RESUMO
Four Gram-stain-negative, oxidase-positive, non-motile, cocci-shaped bacteria strains (ZJ106T, ZJ104, ZJ785T and ZJ930) were isolated from marmot respiratory tracts. Phylogenetic analyses based on 16S rRNA genes, 53 ribosomal protein sequences and 441 core genes supported that all four strains belonged to the genus Neisseria with close relatives Neisseria weixii 10022T and Neisseria iguanae ATCC 51483T. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were below the species-level thresholds (95-96â% for ANI, and 70â% for dDDH). The major fatty acids of all four strains were C16â:â1 ω7c /C16â:â1 ω6c, C16â:â0 and C18â:â1 ω9c. Major polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. MK-8 was the major menaquinone. Based on Virulence Factor Database analysis, the four strains were found to contain NspA and PorB H-factor binding proteins that promote evasion of host immunity. Strains ZJ106T and ZJ104 contained structures similar to the capsule synthesis manipulator of Neisseria meningitidis. Based on phenotypic and phylogenetic evidence, we propose that strains ZJ106T and ZJ785T represent two novel species of the genus Neisseria, respectively, with the names Neisseria lisongii sp. nov. and Neisseria yangbaofengii sp. nov. The type strains are ZJ106T (=GDMCC 1.3111T=JCM 35323T) and ZJ785T (=GDMCC 1.1998T=KCTC 82336T).
Assuntos
Ácidos Graxos , Marmota , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Neisseria/genética , Sistema Respiratório , NucleotídeosRESUMO
This study investigated antimicrobial resistance (AMR) phenotypes and genotypes exhibited by Neisseria gonorrhoeae from Yaoundé, Cameroon. AMR to tetracycline, penicillin and ciprofloxacin was observed although none of the isolates had reduced susceptibility to azithromycin, cefixime or ceftriaxone. Whole genome sequence (WGS) data were obtained and, using a threshold of 300 or fewer locus differences in the N. gonorrhoeae core gene multilocus sequence typing (cgMLST) scheme, four distinct core genome lineages were identified. Publicly available WGS data from 1355 gonococci belonging to these four lineages were retrieved from the PubMLST database, allowing the Cameroonian isolates to be examined in the context of existing data and compared with related gonococci. Examination of AMR genotypes in this dataset found an association between the core genome and AMR with, for example, isolates belonging to the core genome group, Ng_cgc_300â:â21, possessing GyrA and ParC alleles with amino acid substitutions conferring high-level resistance to ciprofloxacin while lineages Ng_cgc_300â:â41 and Ng_cgc_300â:â243 were predicted to be susceptible to several antimicrobials. A core genome lineage, Ng_cgc_300â:â498, was observed which largely consisted of gonococci originating from Africa. Analyses from this study demonstrate the advantages of using the N. gonorrhoeae cgMLST scheme to find related gonococci to carry out genomic analyses that enhance our understanding of the population biology of this important pathogen.
Assuntos
Neisseria gonorrhoeae , Neisseria , Neisseria gonorrhoeae/genética , Camarões , Genótipo , Fenótipo , Ciprofloxacina/farmacologiaRESUMO
A novel Neisseria strain, designated CSL10203-ORH2T, was isolated from the oropharynx of a wild California sea lion (Zalophus californianus) that was admitted to The Marine Mammal Center in California, USA. The strain was originally cultured from an oropharyngeal swab on BD Phenylethyl Alcohol (PEA) agar with 5% sheep blood under aerobic conditions. Phylogenetic analyses based on 16S rRNA, rplF, and rpoB gene sequences and the core genome sequences indicated that the strain was most closely related to only N. zalophi CSL 7565T. The average nucleotide identity and digital DNA-DNA hybridization values between strain CSL10203-ORH2T and the closely related species N. zalophi CSL 7565T were 89.84 and 39.70%, respectively, which were significantly lower than the accepted species-defined thresholds for describing novel prokaryotic species at the genomic level. Both type strains were phenotypically similar but can be easily and unambiguously distinguished between each other by the analysis of their housekeeping genes, e.g., rpoB, gyrB, or argF. The major fatty acids in both type strains were C12:0, C16:0, C16:1-c9, and C18:1-c11. Based on the genomic, phenotypic, and phylogenetic properties, the novel strain represents a novel species of the genus Neisseria, for which the name Neisseria montereyensis sp. nov. with the type strain CSL10203-ORH2T (= DSM 114706T = CCUG 76428T = NCTC 14721T) is proposed. The genome G + C content is 45.84% and the complete draft genome size is 2,310,535 bp.
Assuntos
Leões-Marinhos , Animais , Ovinos/genética , Leões-Marinhos/genética , Filogenia , Técnicas de Tipagem Bacteriana , Neisseria/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ácidos Graxos , Genômica , Orofaringe , DNA , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , FosfolipídeosRESUMO
Neisseria gonorrhoeae is a highly adapted human sexually transmitted pathogen that can cause symptomatic infections associated with localized inflammation as well as asymptomatic and subclinical infections, particularly in females. Gonococcal infection in humans does not generate an effective immune response in most cases, which contributes to both transmission of the pathogen and reinfection after treatment. Neisseria gonorrhoeae is known to evade and suppress human immune responses through a variety of mechanisms. Commensal Neisseria species that are closely related to N. gonorrhoeae, such as N. cinerea, N. lactamica, N. elongata, and N. mucosa, rarely cause disease and instead asymptomatically colonize mucosal sites for prolonged periods of time without evoking clearing immunologic responses. We have shown previously that N. gonorrhoeae inhibits the capacity of antigen-pulsed dendritic cells to induce CD4+ T cell proliferation in vitro. Much of the suppressive effects of N. gonorrhoeae on dendritic cells can be recapitulated either by outer-membrane vesicles released from the bacteria or by purified PorB, the most abundant outer-membrane protein in Neisseria gonorrhoeae. We show here that three commensal Neisseria species, N. cinerea, N. lactamica and N. mucosa, show a comparable capacity to suppress dendritic cell-induced T cell proliferation in vitro through mechanisms similar to those demonstrated previously for N. gonorrhoeae, including inhibition by purified PorB. Our findings suggest that some immune-evasive properties of pathogenic N. gonorrhoeae are shared with commensal Neisseria species and may contribute to the ability of both pathogens and commensals to cause prolonged mucosal colonization in humans.
Assuntos
Gonorreia , Neisseria , Humanos , Neisseria gonorrhoeae , Gonorreia/microbiologia , Linfócitos T CD4-Positivos , Proteínas de Membrana/metabolismoRESUMO
Glycogen-like particles (GLPs) are applied in food, pharmaceutical, and cosmetics. The large-scale production of GLPs is limited by their complicated multi-step enzymic processes. In this study, GLPs were produced in a one-pot dual-enzyme system using Bifidobacterium thermophilum branching enzyme (BtBE) and Neisseria polysaccharea amylosucrase (NpAS). BtBE showed excellent thermal stability (half-life of 1732.9â¯h at 50⯰C). Substrate concentration was the most influential factor during GLPs production in this system: GLPs yield and [sucrose]ini decreased from 42.4â¯% to 17.4â¯% and 0.3 to 1.0â¯M, respectively. Molecular weight and apparent density of GLPs decreased significantly with increasing [sucrose]ini. Regardless of the [sucrose]ini, the DP 6 of branch chain length was predominantly occupied. GLP digestibility increased with increasing [sucrose]ini, indicating that the degree of GLP hydrolysis may be negatively related to its apparent density. This one-pot biosynthesis of GLPs using a dual-enzyme system could be useful for the development of industrial processes.
Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Glucanos , Sacarose/química , Glucosiltransferases/química , Bifidobacterium , NeisseriaRESUMO
Anti-CRISPR proteins inhibit CRISPR-Cas immune systems through diverse mechanisms. Previously, the anti-CRISPR protein AcrIIC5Smu was shown to potently inhibit a type II-C Cas9 from Neisseria meningitidis (Nme1Cas9). In this work, we explore the mechanism of activity of the AcrIIC5 homologue from Neisseria chenwenguii (AcrIIC5Nch) and show that it prevents Cas9 binding to target DNA. We show that AcrIIC5Nch targets the PAM-interacting domain (PID) of Nme1Cas9 for inhibition, agreeing with previous findings for AcrIIC5Smu, and newly establish that strong binding of the anti-CRISPR requires guide RNA be pre-loaded on Cas9. We determined the crystal structure of AcrIIC5Nch using X-ray crystallography and identified amino acid residues that are critical for its function. Using a protein docking algorithm we show that AcrIIC5Nch likely occupies the Cas9 DNA binding pocket, thereby inhibiting target DNA binding through a mechanism similar to that previously described for AcrIIA2 and AcrIIA4.
Assuntos
Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Neisseria , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Ligação Proteica , Neisseria/genética , Neisseria/virologiaRESUMO
The Maf polymorphic toxin system is involved in conflict between strains found in pathogenic Neisseria species such as Neisseria meningitidis and Neisseria gonorrhoeae. The genes encoding the Maf polymorphic toxin system are found in specific genomic islands called maf genomic islands (MGIs). In the MGIs, the MafB and MafI encode toxin and immunity proteins, respectively. Although the C-terminal region of MafB (MafB-CT) is specific for toxic activity, the underlying enzymatic activity that renders MafB-CT toxic is unknown in many MafB proteins due to lack of homology with domain of known function. Here we present the crystal structure of the MafB2-CTMGI-2B16B6/MafI2MGI-2B16B6 complex from N. meningitidis B16B6. MafB2-CTMGI-2B16B6 displays an RNase A fold similar to mouse RNase 1, although the sequence identity is only ~ 14.0%. MafB2-CTMGI-2B16B6 forms a 1:1 complex with MafI2MGI-2B16B6 with a Kd value of ~ 40 nM. The complementary charge interaction of MafI2MGI-2B16B6 with the substrate binding surface of MafB2-CTMGI-2B16B6 suggests that MafI2MGI-2B16B6 inhibits MafB2-CTMGI-2B16B6 by blocking access of RNA to the catalytic site. An in vitro enzymatic assay showed that MafB2-CTMGI-2B16B6 has ribonuclease activity. Mutagenesis and cell toxicity assays demonstrated that His335, His402 and His409 are important for the toxic activity of MafB2-CTMGI-2B16B6, suggesting that these residues are critical for its ribonuclease activity. These data provide structural and biochemical evidence that the origin of the toxic activity of MafB2MGI-2B16B6 is the enzymatic activity degrading ribonucleotides.
Assuntos
Ilhas Genômicas , Neisseria meningitidis , Animais , Camundongos , Interleucina-6 , Neisseria , Ribonucleases , Proteínas Proto-Oncogênicas c-mafRESUMO
Clonal complex 4821 (CC4821) Neisseria meningitidis, usually resistant to quinolones but susceptible to penicillin and third-generation cephalosporins, is increasing worldwide. To characterize the penicillin-nonsusceptible (PenNS) meningococci, we analyzed 491 meningococci and 724 commensal Neisseria isolates in Shanghai, China, during 1965-2020. The PenNS proportion increased from 0.3% in 1965-1985 to 7.0% in 2005-2014 and to 33.3% in 2015-2020. Of the 26 PenNS meningococci, 11 (42.3%) belonged to the CC4821 cluster; all possessed mutations in penicillin-binding protein 2, mostly from commensal Neisseria. Genetic analyses and transformation identified potential donors of 6 penA alleles. Three PenNS meningococci were resistant to cefotaxime, 2 within the CC4821 cluster. With 96% of the PenNS meningococci beyond the coverage of scheduled vaccination and the cefotaxime-resistant isolates all from toddlers, quinolone-resistant CC4821 has acquired penicillin and cefotaxime resistance closely related to the internationally disseminated ceftriaxone-resistant gonococcal FC428 clone, posing a greater threat especially to young children.
Assuntos
Neisseria meningitidis , Quinolonas , Neisseria meningitidis/genética , Penicilinas , Quinolonas/farmacologia , Cefotaxima/farmacologia , China/epidemiologia , Neisseria/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência às Penicilinas/genéticaRESUMO
The ecological characteristics and changes of the supragingival plaque microbial community during pregnancy are poorly understood. This study compared the microbial community characteristics of supragingival plaque in pregnant and non-pregnant women, with the aim of identifying specific microbial lineages and genera that may be associated with pregnancy. Thirty pregnant women were randomly selected from the First Affiliated Hospital of Xinjiang Medical University and divided into groups based on pregnancy trimester: first trimester (group P1, n=10, ≤12 weeks), second trimester (group P2, n=10, 13-27 weeks), and third trimester (group P3, n=10, 28-40 weeks). Ten healthy non-pregnant women (group N) were enrolled as the control group. Supragingival plaque samples of all subjects were collected and oral microbial composition was surveyed using a 16S rRNA gene sequencing approach. Statistical analysis was performed using a nonparametric test. The Chao 1 index of P3 was significantly lower compared with that of N, P1, and P2 (P<0.05). The Simpson indices of P2 and P3 were significantly higher than that of N (P<0.05). The Shannon index of P2 was significantly higher compared with that of N (P<0.05). Principal coordinate analysis (PCoA) showed different clustering according to the pregnancy status. Linear discriminant analysis effect size (LEfSe) revealed that the microbial species in group N that were significantly different from those of other groups were concentrated in the genus Neisseria. Species in P1 that were significantly different from those of other groups were concentrated in the genus Tannerella, while those in P2 and P3 were concentrated in the genus Leptotrichia. A total of 172 functional pathways were predicted for the bacterial communities in this study using PICRUSt2. Principal Component Analysis (PCA) showed that most predicted functional pathways clustered together in N and P1 and in P2 and P3. LEfSe analysis revealed that 11 pathways played a discriminatory role in the four groups. This work suggests a potential role of pregnancy in the formation of supragingival plaque microbiota and indicates that physiological changes during pregnancy may convert supragingival plaque into entities that could cause harm, which may be a risk factor for maternal health. Furthermore, findings from the study provide a basis for etiological studies of pregnancy-associated oral ecological disorders.
Assuntos
Microbiota , Humanos , Feminino , Gravidez , RNA Ribossômico 16S/genética , Terceiro Trimestre da Gravidez , Neisseria , Fatores de RiscoRESUMO
Genome sequencing facilitates the study of bacterial taxonomy and allows the re-evaluation of the taxonomic relationships between species. Here, we aimed to analyze the draft genomes of four commensal Neisseria clinical isolates from the semen of infertile Lebanese men. To determine the phylogenetic relationships among these strains and other Neisseria spp. and to confirm their identity at the genomic level, we compared the genomes of these four isolates with the complete genome sequences of Neisseria gonorrhoeae and Neisseria meningitidis and the draft genomes of Neisseria flavescens, Neisseria perflava, Neisseria mucosa, and Neisseria macacae that are available in the NCBI Genbank database. Our findings revealed that the WGS analysis accurately identified and corroborated the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) species identities of the Neisseria isolates. The combination of three well-established genome-based taxonomic tools (in silico DNA-DNA Hybridization, Ortho Average Nucleotide identity, and pangenomic studies) proved to be relatively the best identification approach. Notably, we also discovered that some Neisseria strains that are deposited in databases contain many taxonomical errors. The latter is very important and must be addressed to prevent misdiagnosis and missing emerging etiologies. We also highlight the need for robust cut-offs to delineate the species using genomic tools.
Assuntos
Neisseria meningitidis , Neisseria , Masculino , Humanos , Filogenia , Neisseria/genética , Neisseria gonorrhoeae/genética , Neisseria meningitidis/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , DNA , Genoma BacterianoRESUMO
INTRODUCTION: Sepsis is a serious problem in felines with a mortality rate ranging from 29-79%. Neisseria spp. is considered a commensal microorganism of the oral cavity of dogs and cats and is usually isolated from human wounds resulting from bites of these animals. CASE REPORT: The present report describes clinical, imaging and laboratory findings of a feline with sepsis wherein commensal and multidrug-resistant (MDR) Neisseria spp. was isolated. The feline presented a history of four days of anorexia, dyspnea, prostration, and, pericardial, pleural and abdominal effusions. Pericardiocentesis was performed and hemorrhagic exudate was observed. The animal died after 11 days of treatment with gentamicin and amoxicillin combined with clavulanic acid. During necropsy, the abdominal cavity was found to be filled with greenish-yellow content and the pericardial sac was thickened with a large amount of purulent secretion. Histopathology revealed sepsis with necrotizing suppurative pericarditis, diffuse mononuclear pneumonia and necrotic pleuritis, leading to secondary bacterial infection. CONCLUSIONS: Commensal Neisseria spp. are important zoonotic bacteria, which trigger a serious disease in felines. However, it has not been reported to cause sepsis with pneumonia, suppurative necrotizing pericarditis and pericardial effusion.
Assuntos
Doenças do Gato , Doenças do Cão , Pericardite , Pneumonia , Sepse , Amoxicilina , Animais , Doenças do Gato/tratamento farmacológico , Gatos , Ácido Clavulânico , Cães , Gentamicinas , Humanos , Neisseria , Pericardite/microbiologia , Pericardite/terapia , Pneumonia/complicações , Sepse/tratamento farmacológico , Sepse/veterináriaRESUMO
Neisseria meningitidis and Neisseria gonorrhoeae are important human pathogens that have evolved to bind the major negative regulator of the complement system, complement factor H (CFH). However, little is known about the interaction of pathogens with CFH-related proteins (CFHRs) which are structurally similar to CFH but lack the main complement regulatory domains found in CFH. Insights into the role of CFHRs have been hampered by a lack of specific reagents. We generated a panel of CFHR-specific monoclonal antibodies and demonstrated that CFHR5 was bound by both pathogenic Neisseria spp. We showed that CFHR5 bound to PorB expressed by both pathogens in the presence of sialylated lipopolysaccharide and enhanced complement activation on the surface of N. gonorrhoeae. Our study furthered our understanding of the interactions of CFHRs with bacterial pathogens and revealed that CFHR5 bound the meningococcus and gonococcus via similar mechanisms.
Assuntos
Neisseria meningitidis , Porinas , Humanos , Porinas/metabolismo , Fator H do Complemento/metabolismo , Neisseria , Lipopolissacarídeos/metabolismo , Neisseria gonorrhoeae , Anticorpos Monoclonais/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismoRESUMO
Neisseria species are frequently identified in the bronchiectasis microbiome, but they are regarded as respiratory commensals. Using a combination of human cohorts, next-generation sequencing, systems biology, and animal models, we show that bronchiectasis bacteriomes defined by the presence of Neisseria spp. associate with poor clinical outcomes, including exacerbations. Neisseria subflava cultivated from bronchiectasis patients promotes the loss of epithelial integrity and inflammation in primary epithelial cells. In vivo animal models of Neisseria subflava infection and metabolipidome analysis highlight immunoinflammatory functional gene clusters and provide evidence for pulmonary inflammation. The murine metabolipidomic data were validated with human Neisseria-dominant bronchiectasis samples and compared with disease in which Pseudomonas-, an established bronchiectasis pathogen, is dominant. Metagenomic surveillance of Neisseria across various respiratory disorders reveals broader importance, and the assessment of the home environment in bronchiectasis implies potential environmental sources of exposure. Thus, we identify Neisseria species as pathobionts in bronchiectasis, allowing for improved risk stratification in this high-risk group.
Assuntos
Bronquiectasia , Microbiota , Animais , Bronquiectasia/epidemiologia , Humanos , Metagenoma , Camundongos , Neisseria/genéticaRESUMO
Rapid and cost-effective diagnosis of Neisseria gonorrhoeae (NG) are important measures for the control and management of gonococcal infection. Current diagnostic tools such as nucleic acid amplification tests and bacterial culture are not feasible in many resource-poor settings, and so syndromic patient management is commonplace. Alternative cost-effective diagnostic tools are therefore needed. Here, we sought to explore the utility and feasibility of Near Infrared Spectroscopy (NIRS) to (1) identify and differentiate NG from Neisseria commensals and (2) to differentiate fully susceptible NG from resistant NG. NIRS correctly classified NG from Neisseria commensals (R2= 0.89; SECV 0.164) and to a lesser capacity, susceptible NG from resistant (R2 = 0.60; SECV 0.32). To the best our knowledge, this is the first proof of concept study in the field. Further evaluations are now warranted to enhance capacity and accuracy of this diagnostic approach.
Assuntos
Anti-Infecciosos , Gonorreia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Gonorreia/diagnóstico , Gonorreia/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Neisseria , Neisseria gonorrhoeae , Espectroscopia de Luz Próxima ao InfravermelhoRESUMO
Antimicrobial resistance (AMR) is widespread within Neisseria gonorrhoeae populations. Recent work has highlighted the importance of commensal Neisseria (cN) as a source of AMR for their pathogenic relatives through horizontal gene transfer (HGT) of AMR alleles, such as mosaic penicillin binding protein 2 (penA), multiple transferable efflux pump (mtr), and DNA gyrase subunit A (gyrA) which impact beta-lactam, azithromycin, and ciprofloxacin susceptibility, respectively. However, nonpathogenic commensal species are rarely characterized. Here, we propose that surveillance of the universally carried commensal Neisseria may play the role of the "canary in the coal mine," and reveal circulating known and novel antimicrobial resistance determinants transferable to pathogenic Neisseria. We summarize the current understanding of commensal Neisseria as an AMR reservoir, and call to increase research on commensal Neisseria species, through expanding established gonococcal surveillance programs to include the collection, isolation, antimicrobial resistance phenotyping, and whole-genome sequencing (WGS) of commensal isolates. This will help combat AMR in the pathogenic Neisseria by: (i) determining the contemporary AMR profile of commensal Neisseria, (ii) correlating AMR phenotypes with known and novel genetic determinants, (iii) qualifying and quantifying horizontal gene transfer (HGT) for AMR determinants, and (iv) expanding commensal Neisseria genomic databases, perhaps leading to the identification of new drug and vaccine targets. The proposed modification to established Neisseria collection protocols could transform our ability to address AMR N. gonorrhoeae, while requiring minor modifications to current surveillance practices. IMPORTANCE Contemporary increases in the prevalence of antimicrobial resistance (AMR) in Neisseria gonorrhoeae populations is a direct threat to global public health and the effective treatment of gonorrhea. Substantial effort and financial support are being spent on identifying resistance mechanisms circulating within the gonococcal population. However, these surveys often overlook a known source of resistance for gonococci-the commensal Neisseria. Commensal Neisseria and pathogenic Neisseria frequently share DNA through horizontal gene transfer, which has played a large role in rendering antibiotic therapies ineffective in pathogenic Neisseria populations. Here, we propose the expansion of established gonococcal surveillance programs to integrate a collection, AMR profiling, and genomic sequencing pipeline for commensal species. This proposed expansion will enhance the field's ability to identify resistance in and from nonpathogenic reservoirs and anticipate AMR trends in pathogenic Neisseria.
Assuntos
Anti-Infecciosos , Gonorreia , Humanos , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Ligação às Penicilinas/metabolismo , Neisseria/genética , DNA Girase , Neisseria gonorrhoeae , Gonorreia/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ciprofloxacina/farmacologia , Anti-Infecciosos/metabolismo , beta-Lactamas/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Recent research has claimed virulence factors or antimicrobial resistance in commensal or non-pathogenic Neisseria spp. This study aimed to isolate and analyze commensal microorganisms related to the genus Neisseria from the oral cavity of a patient with head and neck cancer. We successfully isolated strain MA1-1 and identified its functional gene contents. Although strain MA1-1 was related to Neisseria flava based on 16S rRNA gene sequence similarity, genomic relatedness analysis revealed that strain MA1-1 was closely related to Neisseria mucosa, reported as a commensal Neisseria species. The strain MA1-1 genome harbored genes for microaerobic respiration and the complete core metabolic pathway with few transporters for nutrients. A number of genes have been associated with virulence factors and resistance to various antibiotics. In addition, the comparative genomic analysis showed that most genes identified in the strain MA1-1 were shared with other Neisseria spp. including two well-known pathogens, Neisseria gonorrhoeae and Neisseria meningitidis. This indicates that the gene content of intra-members of the genus Neisseria has been evolutionarily conserved and is stable, with no gene recombination with other microbes in the host. Finally, this study provides more fundamental interpretations for the complete gene sequence of commensal Neisseria spp. and will contribute to advancing public health knowledge.
Assuntos
Neoplasias de Cabeça e Pescoço , Neisseria meningitidis , Resistência Microbiana a Medicamentos , Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neisseria/genética , Neisseria meningitidis/genética , RNA Ribossômico 16S/genética , Fatores de Virulência/genéticaRESUMO
PURPOSE: Chlamydia trachomatis/Neisseria gonorrhea (CT/NG) retesting three months after diagnosis is a guideline-recommended strategy to detect re-infections. Adolescents and young adults are priority populations in the U.S. Sexually Transmitted Infections National Strategic Plan, but there is a lack of research examining CT/NG retesting among these populations. This study describes retesting following CT/NG diagnosis among adolescent and young adult patients at Title X and non-Title X clinics and measures the association of patient-level factors with CT/NG retesting. METHODS: We evaluated electronic medical records from 2014 to 2020 from an academic urban-suburban primary care network. The primary outcome was retesting, defined as a diagnostic test for CT or NG ordered 8-16 weeks after index diagnosis. Mixed effects logistic regression modeling stratified by Title X funding was conducted to evaluate the association of patient-level factors with CT/NT retesting. RESULTS: Overall, 23.5% (n = 731) of patients were retested within 8-16 weeks following index CT/NG diagnosis. A significantly greater proportion of Title X patients were retested compared to non-Title X patients. Males were significantly less likely to be retested compared to females, and the proportion of patients retested decreased significantly over the study period. DISCUSSION: Guideline-recommended retesting following CT/NG diagnosis was low in this young primary care cohort, especially among male and non-Title X clinic patients. Decreases in CT/NG retesting over the study period may be contributing to worsening of the STI epidemic. Our results provide insights into CT/NG retesting that can inform efforts to end the STI epidemic.