex I activity, oxygen consumption, NAD+/NADH redox ratio, and ATP production and increased mitochondrial ROS. In the absence of ECSIT, the stimulatory actions of RANKL on complex I activity and all other markers of oxidative phosphorylation, as well as their inhibition by E2, were prevented. Instead, RANKL stimulated apoptosis of osteoclast progenitors. Discussion: These findings suggest that dysregulated mitochondria cause a switch in RANKL signaling from pro-survival to pro-apoptotic. In addition, our results indicate that ECSIT represents a central node for the early effects of RANKL on mitochondria and that inhibition of ECSIT-mediated mitochondria stimulation might contribute to the bone protective actions of estrogens.


Assuntos
NAD , Osteogênese , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/fisiologia , Estrogênios/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NAD/metabolismo , Osteoclastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
6.
Neoplasia ; 41: 100903, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148658

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is a key metabolic enzyme in NAD+ synthesis pathways and is found upregulated in several tumors, depicting NAD(H) lowering agents, like the NAMPT inhibitor FK866, as an appealing approach for anticancer therapy. Like other small molecules, FK866 triggers chemoresistance, observed in several cancer cellular models, which can prevent its clinical application. The molecular mechanisms sustaining the acquired of resistance to FK866 were studied in a model of triple negative breast cancer (MDA-MB-231 parental - PAR), exposed to increasing concentrations of the small molecule (MDA-MB-231 resistant - RES). RES cells are not sensitive to verapamil or cyclosporin A, excluding a potential role of increased efflux pumps activity as a mechanism of resistance. Similarly, the silencing of the enzyme Nicotinamide Riboside Kinase 1 (NMRK1) in RES cells does not increase FK866 toxicity, excluding this pathway as a compensatory mechanism of NAD+ production. Instead, Seahorse metabolic analysis revealed an increased mitochondrial spare respiratory capacity in RES cells. These cells presented a higher mitochondrial mass compared to the FK866-sensitive counterparts, as well as an increased consumption of pyruvate and succinate for energy production. Interestingly, co-treatment of PAR cells with FK866 and the mitochondrial pyruvate carrier (MPC) inhibitors UK5099 or rosiglitazone, as well as with the transient silencing of MPC2 but not of MPC1, induces a FK866-resistant phenotype. Taken together, these results unravel novel mechanisms of cell plasticity to counteract FK866 toxicity, that, besides the previously described LDHA dependency, rely on mitochondrial rewiring at functional and energetic levels.


Assuntos
NAD , Neoplasias de Mama Triplo Negativas , Humanos , NAD/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Fosfotransferases (Aceptor do Grupo Álcool)
7.
Biochemistry ; 62(10): 1553-1567, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37130364

RESUMO

The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of N-heterocyclic aromatic compounds. Toward these goals, transient state kinetic analyses by stopped-flow spectrophotometry were utilized to follow rapid changes in flavoenzyme absorbance spectra during all three stages of NicC catalysis: (1) 6-HNA binding; (2) NADH binding and FAD reduction; and (3) O2 binding with C4a-adduct formation, substrate hydroxylation, and FAD regeneration. Global kinetic simulations by numeric integration were used to supplement analytical fitting of time-resolved data and establish a kinetic mechanism. Results indicate that 6-HNA binding is a two-step process that substantially increases the affinity of NicC for NADH and enables the formation of a charge-transfer-complex intermediate to enhance the rate of flavin reduction. Singular value decomposition of the time-resolved spectra during the reaction of the substrate-bound, reduced enzyme with dioxygen provides evidence for the involvement of C4a-hydroperoxy-flavin and C4a-hydroxy-flavin intermediates in NicC catalysis. Global analysis of the full kinetic mechanism suggests that steady-state catalytic turnover is partially limited by substrate hydroxylation and C4a-hydroxy-flavin dehydration to regenerate the flavoenzyme. Insights gleaned from the kinetic model and determined microscopic rate constants provide a fundamental basis for understanding NicC's substrate specificity and reactivity.


Assuntos
Oxigenases de Função Mista , NAD , Cinética , NAD/metabolismo , Oxigenases de Função Mista/metabolismo , Flavinas/metabolismo , Catálise , Oxirredução , Flavina-Adenina Dinucleotídeo/química
8.
Oncotarget ; 14: 419-425, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37141415

RESUMO

While glycolysis is abundant in malignancies, mitochondrial metabolism is significant as well. Mitochondria harbor the enzymes relevant for cellular respiration, which is a critical pathway for both regeneration of reduction equivalents and energy production in the form of ATP. The oxidation of NADH2 and FADH2 are fundamental since NAD and FAD are the key components of the TCA-cycle that is critical to entertain biosynthesis in cancer cells. The TCA-cycle itself is predominantly fueled through carbons from glucose, glutamine, fatty acids and lactate. Targeting mitochondrial energy metabolism appears feasible through several drug compounds that activate the CLPP protein or interfere with NADH-dehydrogenase, pyruvate-dehydrogenase, enzymes of the TCA-cycle and mitochondrial matrix chaperones. While these compounds have demonstrated anti-cancer effects in vivo, recent research suggests which patients most likely benefit from such treatments. Here, we provide a brief overview of the status quo of targeting mitochondrial energy metabolism in glioblastoma and highlight a novel combination therapy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , NAD/metabolismo , Ciclo do Ácido Cítrico , Metabolismo Energético , Respiração Celular , Glicólise , Glucose/metabolismo , Oxirredutases
9.
Front Immunol ; 14: 1166609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215105

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose (cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger, is critical in releasing oxytocin from the hypothalamus into the brain. Although NAD precursors effectively play a role in neurodegenerative disorders, muscular dystrophy, and senescence, the beneficial effects of elevating NAD by NAD precursor supplementation on brain function, especially social interaction, and whether CD38 is required in this response, has not been intensely studied. Here, we report that oral gavage administration of nicotinamide riboside, a perspective NAD precursor with high bioavailability, for 12 days did not show any suppressive or increasing effects on sociability (mouse's interest in social targets compared to non-social targets) in both CD157KO and CD38KO male mice models in a three-chamber test. CD157KO and CD38KO mice displayed no social preference (that is, more interest towards a novel mouse than a familiar one) behavior. This defect was rescued after oral gavage administration of nicotinamide riboside for 12 days in CD157KO mice, but not in CD38KO mice. Social memory was not observed in CD157KO and CD38KO mice; subsequently, nicotinamide riboside administration had no effect on social memory. Together with the results that nicotinamide riboside had essentially no or little effect on body weight during treatment in CD157KO mice, nicotinamide riboside is less harmful and has beneficial effect on defects in recovery from social behavioral, for which CD38 is required in mice.


Assuntos
ADP-Ribose Cíclica , NAD , Masculino , Camundongos , Animais , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase , Camundongos Knockout , Comportamento Social
10.
Chem Commun (Camb) ; 59(42): 6343-6346, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37132604

RESUMO

An NQO1-responsive precursor, named R848-QPA, has been developed to evoke an anti-tumor immune response. R848-QPA can induce innate immune activation when activated by overexpressed NQO1 in the tumor microenvironment while showing lower activity in NQO1-deprived environments. This strategy provides a new method for the development of tumor-microenvironment-responsive prodrugs for antitumor immunotherapy.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , NAD , Receptor 7 Toll-Like , NAD(P)H Desidrogenase (Quinona) , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Quinonas/farmacologia , Microambiente Tumoral
11.
Commun Biol ; 6(1): 548, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217557

RESUMO

Human mitochondrial NAD(P)+-dependent malic enzyme (ME2) is well-known for its role in cell metabolism, which may be involved in cancer or epilepsy. We present potent ME2 inhibitors based on cyro-EM structures that target ME2 enzyme activity. Two structures of ME2-inhibitor complexes demonstrate that 5,5'-Methylenedisalicylic acid (MDSA) and embonic acid (EA) bind allosterically to ME2's fumarate-binding site. Mutagenesis studies demonstrate that Asn35 and the Gln64-Tyr562 network are required for both inhibitors' binding. ME2 overexpression increases pyruvate and NADH production while decreasing the cell's NAD+/NADH ratio; however, ME2 knockdown has the opposite effect. MDSA and EA inhibit pyruvate synthesis and thus increase the NAD+/NADH ratio, implying that these two inhibitors interfere with metabolic changes by inhibiting cellular ME2 activity. ME2 silence or inhibiting ME2 activity with MDSA or EA decreases cellular respiration and ATP synthesis. Our findings suggest that ME2 is crucial for mitochondrial pyruvate and energy metabolism, as well as cellular respiration, and that ME2 inhibitors could be useful in the treatment of cancer or other diseases that involve these processes.


Assuntos
Respiração Celular , NAD , Humanos , NAD/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Ácido Pirúvico/metabolismo
12.
Cells ; 12(9)2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174729

RESUMO

The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.


Assuntos
Mitocôndrias , NAD , NAD/metabolismo , Mitocôndrias/metabolismo , Homeostase , Organelas/metabolismo , Metabolismo Energético
13.
Circ Res ; 132(11): e223-e242, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37154056

RESUMO

BACKGROUND: Doxorubicin is an effective chemotherapy drug for treating various types of cancer. However, lethal cardiotoxicity severely limits its clinical use. Recent evidence has indicated that aberrant activation of the cytosolic DNA-sensing cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-STING (stimulator of interferon genes) pathway plays a critical role in cardiovascular destruction. Here, we investigate the involvement of this mechanism in doxorubicin-induced cardiotoxicity (DIC). METHODS: Mice were treated with low-dose doxorubicin to induce chronic DIC. The role of the cGAS-STING pathway in DIC was evaluated in cGAS-deficiency (cGAS-/-), Sting-deficiency (Sting-/-), and interferon regulatory factor 3 (Irf3)-deficiency (Irf3-/-) mice. Endothelial cell (EC)-specific conditional Sting deficiency (Stingflox/flox/Cdh5-CreERT) mice were used to assess the importance of this pathway in ECs during DIC. We also examined the direct effects of the cGAS-STING pathway on nicotinamide adenine dinucleotide (NAD) homeostasis in vitro and in vivo. RESULTS: In the chronic DIC model, we observed significant activation of the cGAS-STING pathway in cardiac ECs. Global cGAS, Sting, and Irf3 deficiency all markedly ameliorated DIC. EC-specific Sting deficiency significantly prevented DIC and endothelial dysfunction. Mechanistically, doxorubicin activated the cardiac EC cGAS-STING pathway and its target, IRF3, which directly induced CD38 expression. In cardiac ECs, the cGAS-STING pathway caused a reduction in NAD levels and subsequent mitochondrial dysfunction via the intracellular NAD glycohydrolase (NADase) activity of CD38. Furthermore, the cardiac EC cGAS-STING pathway also regulates NAD homeostasis and mitochondrial bioenergetics in cardiomyocytes through the ecto-NADase activity of CD38. We also demonstrated that pharmacological inhibition of TANK-binding kinase 1 or CD38 effectively ameliorated DIC without compromising the anticancer effects of doxorubicin. CONCLUSIONS: Our findings indicate a critical role of the cardiac EC cGAS-STING pathway in DIC. The cGAS-STING pathway may represent a novel therapeutic target for preventing DIC.


Assuntos
Cardiotoxicidade , Transdução de Sinais , Camundongos , Animais , NAD/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Doxorrubicina/toxicidade
14.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240290

RESUMO

Oxygen homeostasis is an important organizing principle for understanding development, physiology, disease, and evolution. Under various physiological and pathological states, organisms experience oxygen deficiency or hypoxia. FoxO4 has been recognized as an important transcriptional regulator involved in a variety of cellular functions, including proliferation, apoptosis, differentiation, and stress resistance, but its role in hypoxia adaptation mechanisms in animals is not so clear. To explore the role of foxO4 in the hypoxia response, we detected the expression of foxO4 and the regulatory relationship between Hif1α and foxO4 under hypoxic conditions. It was found that the expression of foxO4 was up-regulated in ZF4 cells and zebrafish tissues after hypoxia treatment, and Hif1α could directly target the HRE of the foxO4 promoter to regulate foxO4 transcription, indicating that foxO4 was involved in the hypoxia response by the Hif1α-mediated pathway. Furthermore, we obtained foxO4 knockout zebrafish and found that the disruption of foxO4 increased the tolerance to hypoxia. Further research found that the oxygen consumption and locomotor activity of foxO4-/- zebrafish were lower than those of WT zebrafish, as was true for NADH content, NADH/NAD+ rate, and expression of mitochondrial respiratory chain complex-related genes. This suggests that disruption of foxO4 reduced the oxygen demand threshold of the organism, which explained why the foxO4-/- zebrafish were more tolerant to hypoxia than WT zebrafish. These results will provide a theoretical basis for further study of the role of foxO4 in the hypoxia response.


Assuntos
NAD , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , NAD/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Oxigênio/metabolismo
15.
Biomed Khim ; 69(2): 104-111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37132492

RESUMO

The development of experimental alloxan diabetes in rats was accompanied by the increase the activity of liver NAD⁺- and NADP⁺-dependent malic enzymes (ME; NAD⁺-ME, EC 1.1.1.39 and NADP⁺-ME, 1.1.1.40) associated with an increase in the rate of transcription of genes encoding these enzymes. Oral administration of aqueous extracts of Jerusalem artichoke and olive to diabetic rats caused a noticeable decrease in blood glucose, a decrease in the rate of transcription of the studied genes; and a decrease in ME activity towards normal values. Thus, extracts of Jerusalem artichoke and olive can be used as additives to the standard therapy of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Helianthus , Ratos , Animais , NAD , NADP , Diabetes Mellitus Experimental/tratamento farmacológico , Fígado , Malato Desidrogenase/genética
16.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175698

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.


Assuntos
Dermatite Atópica , Psoríase , Animais , Humanos , Inflamação , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Psoríase/etiologia , Peixe-Zebra/metabolismo
17.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175477

RESUMO

Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Lactato Desidrogenase 5 , Proteínas Facilitadoras de Transporte de Glucose , NAD , Linhagem Celular Tumoral , Glicólise , Trifosfato de Adenosina , Glucose , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia
18.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175631

RESUMO

The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.


Assuntos
NAD , Sirtuínas , Humanos , NAD/metabolismo , Sirtuínas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Carcinogênese
19.
Front Endocrinol (Lausanne) ; 14: 1164788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152934

RESUMO

Background: Nicotinamide adenine dinucleotide (NAD+) is a coenzyme and plays a crucial role in several metabolic processes. This study explored the association of nicotinamide adenine dinucleotide (NAD+) levels with metabolic disease (MD) in adults. Methods: In this cross-sectional study, all data were collected from the Jidong community. MD was defined as the presence of one or more of the following disease components: hypertension, dyslipidemia, diabetes, hyperuricemia, obesity, and non-alcoholic fatty liver disease (NAFLD). The MD components were categorized into three groups: those with one component, those with two components, and those with three to six components. The whole blood NAD+ level was measured using a cycling assay and LC-MS/MS analysis. The participants were divided into four groups based on their NAD+ level quartiles. Multivariable logistic regression was used to evaluate the association of the whole blood NAD+ levels with MD. Results: Of the 1,394 eligible participants, the average age was 43.2 years, and 74.3% had MD. In the top quartile of NAD+, the prevalence of MD and each of its components (hypertension, hyperlipidemia, diabetes, hyperuricemia, obesity, and NAFLD) were 87.9% 35.2%, 62.3%, 8.7%, 36.9%, 21.0%, and 60.5%, respectively. As compared with the lowest NAD+ quartile (≤29.4 µmol/L), the adjusted odds ratios and 95% confidence interval of the highest quartile were 3.01 (1.87-4.87) for MD, 2.48 (1.44-4.29) for 1 MD component, 2.74 (1.45-5.17) for 2 MD components, and 4.30 (2.32-7.98) for 3-6 MD components. The risk of MD began to increase at NAD+ levels of 31.0 µmol/L, as revealed by the gradient associations of NAD+ levels with MD. There was no significant interaction between age, sex, drinking, smoking, and NAD+ for MD (p for interaction ≥0.10). Conclusions: Increased NAD+ was significantly associated with MD, as well as its individual components. Our findings provide new evidence for the relationship between blood NAD+ levels and MD.


Assuntos
Diabetes Mellitus , Hipertensão , Hiperuricemia , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , NAD/metabolismo , Hiperuricemia/epidemiologia , Hiperuricemia/complicações , Estudos Transversais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diabetes Mellitus/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Hipertensão/epidemiologia , Hipertensão/complicações
20.
PLoS One ; 18(5): e0285536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228120

RESUMO

Tetra-O-methyl-nordihydroguaiaretic acid (terameprocol; M4N), a global transcription inhibitor, in combination with a second anticancer drug induces strong tumoricidal activity and has the ability to suppress energy metabolism in cultured cancer cells. In this study, we showed that after continuous oral consumption of high-fat (HF) diets containing M4N, the M4N concentration in most of the organs in mice reached ~1 µM (the M4N concentration in intestines and fat pads was as high as 20-40 µM) and treatment with the combination of M4N with temozolomide (TMZ) suppressed glycolysis and the tricarboxylic acid cycle in LN229 human glioblastoma implanted in xenograft mice. Combination treatment of M4N with TMZ also reduced the levels of lactate dehydrogenase A (LDHA), a key enzyme for glycolysis; lactate, a product of LDHA-mediated enzymatic activity; nicotinamide phosphoribosyltransferase, a rate-limiting enzyme for nicotinamide adenine dinucleotide plus hydrogen (NADH)/NAD+ salvage pathway; and NAD+, a redox electron carrier essential for energy metabolism. It was also shown that M4N suppressed oxygen consumption in cultured LN229 cells, indicating that M4N inhibited oxidative phosphorylation. Treatment with M4N and TMZ also decreased the level of hypoxia-inducible factor 1A, a major regulator of LDHA, under hypoxic conditions. The ability of M4N to suppress energy metabolism resulted in induction of the stress-related proteins activating transcription factor 4 and cation transport regulator-like protein 1, and an increase in reactive oxygen species production. In addition, the combination treatment of M4N with TMZ reduced the levels of oncometabolites such as 2-hydroxyglutarate as well as the aforementioned lactate. M4N also induced methylidenesuccinic acid (itaconate), a macrophage-specific metabolite with anti-inflammatory activity, in tumor microenvironments. Meanwhile, the ability of M4N to suppress energy metabolism prevented obesity in mice consuming HF diets, indicating that M4N has beneficial effects on normal tissues. The dual ability of combination treatment with M4N to suppress both energy metabolism and oncometabolites shows that it is potentially an effective therapy for cancer.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Masoprocol/farmacologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/prevenção & controle , Glioblastoma/patologia , Dieta Hiperlipídica/efeitos adversos , NAD , Linhagem Celular Tumoral , Metabolismo Energético , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...