RESUMO
Animals change how they respond to the world around them as they age, giving rise to developmental stage and status appropriate behaviours. New work finds that changes in the primary olfactory neuropil are correlated with the natural developmental shift in alarm pheromone-specific responses of an ant.
Assuntos
Formigas , Feromônios , Olfato , Animais , Feromônios/metabolismo , Olfato/fisiologia , Formigas/fisiologia , Neurópilo/fisiologiaRESUMO
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Assuntos
Conectoma , Drosophila melanogaster , Corpos Pedunculados , Vias Visuais , Animais , Corpos Pedunculados/fisiologia , Corpos Pedunculados/citologia , Drosophila melanogaster/fisiologia , Vias Visuais/fisiologia , Neurônios/fisiologia , Interneurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Neurópilo/fisiologia , Neurópilo/citologiaRESUMO
Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.
Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genéticaRESUMO
Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.
Assuntos
Encéfalo , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurópilo , Humanos , Masculino , Adulto , Feminino , Imageamento por Ressonância Magnética/métodos , Neurópilo/metabolismo , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Substância Cinzenta/diagnóstico por imagem , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodosRESUMO
Survivors of pediatric brain tumors are at high risk for long-term neuropsychological difficulties. In the current case study, we present longitudinal neuropsychological data spanning 10 years (from age 9 to 19 years) of a patient with a rare, very large, bifrontal, embryonal tumor with abundant neuropil and true rosettes (ETANTR), which is typically associated with poor survivorship and significant neurological impact. Results demonstrated that the patient had largely intact cognitive functioning with specific difficulties in executive functioning, fine motor skills, and adaptive functioning at her most recent neuropsychology 10-year follow-up. These results highlight outcomes for a patient with remarkable resiliency in the context of numerous risk factors (a very large tumor size, multi-modal treatment, and seizure history). Patient protective factors (a high level of cognitive reserve, family support, and appropriate comprehensive educational services) likely contributed to the patient's favorable neuropsychological outcome. The patient's age at brain tumor diagnosis (9 years) and associated treatment was at a critical period of development for emerging higher order cognitive functions which likely impacted acquisition of executive functioning skills and secondarily adaptive skill outcomes. Consequently, pediatric brain tumor survivors with ETANTR or other frontal tumors require targeted screening of executive functions and proactive interventions.
Assuntos
Neoplasias Encefálicas , Neoplasias Embrionárias de Células Germinativas , Criança , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Neoplasias Encefálicas/complicações , Neurópilo/patologia , Função Executiva , Neoplasias Embrionárias de Células Germinativas/patologia , Cognição , Testes NeuropsicológicosRESUMO
INTRODUCTION: Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS: We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS: There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION: These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.
Assuntos
Córtex Motor , Neurópilo , Córtex Pré-Frontal , Especificidade da Espécie , Córtex Visual , Animais , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Córtex Visual/anatomia & histologia , Felidae/anatomia & histologia , Felidae/fisiologia , Masculino , FemininoRESUMO
Neuropil-like islands (NIs) are a histologic hallmark of glioneuronal tumors with neuropil-like islands (GTNIs), but GTNIs are presently not considered a homogeneous entity. The essence of GTNI is likely its glial component, and NIs are now considered aberrant neuronal differentiation or metaplasia. The case we report herein is a 41-year-old woman who was synchronously affected by two brain tumors: one was a glioblastoma (glioblastoma multiforme, GBM), of isocitrate dehydrogenase (IDH)-wild type, with NIs in the left parietal lobe, and the other was histologically a composite gangliocytoma (GC)/anaplastic ganglioglioma (GG) with NIs in the right medial temporal lobe. While both tumors were genetically wild type for IDH, histone H3, and v-raf murine sarcoma viral oncogene homolog B1 (BRAF), the former tumor, but not the latter, was mutated for telomerase reverse transcriptase promoter gene (TERT). A recent systematic study using DNA methylation profiling and next-generation sequencing showed that anaplastic GG separate into other WHO tumor types, including IDH-wild-type GBM. It suggested a diagnostic scheme where an anaplastic GG is likely an IDH-wild-type GBM if it is a BRAF wild type, IDH wild type, and TERT promoter mutant tumor. The likely scenario in this patient is that the GBM results from the progression of GC/anaplastic GG due to the superimposed TERT promoter mutation and the propagation of newly generated GBM cells in the contralateral hemisphere. A systematic analysis using DNA methylation profiling and next-generation sequencing was not available in this study, but the common presence of NIs histologically noted in the two tumors could support this scenario. Although a sufficient volume of molecular and genetic testing is sine qua non for the accurate understanding of brain tumors, the importance of histologic observation cannot be overemphasized.
Assuntos
Neoplasias Encefálicas , Ganglioglioma , Ganglioneuroma , Glioblastoma , Telomerase , Feminino , Camundongos , Animais , Humanos , Adulto , Glioblastoma/complicações , Glioblastoma/genética , Glioblastoma/patologia , Ganglioglioma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Ganglioneuroma/patologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neurópilo/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Telomerase/genéticaRESUMO
The generation of neuronal diversity remains incompletely understood. In Drosophila, the central brain is populated by neural stem cells derived from progenitors called neuroblasts (NBs). There are two types of NBs, type 1 and 2. T1NBs have a relatively simple lineage, whereas T2NBs expand and diversify the neural population with the generation of intermediate neural progenitors (INPs), contributing many neurons to the adult central complex, a brain region essential for navigation. However, it is not fully understood how neural diversity is created in T2NB and INP lineages. Imp, an RNA-binding protein, is expressed in T2NBs in a high-to-low temporal gradient, while the RNA-binding protein Syncrip forms an opposing gradient. It remains unknown if Imp expression is carried into INPs; whether it forms a gradient similar to NBs; and whether INP expression of Imp is required for generating neuronal identity or morphology. Here, we show that Imp/Syp are both present in INPs, but not always in opposing gradients. We find that newborn INPs adopt their Imp/Syp levels from their parental T2NBs; that Imp and Syp are expressed in stage-specific high-to-low gradients in INPs. In addition, there is a late INP pulse of Imp. We find that neurons born from old INPs (E-PG and PF-R neurons) have altered morphology following both Imp knock-down and Imp overexpression. We conclude that Imp functions in INPs and newborn neurons to determine proper neuronal morphology and central complex neuropil organization.
Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/fisiologia , Linhagem da Célula/fisiologia , Neurônios , Drosophila , Neurópilo/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismoRESUMO
Maps of the nervous system that identify individual cells along with their type, subcellular components and connectivity have the potential to elucidate fundamental organizational principles of neural circuits. Nanometer-resolution imaging of brain tissue provides the necessary raw data, but inferring cellular and subcellular annotation layers is challenging. We present segmentation-guided contrastive learning of representations (SegCLR), a self-supervised machine learning technique that produces representations of cells directly from 3D imagery and segmentations. When applied to volumes of human and mouse cortex, SegCLR enables accurate classification of cellular subcompartments and achieves performance equivalent to a supervised approach while requiring 400-fold fewer labeled examples. SegCLR also enables inference of cell types from fragments as small as 10 µm, which enhances the utility of volumes in which many neurites are truncated at boundaries. Finally, SegCLR enables exploration of layer 5 pyramidal cell subtypes and automated large-scale analysis of synaptic partners in mouse visual cortex.
Assuntos
Neurópilo , Córtex Visual , Humanos , Animais , Camundongos , Neuritos , Células Piramidais , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por ComputadorRESUMO
Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.
Assuntos
Anfípodes , Neuropeptídeos , Animais , Neuropeptídeos/metabolismo , Neurônios , Encéfalo , NeurópiloRESUMO
Morphology is a defining feature of neuronal identity. Like neurons, glia display diverse morphologies, both across and within glial classes, but are also known to be morphologically plastic. Here, we explored the relationship between glial morphology and transcriptional signature using the Drosophila central nervous system (CNS), where glia are categorised into 5 main classes (outer and inner surface glia, cortex glia, ensheathing glia, and astrocytes), which show within-class morphological diversity. We analysed and validated single-cell RNA sequencing data of Drosophila glia in 2 well-characterised tissues from distinct developmental stages, containing distinct circuit types: the embryonic ventral nerve cord (VNC) (motor) and the adult optic lobes (sensory). Our analysis identified a new morphologically and transcriptionally distinct surface glial population in the VNC. However, many glial morphological categories could not be distinguished transcriptionally, and indeed, embryonic and adult astrocytes were transcriptionally analogous despite differences in developmental stage and circuit type. While we did detect extensive within-class transcriptomic diversity for optic lobe glia, this could be explained entirely by glial residence in the most superficial neuropil (lamina) and an associated enrichment for immune-related gene expression. In summary, we generated a single-cell transcriptomic atlas of glia in Drosophila, and our extensive in vivo validation revealed that glia exhibit more diversity at the morphological level than was detectable at the transcriptional level. This atlas will serve as a resource for the community to probe glial diversity and function.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Neurópilo/metabolismo , Astrócitos/metabolismo , Proteínas de Drosophila/metabolismoRESUMO
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Assuntos
Planárias , Animais , Humanos , Planárias/genética , Proteína Proto-Oncogênica c-ets-1/genética , Neuroglia , Neurônios , NeurópiloRESUMO
The cellular mechanisms of neuroplastic changes in the structure of motoneurons and neuropils of the oculomotor (III) nuclei in mice after a 30-day space flight and 7 days after landing were studied. The results showed that microgravity caused degenerative phenomena in neurons: a decrease in the number of terminal dendritic branches was found both after flight and after readaptation to Earth's gravity. In mice after the flight, the number of axodendritic synapses was less than in the control, and their number was not restored after the readaptation. The number of mitochondria in the motoneurons of animals after the flight also decreased and after the readaptation reached only the control value. In addition, a significant number of dark motorneurons were found in mice after readaptation, which indicates that degeneration was caused not only by microgravity, but also by a reaction to the landing of the biosatellite. On the contrary, in the trochlear nucleus, as we showed earlier (Mikheeva et al. in Brain Res 15(1795):148077. https://doi.org/10.1016/j.brainres.2022.148077 , 2022), after readaptation, the dendrites and synaptic contacts were restored, and mitogenesis is significantly enhanced. It has been suggested that morphological changes in the oculomotor nucleus may be the main cause of microgravity-induced nystagmus.
Assuntos
Complexo Nuclear Oculomotor , Voo Espacial , Ausência de Peso , Camundongos , Animais , Neurônios Motores , NeurópiloRESUMO
For most model organisms in neuroscience, research into visual processing in the brain is difficult because of a lack of high-resolution maps that capture complex neuronal circuitry. The microinsect Megaphragma viggianii, because of its small size and non-trivial behavior, provides a unique opportunity for tractable whole-organism connectomics. We image its whole head using serial electron microscopy. We reconstruct its compound eye and analyze the optical properties of the ommatidia as well as the connectome of the first visual neuropil-the lamina. Compared with the fruit fly and the honeybee, Megaphragma visual system is highly simplified: it has 29 ommatidia per eye and 6 lamina neuron types. We report features that are both stereotypical among most ommatidia and specialized to some. By identifying the "barebones" circuits critical for flying insects, our results will facilitate constructing computational models of visual processing in insects.
Assuntos
Himenópteros , Visão Ocular , Animais , Neurônios/fisiologia , Percepção Visual , Neurópilo , DrosophilaRESUMO
Stick insects respond to visual or tactile stimuli with whole-body turning or directed reach-to-grasp movements. Such sensory-induced turning and reaching behaviour requires interneurons to convey information from sensory neuropils of the head ganglia to motor neuropils of the thoracic ganglia. To date, descending interneurons are largely unknown in stick insects. In particular, it is unclear whether the special role of the front legs in sensory-induced turning and reaching has a neuroanatomical correlate in terms of descending interneuron numbers. Here, we describe the population of descending interneurons with somata in the brain or gnathal ganglion in the stick insect Carausius morosus, providing a first map of soma cluster counts and locations. By comparison of interneuron populations with projections to the pro- and mesothoracic ganglia, we then estimate the fraction of descending interneurons that terminate in the prothoracic ganglion. With regard to short-latency, touch-mediated reach-to-grasp movements, we also locate likely sites of synaptic interactions between antennal proprioceptive afferents to the deutocerebrum and gnathal ganglion with descending or ascending interneuron fibres. To this end, we combine fluorescent dye stainings of thoracic connectives with stainings of antennal hair field sensilla. Backfills of neck connectives revealed up to 410 descending interneuron somata (brain: 205 in 19 clusters; gnathal ganglion: 205). In comparison, backfills of the prothorax-mesothorax connectives stained only up to 173 somata (brain: 83 in 16 clusters; gnathal ganglion: 90), suggesting that up to 60% of all descending interneurons may terminate in the prothoracic ganglion (estimated upper bound). Double stainings of connectives and antennal hair field sensilla revealed that ascending or descending fibres arborise in close proximity of afferent terminals in the deutocerebrum and in the middle part of the gnathal ganglia. We conclude that two cephalothoracic pathways may convey cues about antennal movement and pointing direction to thoracic motor centres via two synapses only.
Assuntos
Encéfalo , Interneurônios , Humanos , Neurópilo , Pescoço , Morte , GângliosRESUMO
OBJECTIVES: COVID-19 infection is associated with an increased risk of acute ischemic stroke (AIS). Although the underlying mechanisms are largely unknown, autoimmunity has been implicated as a potential role player. METHODS: To investigate the presence and clinical impact of neuronal cell surface antibodies in COVID-19 associated AIS, patients with COVID-19 pneumonia and AIS (n = 30), COVID-19 pneumonia without AIS (n = 32) and AIS without COVID-19 infection (n = 27) were recruited. Serum anti-neuronal antibodies directed against well-characterized and novel cell surface antibodies were evaluated by cell-based assays and indirect immunohistochemistry, respectively. RESULTS: None of the recruited patients displayed well-characterized neuronal cell surface antibodies. Ten patients in the COVID-19 pneumonia with AIS group and three patients in the COVID-19 pneumonia without AIS group exhibited antibodies to neuropil of hippocampus and cerebellum. Neuropil-antibody positive patients showed trends towards milder clinical severity and reduced blood levels of inflammation factors. CONCLUSION: Our results confirm the presence of neuropil antibodies in patients with COVID-19 infection and identify a putative antibody-driven association between AIS and COVID-19. The antigenic targets and potential pathogenic action of these antibodies need to be further explored.
Assuntos
COVID-19 , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , COVID-19/complicações , AVC Isquêmico/epidemiologia , AVC Isquêmico/complicações , Prevalência , Acidente Vascular Cerebral/complicações , NeurópiloRESUMO
In most animals, multiple external and internal signals are integrated by the brain, transformed and, finally, transmitted as commands to motor centers. In insects, the central complex is a motor control center in the brain, involved in decision-making and goal-directed navigation. In desert locusts, it encodes celestial cues in a compass-like fashion indicating a role in sky-compass navigation. While several descending brain neurons (DBNs) including two neurons transmitting sky compass signals have been identified in the locust, a complete analysis of DBNs and their relationship to the central complex is still lacking. As a basis for further studies, we used Neurobiotin tracer injections into a neck connective to map the organization of DBNs in the brain. Cell counts revealed a maximum of 324 bilateral pairs of DBNs with somata distributed in 14 ipsilateral and nine contralateral groups. These neurons invaded most brain neuropils, especially the posterior slope, posterior and ventro-lateral protocerebrum, the antennal mechanosensory and motor center, but less densely the lateral accessory lobes that are targeted by central-complex outputs. No arborizations were found in the central complex and only few processes in the mushroom body, antennal lobe, lobula, medulla, and superior protocerebrum. Double label experiments provide evidence for the presence of GABA, dopamine, tyramine, but not serotonin, in small sets of DBNs. The data show that some DBNs may be targeted directly by central-complex outputs, but many others are likely only indirectly influenced by central-complex networks, in addition to input from multiple other brain areas.
Assuntos
Encéfalo , Gafanhotos , Animais , Encéfalo/fisiologia , Neurônios/fisiologia , Neurópilo , Tiramina , Gafanhotos/fisiologiaRESUMO
We present a detailed analysis of the brain anatomy of two saturniid species, the cecropia silk moth, Hyalophora cecropia, and the Chinese oak silk moth, Antheraea pernyi, including 3D reconstructions of the major brain neuropils in the larva and in male and female adults. The 3D reconstructions, prepared from high-resolution optical sections, showed that the corresponding neuropils of these saturniid species are virtually identical. Similarities between the two species include a pronounced sexual dimorphism in the adults in the form of a male-specific assembly of markedly enlarged glomeruli forming the so-called macroglomerular complex. From the reports published to date, it can be concluded that the neuropil architecture of saturniids resembles that of other nocturnal moths, including the sibling family Sphingidae. In addition, compared with previous anatomical data on diurnal lepidopteran species, significant differences were observed in the two saturniid species, which include the thickness of the Y-tract of the mushroom body, the size of the main neuropils of the optic lobes, and the sexual dimorphisms of the antennal lobes.
Assuntos
Manduca , Mariposas , Masculino , Feminino , Animais , Larva , Imageamento Tridimensional , Encéfalo/anatomia & histologia , NeurópiloRESUMO
In mandibulate arthropods, the primary olfactory centers, termed olfactory lobes in crustaceans, are typically organized in distinct fields of dense synaptic neuropils called olfactory glomeruli. In addition to olfactory sensory neuron terminals and their postsynaptic efferents, the glomeruli are innervated by diverse neurochemically distinctive interneurons. The functional morphology of the olfactory glomeruli is understudied in crustaceans compared with insects and even less well understood and described in a particular crustacean subgroup, the Peracarida, which embrace, for example, Amphipoda and Isopoda. Using immunohistochemistry combined with confocal laser scanning microscopy, we analyzed the neurochemistry of the olfactory pathway in the amphipod Parhyale hawaiensis. We localized the biogenic amines serotonin and histamine as well as the neuropeptides RFamide, allatostatin, orcokinin, and SIFamide. As for other classical neurotransmitters, we stained for γ-aminobutyric acid and glutamate decarboxylase and used choline acetyltransferase as indicator for acetylcholine. Our study is another step in understanding principles of olfactory processing in crustaceans and can serve as a basis for understanding evolutionary transformations of crustacean olfactory systems.
Assuntos
Anfípodes , Animais , Anfípodes/fisiologia , Condutos Olfatórios/metabolismo , Interneurônios , Imuno-Histoquímica , NeurópiloRESUMO
Honey bees (Apis mellifera) express remarkable social interactions and cognitive capabilities that have been studied extensively. In many cases, behavioral studies were accompanied by neurophysiological and neuroanatomical investigations. While most studies have focused on primary sensory neuropils, such as the optic lobes or antennal lobes, and major integration centers, such as the mushroom bodies or the central complex, many regions of the cerebrum (the central brain without the optic lobes) of the honey bee are only poorly explored so far, both anatomically and physiologically. To promote studies of these brain regions, we used anti-synapsin immunolabeling and neuronal tract tracings followed by confocal imaging and 3D reconstructions to demarcate all neuropils in the honey bee cerebrum and close this gap at the anatomical level. We demarcated 35 neuropils and 25 fiber tracts in the honey bee cerebrum, most of which have counterparts in the fly (Drosophila melanogaster) and other insect species that have been investigated so far at this level of detail. We discuss the role of cerebral neuropils in multisensory integration in the insect brain, emphasize the importance of this brain atlas for comparative studies, and highlight specific architectural features of the honey bee cerebrum.