Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454.755
Filtrar
1.
Biomaterials ; 312: 122740, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39096839

RESUMO

Metastasis stands as the primary contributor to mortality associated with tumors. Chemotherapy and immunotherapy are frequently utilized in the management of metastatic solid tumors. Nevertheless, these therapeutic modalities are linked to serious adverse effects and limited effectiveness in preventing metastasis. Here, we report a novel therapeutic strategy named starvation-immunotherapy, wherein an immune checkpoint inhibitor is combined with an ultra-long-acting L-asparaginase that is a fusion protein comprising L-asparaginase (ASNase) and an elastin-like polypeptide (ELP), termed ASNase-ELP. ASNase-ELP's thermosensitivity enables it to generate an in-situ depot following an intratumoral injection, yielding increased dose tolerance, improved pharmacokinetics, sustained release, optimized biodistribution, and augmented tumor retention compared to free ASNase. As a result, in murine models of oral cancer, melanoma, and cervical cancer, the antitumor efficacy of ASNase-ELP by selectively and sustainably depleting L-asparagine essential for tumor cell survival was substantially superior to that of ASNase or Cisplatin, a first-line anti-solid tumor medicine, without any observable adverse effects. Furthermore, the combination of ASNase-ELP and an immune checkpoint inhibitor was more effective than either therapy alone in impeding melanoma metastasis. Overall, the synergistic strategy of starvation-immunotherapy holds excellent promise in reshaping the therapeutic landscape of refractory metastatic tumors and offering a new alternative for next-generation oncology treatments.


Assuntos
Asparaginase , Inibidores de Checkpoint Imunológico , Imunoterapia , Animais , Asparaginase/uso terapêutico , Asparaginase/farmacologia , Asparaginase/química , Imunoterapia/métodos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Humanos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Elastina/química , Elastina/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Distribuição Tecidual
2.
Biomaterials ; 312: 122745, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098306

RESUMO

Stimulator of interferon genes (STING) agonists have shown promise in cancer treatment by stimulating the innate immune response, yet their clinical potential has been limited by inefficient cytosolic entry and unsatisfactory pharmacological activities. Moreover, aggressive tumors with "cold" and immunosuppressive microenvironments may not be effectively suppressed solely through innate immunotherapy. Herein, we propose a multifaceted immunostimulating nanoparticle (Mn-MC NP), which integrates manganese II (Mn2+) coordinated photosensitizers (chlorin e6, Ce6) and STING agonists (MSA-2) within a PEGylated nanostructure. In Mn-MC NPs, Ce6 exerts potent phototherapeutic effects, facilitating tumor ablation and inducing immunogenic cell death to elicit robust adaptive antitumor immunity. MSA-2 activates the STING pathway powered by Mn2+, thereby promoting innate antitumor immunity. The Mn-MC NPs feature a high drug-loading capacity (63.42 %) and directly ablate tumor tissue while synergistically boosting both adaptive and innate immune responses. In subsutaneous tumor mouse models, the Mn-MC NPs exhibit remarkable efficacy in not only eradicating primary tumors but also impeding the progression of distal and metastatic tumors through synergistic immunotherapy. Additionally, they contribute to preventing tumor recurrence by fostering long-term immunological memory. Our multifaceted immunostimulating nanoparticle holds significant potential for overcoming limitations associated with insufficient antitumor immunity and ineffective cancer treatment.


Assuntos
Imunoterapia , Manganês , Nanopartículas , Animais , Imunoterapia/métodos , Manganês/química , Nanopartículas/química , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Humanos , Porfirinas/química , Porfirinas/farmacologia , Clorofilídeos , Neoplasias/terapia , Neoplasias/imunologia , Fotoquimioterapia/métodos , Imunidade Inata/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
3.
Biomaterials ; 312: 122733, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106819

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) demonstrates unique characteristics in anticancer therapies as it selectively induces apoptosis in cancer cells. However, most cancer cells are TRAIL-resistant. Odanacatib (ODN), a cathepsin K inhibitor, is considered a novel sensitizer for cancer treatment. Combination therapy between TRAIL and sensitizers is considered a potent platform that improves TRAIL-based anticancer therapies beyond TRAIL monotherapy. Herein, we developed ODN loaded poly(lactic-co-glycolic) nanoparticles conjugated to GST-TRAIL (TRAIL-ODN-PLGA-NPs) to target and treat TRAIL-resistant cancer. TRAIL-ODN-PLGA-NPs demonstrated a significant increase in cellular uptake via death receptors (DR5 and DR4) on surface of cancer cells. TRAIL-ODN-PLGA-NPs exposure destroyed more TRAIL-resistant cells compared to a single treatment with free drugs. The released ODN decreased the Raptor protein, thereby increasing damage to mitochondria by elevating reactive oxygen species (ROS) generation. Additionally, Bim protein stabilization improved TRAIL-resistant cell sensitization to TRAIL-induced apoptosis. The in vivo biodistribution study revealed that TRAIL-ODN-PLGA-NPs demonstrated high location and retention in tumor sites via the intravenous route. Furthermore, TRAIL-ODN-PLGA-NPs significantly inhibited xenograft tumor models of TRAIL-resistant Caki-1 and TRAIL-sensitive MDA-MB-231 cells.The inhibition was associated with apoptosis activation, Raptor protein stabilizing Bim protein downregulation, Bax accumulation, and mitochondrial ROS generation elevation. Additionally, TRAIL-ODN-PLGA-NPs affected the tumor microenvironment by increasing tumor necrosis factor-α and reducing interleukin-6. In conclusion, we evealed that our formulation demonstrated synergistic effects against TRAIL compared with the combination of free drug in vitro and in vivo models. Therefore, TRAIL-ODN-PLGA-NPs may be a novel candidate for TRAIL-induced apoptosis in cancer treatment.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Nanopartículas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Compostos de Bifenilo/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Feminino , Distribuição Tecidual
4.
Biomaterials ; 312: 122743, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39111233

RESUMO

Photodynamic therapy (PDT) is an appealing modality for cancer treatments. However, the limited tissue penetration depth of external-excitation light makes PDT impossible in treating deep-seated tumors. Meanwhile, tumor hypoxia and intracellular reductive microenvironment restrain the generation of reactive oxygen species (ROS). To overcome these limitations, a tumor-targeted self-illuminating supramolecular nanoparticle T-NPCe6-L-N is proposed by integrating photosensitizer Ce6 with luminol and nitric oxide (NO) for chemiluminescence resonance energy transfer (CRET)-activated PDT. The high H2O2 level in tumor can trigger chemiluminescence of luminol to realize CRET-activated PDT without exposure of external light. Meanwhile, the released NO significantly relieves tumor hypoxia via vascular normalization and reduces intracellular reductive GSH level, further enhancing ROS abundance. Importantly, due to the different ROS levels between cancer cells and normal cells, T-NPCe6-L-N can selectively trigger PDT in cancer cells while sparing normal cells, which ensured low side effect. The combination of CRET-based photosensitizer-activation and tumor microenvironment modulation overcomes the innate challenges of conventional PDT, demonstrating efficient inhibition of orthotopic and metastatic tumors on mice. It also provoked potent immunogenic cell death to ensure long-term suppression effects. The proof-of-concept research proved as a new strategy to solve the dilemma of PDT in treatment of deep-seated tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Humanos , Camundongos , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Transferência de Energia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Camundongos Endogâmicos BALB C , Luz , Camundongos Nus , Óxido Nítrico/metabolismo
5.
Biomaterials ; 312: 122751, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121726

RESUMO

Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.


Assuntos
Imunoterapia , Nanomedicina , Animais , Imunoterapia/métodos , Nanomedicina/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica/métodos , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Adesivos/química , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia
6.
Biomaterials ; 312: 122755, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39151270

RESUMO

Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile "mix-and-match synthetic strategy" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.


Assuntos
Materiais Biomiméticos , Cobre , Humanos , Cobre/química , Materiais Biomiméticos/química , Catálise , Estruturas Metalorgânicas/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Cério/química , Linhagem Celular Tumoral , Animais , Química Click/métodos , Biomimética/métodos , Camundongos
7.
Biomaterials ; 312: 122731, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39153324

RESUMO

Tumor-associated inflammation drives cancer progression and therapy resistance, often linked to the infiltration of monocyte-derived tumor-associated macrophages (TAMs), which are associated with poor prognosis in various cancers. To advance immunotherapies, testing on immunocompetent pre-clinical models of human tissue is crucial. We have developed an in vitro model of microvascular networks with tumor spheroids or patient tissues to assess monocyte trafficking into tumors and evaluate immunotherapies targeting the human tumor microenvironment. Our findings demonstrate that macrophages in vascularized breast and lung tumor models can enhance monocyte recruitment via CCL7 and CCL2, mediated by CSF-1R. Additionally, a multispecific antibody targeting CSF-1R, CCR2, and neutralizing TGF-ß (CSF1R/CCR2/TGF-ß Ab) repolarizes TAMs towards an anti-tumoral M1-like phenotype, reduces monocyte chemoattractant protein secretion, and blocks monocyte migration. This antibody also inhibits monocyte recruitment in patient-specific vascularized tumor models. In summary, this vascularized tumor model recapitulates the monocyte recruitment cascade, enabling functional testing of innovative therapeutic antibodies targeting TAMs in the tumor microenvironment.


Assuntos
Monócitos , Receptor de Fator Estimulador de Colônias de Macrófagos , Receptores CCR2 , Microambiente Tumoral , Humanos , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Monócitos/metabolismo , Monócitos/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Camundongos , Movimento Celular/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/patologia
8.
BMC Med ; 22(1): 355, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218868

RESUMO

BACKGROUND: Sex disparity between metabolic-obesity (defined by body mass index, BMI) phenotypes and obesity-related cancer (ORC) remains unknown. Considering BMI reflecting overall obesity but not fat distribution, we aimed to systematically assess the association of our newly proposed metabolic-anthropometric phenotypes with risk of overall and site-specific ORC by sex. METHODS: A total of 141,579 men (mean age: 56.37 years, mean follow-up time: 12.04 years) and 131,047 women (mean age: 56.22 years, mean follow up time: 11.82 years) from the UK Biobank was included, and designated as metabolic-anthropometric phenotypes based on metabolic status (metabolically healthy/unhealthy), BMI (non-obesity/obesity) and body shape (pear/slim/apple/wide). The sex-specific association of different phenotypes with overall and site-specific ORC was assessed by hazard ratios (HRs) and 95% confidence intervals (CIs) using Cox proportional hazards regression models. RESULTS: We found metabolically unhealthy and/or obesity phenotypes conveyed a higher risk in men than in women for overall ORC and colorectal cancer compared with metabolically healthy non-obesity phenotype (Pinteraction < 0.05). Of note, metabolically healthy obesity phenotype contributed to increased risks of most ORC in men (HRs: 1.58 ~ 2.91), but only correlated with higher risks of endometrial (HR = 1.89, 95% CI: 1.54-2.32) and postmenopausal breast cancers (HR = 1.17, 95% CI: 1.05-1.31) in women. Similarly, even under metabolically healthy, men carrying apple and wide shapes phenotypes (metabolically healthy apple/wide and metabolically healthy non-obesity apple/wide) suffered an increased risk of ORC (mainly colorectal, liver, gastric cardia, and renal cancers, HRs: 1.20 ~ 3.81) in comparison with pear shape or non-obesity pear shape. CONCLUSIONS: There was a significant sex disparity between metabolic-anthropometric phenotypes and ORC risk. We advised future ORC prevention and control worth taking body shape and sex disparity into account.


Assuntos
Neoplasias , Obesidade , Fenótipo , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/complicações , Estudos Prospectivos , Neoplasias/epidemiologia , Índice de Massa Corporal , Idoso , Reino Unido/epidemiologia , Fatores Sexuais , Fatores de Risco , Antropometria , Adulto
9.
Signal Transduct Target Ther ; 9(1): 226, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218931

RESUMO

The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.


Assuntos
Metilação de DNA , Transição Epitelial-Mesenquimal , Neoplasias , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Metilação de DNA/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patologia , Biomarcadores Tumorais/genética , Metástase Neoplásica , Epigênese Genética/genética
10.
Signal Transduct Target Ther ; 9(1): 227, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218995

RESUMO

Patients carrying mutations in polymerase epsilon/polymerase delta have shown positive responses to immune checkpoint inhibitors. Yet, prospective trials exploring the efficacy in those with polymerase epsilon/polymerase delta mutations are still lacking. A phase II clinical trial was initiated to evaluate the efficacy of toripalimab, a humanized IgG4K monoclonal antibody to human PD-1, in patients with advanced solid tumors with unselected polymerase epsilon/polymerase delta mutations but without microsatellite instability-high. A total of 15 patients were enrolled, 14 of whom were assessed for treatment efficacy. There was a 21.4% overall response rate, with a disease control rate of 57.1%. The median overall survival and median progression-free survival were 17.9 (95% CI 13.5-not reach) months and 2.5 (95% CI 1.4-not reach) months, respectively. For patients with exonuclease domain mutations, the objective response rate was 66.7% (2/3), with a disease control rate of 66.7% (2/3). For those with non-exonuclease domain mutations, the rates were 9.1% (1/11) and 54.5% (6/11), respectively. Notably, patients with PBRM1 gene mutations exhibited a high response rate to toripalimab at 75.0% (3/4). This study showed that neither the exonuclease domain mutations nor non-exonuclease domain mutations could fully predict the efficacy of immunotherapy, urging the need for more investigations to clarify potential immune sensitization differences within polymerase epsilon/polymerase delta mutation variants.


Assuntos
Anticorpos Monoclonais Humanizados , DNA Polimerase II , Mutação , Neoplasias , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias/genética , Neoplasias/tratamento farmacológico , DNA Polimerase II/genética , DNA Polimerase III/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Adulto , Idoso de 80 Anos ou mais
11.
J Extracell Vesicles ; 13(9): e12502, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39221546

RESUMO

The translation of discoveries on extracellular vesicle (EV) based cancer biomarkers to personalised precision oncology requires the development of robust, sensitive and specific assays that are amenable to adoption in the clinical laboratory. Whilst a variety of elegant approaches for EV liquid biopsy have been developed, most of them remain as research prototypes due to the requirement of a high level of microfabrication and/or sophisticated instruments. Hence, this study is set to develop a simple DNA aptamer-enabled and fluorescence polarisation-based homogenous assay that eliminates the need to separate unbound detection ligands from the bound species for EV detection. High specificity is achieved by immobilising EVs with one set of antibodies and subsequently detecting them with a DNA aptamer targeting a distinct EV biomarker. This two-pronged strategy ensures the removal of most, if not all, non-EV substances in the input biofluids, including soluble proteins, protein aggregates or non-vesicular particles, prior to quantifying biomarker-positive EVs. A limit of detection of 5.0 × 106 EVs/mL was achieved with a linear quantification range of 5.0 × 108 to 2.0 × 1010 EVs/mL. Facilitated by a multiple parametric analysis strategy, this aptamer-guided fluorescence polarisation assay was capable of distinguishing EVs from three different types of solid cancer cells based on quantitative differences in the levels of the same sets of biomarkers on EVs. Given the simplicity of the method and its ease of implementation in automated clinical biochemistry analysers, this assay could be exploited for future EV-based continuous and real-time monitoring of the emergence of new macro- or micro-metastasis, cancer progression as well as the response to treatment throughout different stages of cancer management in the clinic.


Assuntos
Aptâmeros de Nucleotídeos , Biomarcadores Tumorais , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores Tumorais/metabolismo , Polarização de Fluorescência/métodos , Linhagem Celular Tumoral , Neoplasias/metabolismo
12.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39222060

RESUMO

Instruction-tuned large language models (LLMs) demonstrate exceptional ability to align with human intentions. We present an LLM-based model-instruction-tuned LLM for assessment of cancer (iLLMAC)-that can detect cancer using cell-free deoxyribonucleic acid (cfDNA) end-motif profiles. Developed on plasma cfDNA sequencing data from 1135 cancer patients and 1106 controls across three datasets, iLLMAC achieved area under the receiver operating curve (AUROC) of 0.866 [95% confidence interval (CI), 0.773-0.959] for cancer diagnosis and 0.924 (95% CI, 0.841-1.0) for hepatocellular carcinoma (HCC) detection using 16 end-motifs. Performance increased with more motifs, reaching 0.886 (95% CI, 0.794-0.977) and 0.956 (95% CI, 0.89-1.0) for cancer diagnosis and HCC detection, respectively, with 64 end-motifs. On an external-testing set, iLLMAC achieved AUROC of 0.912 (95% CI, 0.849-0.976) for cancer diagnosis and 0.938 (95% CI, 0.885-0.992) for HCC detection with 64 end-motifs, significantly outperforming benchmarked methods. Furthermore, iLLMAC achieved high classification performance on datasets with bisulfite and 5-hydroxymethylcytosine sequencing. Our study highlights the effectiveness of LLM-based instruction-tuning for cfDNA-based cancer detection.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Humanos , Ácidos Nucleicos Livres/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangue , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/sangue , Curva ROC , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Motivos de Nucleotídeos , Metilação de DNA
13.
Int J Nanomedicine ; 19: 8883-8900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224196

RESUMO

As a pivotal transition metal oxide, manganese dioxide (MnO2) has garnered significant attention owing to its abundant reserves, diverse crystal structures and exceptional performance. Nanosizing MnO2 results in smaller particle sizes, larger specific surface areas, optimized material characteristics, and expanded application possibilities. With the burgeoning research efforts in this field, MnO2 has emerged as a promising nanomaterial for tumor diagnosis and therapy. The distinctive properties of MnO2 in regulating the tumor microenvironment (TME) have attracted considerable interest, leading to a rapid growth in research on MnO2-based nanomaterials for tumor diagnosis and treatment. Additionally, MnO2 nanomaterials are also gradually showing up in the regulation of chronic inflammatory diseases. In this review, we mainly summarized the recent advancements in various MnO2 nanomaterials for tumor diagnosis and therapy. Furthermore, we discuss the current challenges and future directions in the development of MnO2 nanomaterials, while also envisaging their potential for clinical translation.


Assuntos
Compostos de Manganês , Nanoestruturas , Neoplasias , Óxidos , Microambiente Tumoral , Compostos de Manganês/química , Óxidos/química , Humanos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais
14.
Front Immunol ; 15: 1457771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224603

RESUMO

Invariant natural killer T (iNKT) cells are a small subset of T lymphocytes that release large amounts of cytokines such as IFN-γ and exhibit cytotoxic activity upon activation, inducing strong anti-tumor effects. Harnessing the anti-tumor properties of iNKT cells, iNKT cell-based immunotherapy has been developed to treat cancer patients. In one of the iNKT cell-based immunotherapies, two approaches are utilized, namely, active immunotherapy or adoptive immunotherapy, the latter involving the ex vivo expansion and subsequent administration of iNKT cells. There are two sources of iNKT cells for adoptive transfer, autologous and allogeneic, each with its own advantages and disadvantages. Here, we assess clinical trials conducted over the last decade that have utilized iNKT cell adoptive transfer as iNKT cell-based immunotherapy, categorizing them into two groups based on the use of autologous iNKT cells or allogeneic iNKT cells.


Assuntos
Imunoterapia Adotiva , Células T Matadoras Naturais , Neoplasias , Células T Matadoras Naturais/imunologia , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Ensaios Clínicos como Assunto , Células Alógenas/imunologia , Transplante Autólogo
15.
Oncol Res ; 32(9): 1479-1516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220130

RESUMO

Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Neoplasias/terapia , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Animais , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
16.
Int J Nanomedicine ; 19: 8847-8882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220190

RESUMO

Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.


Assuntos
Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase , Nanopartículas , Neoplasias , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Nanopartículas/química , Animais , Nanomedicina , Triptofano/química , Triptofano/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Cinurenina
17.
Front Endocrinol (Lausanne) ; 15: 1374715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220365

RESUMO

Adipose tissue (AT) serves as an energy-capacitive organ and performs functions involving paracrine- and endocrine-mediated regulation via extracellular vesicles (EVs) secretion. Exosomes, a subtype of EVs, contain various bioactive molecules with regulatory effects, such as nucleic acids, proteins, and lipids. AT-derived exosomes (AT-exos) include exosomes derived from various cells in AT, including adipocytes, adipose-derived stem cells (ADSCs), macrophages, and endothelial cells. This review aimed to comprehensively evaluate the impacts of different AT-exos on the regulation of physiological and pathological processes. The contents and functions of adipocyte-derived exosomes and ADSC-derived exosomes are compared simultaneously, highlighting their similarities and differences. The contents of AT-exos have been shown to exert complex regulatory effects on local inflammation, tumor dynamics, and insulin resistance. Significantly, differences in the cargoes of AT-exos have been observed among diabetes patients, obese individuals, and healthy individuals. These differences could be used to predict the development of diabetes mellitus and as therapeutic targets for improving insulin sensitivity and glucose tolerance. However, further research is needed to elucidate the underlying mechanisms and potential applications of AT-exos.


Assuntos
Tecido Adiposo , Diabetes Mellitus , Exossomos , Inflamação , Neoplasias , Humanos , Exossomos/metabolismo , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Diabetes Mellitus/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Adipócitos/metabolismo , Resistência à Insulina , Obesidade/metabolismo
18.
Front Immunol ; 15: 1420205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221244

RESUMO

Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.


Assuntos
Células Matadoras Naturais , Neoplasias , Microambiente Tumoral , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
19.
J Vis Exp ; (210)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39221940

RESUMO

Natural killer cell-derived extracellular vesicles (NK-EVs) are being investigated as cancer biotherapeutics. They possess unique properties as cytotoxic nanovesicles targeting cancer cells and as immunomodulatory communicators. A scalable biomanufacturing workflow enables the production of large quantities of high-purity NK-EVs to meet the pre-clinical and clinical demands. The workflow employs a closed-loop hollow-fiber bioreactor, enabling continuous production of NK-EVs from the NK92-MI cell line under serum-free, xeno-free, feeder-free, and antibiotic-free conditions in compliance with Good Manufacturing Practices standards. This protocol-driven study outlines the biomanufacturing workflow for isolating NK-EVs using size-exclusion chromatography, ultrafiltration, and filter-based sterilization. Essential NK-EV product characterization is performed via nanoparticle tracking analysis, and their functionality is assessed through a validated cell viability-based potency assay against cancer cells. This scalable biomanufacturing process holds significant potential to advance the clinical translation of NK-EV-based cancer biotherapeutics by adhering to best practices and ensuring reproducibility.


Assuntos
Vesículas Extracelulares , Células Matadoras Naturais , Humanos , Vesículas Extracelulares/química , Fluxo de Trabalho , Reatores Biológicos , Neoplasias/patologia , Cromatografia em Gel/métodos , Linhagem Celular Tumoral
20.
Support Care Cancer ; 32(9): 625, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222245

RESUMO

PURPOSE: Oral mucositis is a severe adverse event in patients undergoing chemotherapy and radiotherapy that may lead to the termination of cancer treatment. This study aimed to elucidate the relationship between salivary inflammatory mediators and oral mucositis in patients undergoing chemotherapy. METHODS: This prospective cohort study included 167 patients who underwent chemotherapy at our institution between June 2020 and November 2023. We evaluated the association between chemotherapy-induced oral mucositis and salivary inflammatory mediators using multiple comparison tests and logistic regression analyses. RESULTS: Of the 167 patients, 67 (40.1%) had oral mucositis. Dunn's multiple comparison test revealed that interleukin-6 was significantly higher in oral mucositis of grades 2 and ≥ 3 (P < 0.01) and tumor necrosis factor (TNF)-α was significantly higher in oral mucositis of grades 3-4 (P < 0.01). Logistic regression analysis showed that the risk of oral mucositis was significantly higher for tumor necrosis factor (TNF)-α > 4.4 pg/mL than for TNF-α ≤ 4.4 pg/mL (adjusted odds ratio, 2.4; 95% confidence interval, 1.1-5.3; P = 0.03). CONCLUSION: Saliva is useful in evaluating inflammation in patients with chemotherapy-induced oral mucositis. Furthermore, TNF-α may be a predictive marker for the severity of oral mucositis in patients undergoing chemotherapy.


Assuntos
Antineoplásicos , Mediadores da Inflamação , Neoplasias , Saliva , Estomatite , Fator de Necrose Tumoral alfa , Humanos , Estomatite/induzido quimicamente , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Antineoplásicos/efeitos adversos , Idoso , Adulto , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-6/análise , Estudos de Coortes , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA