Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.159
Filtrar
1.
Talanta ; 236: 122830, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635220

RESUMO

A sensitive biosensor that can be used for the determination of matrix metalloproteinase 2 (MMP-2) was proposed. The biosensor was developed by using an excellent self-enhanced nanocomposites as an illuminant and a peptide as a recognition element. For the electrostatic attraction between Ru(bpy)32+ and nitrogen-doped graphene quantum dots (NGQDs), the self-enhanced electrochemiluminescence (ECL) nanocomposites of NGQDs-Ru(bpy)32+-doped silica nanoparticles (NGQDs-Ru@SiO2) were synthesized through a simple sol-gel process. Then, a specific peptide (labeled sulfhydryl) was combined with the self-enhanced ECL nanocomposites (carboxyl in NGQDs) via acylation reaction to obtain the peptide-NGQDs-Ru@SiO2 nanoprobe, which was fabricated onto the gold electrode surface via Au-S bond. The peptide of the ECL nanoprobe was exposed to cleavage in the presence of MMP-2, which caused the signal substance to move farther away from the electrode, leading to a decrease of the ECL signal. The proposed NGQDs-Ru@SiO2-labeled peptide ECL biosensor displayed a lower detection limit of 6.5 pg mL-1 than those of reported ECL methods. The proposed biosensor provided an outlook for future applications in other disease-associated biomarkers.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias , Pontos Quânticos , Biomarcadores Tumorais , Técnicas Eletroquímicas , Humanos , Medições Luminescentes , Metaloproteinase 2 da Matriz , Nitrogênio , Dióxido de Silício
2.
Talanta ; 236: 122862, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635244

RESUMO

A novel fluorometric assay for selective and sensitive determination of formalin (FA) was developed based on nitrogen-doped carbon dots (N-CDs) coupled with silver mirror reaction. N-CDs was synthesized using the hydrothermal method with the ethylene glycol and ammonia solution as carbon and nitrogen precursors, respectively. The detection principle was based on "off-on" fluorescence switching. Specifically, the fluorescence signal of N-CDs was first turned off after incorporating the Ag+ and Tollens' reagents. Then, in the presence of FA, the Ag+ species on the N-CDs surface were reduced to Ag0 species and the fluorescence signal of N-CDs was switched back on. The fluorescence intensity due to the N-CDs signal linearly increased with the increasing FA concentrations in the range of 5-100 mg L-1, with the detection limit of 1.5 mg L-1. The proposed approach provides rapid, simple, sensitive, and selective detection of FA in various food samples.


Assuntos
Carbono , Pontos Quânticos , Corantes Fluorescentes , Formaldeído , Nitrogênio , Prata
3.
Food Chem ; 368: 130829, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411858

RESUMO

In this paper, an innovative method for the sensitive detection of new coccine using N, P-doped carbon quantum dots (N,P-CQDs) as fluorescent nanosensor is reported for the first time. The sensing mechanism is based on the fluorescence quenching of N,P-CQDs by new coccine through inner filter effect (IFE). N,P-CQDs were prepared by simple hydrothermal treatment of citric acid, phosphoric acid and ethylenediamine. Under the optimal conditions, the new coccine has two good linear responses in the concentration range of 0.2-100 and 100-200 µM, and the detection limits are as low as 24.8 and 9.4 nM, respectively. Our developed nanosensor has been successfully used for the determination of new coccine in food samples with good precision and high accuracy. This work highlights the economic, rapid, simple, selective and ultra-sensitive for new coccine detection, and opens up a new way for the monitoring of new coccine in actual food samples.


Assuntos
Pontos Quânticos , Compostos Azo , Carbono , Naftalenossulfonatos , Nitrogênio , Fósforo , Espectrometria de Fluorescência
4.
Anal Chim Acta ; 1184: 339019, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625252

RESUMO

High resolution mobility devices such as Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility spectrometers (DMS) use strong electric fields to gas concentration ratios, E/N, to separate ions in the gas phase. While extremely successful, their empirical results show a non-linear, ion-dependent relation between mobility K and E/N that is difficult to characterize. The one-temperature theory Mason-Schamp equation, which is the most widely used ion mobility equation, unfortunately, cannot capture this behavior. When the two-temperature theory is used, it can be shown that the K-E/N behavior can be followed quite closely numerically by equating the effect of increasing the field to an increase in the ion temperature. This is attempted here for small ions in a Helium gas environment showing good agreement over the whole field range. To improve the numerical characterization, the Lennard-Jones (L-J) potentials may be optimized. This is attempted for Carbon, Hydrogen, Oxygen and Nitrogen at different degrees of theory up to the fourth approximation, which is assumed to be exact. The optimization of L-J improves the accuracy yielding errors of about 3% on average. The fact that a constant set of L-J potentials work for the whole range of E/N and for several molecules, also suggests that inelastic collisions can be circumvented in calculations for He. The peculiar K-E/N hump behaviors are studied, and whether mobility increases or decreases with E/N is shown to derive from a competition between relative kinetic energy and the interaction potentials.


Assuntos
Eletricidade , Gases , Íons , Espectrometria de Massas , Nitrogênio
5.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3276-3292, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34622635

RESUMO

Due to the special geographical location and the complex ecosystem types, plateau wetlands play important ecological roles in water supply, greenhouse gas regulation and biodiversity preservation. Napahai plateau wetland is a special wetland type with low latitude and high altitude, and its microbial diversity was rarely studied. The diversity of microbial communities in the Napahai plateau wetland was analyzed using metagenomics method. Among the microbes detected, 184 phyla, 3 262 genera and 24 260 species belong to the bacterial domain, 13 phyla and 32 genera belong to the archaeal domain, and 13 phyla and 47 genera belong to the fungal domain. Significant differences in species diversity between soil and water were observed. Acidobacteria, Proteobacteria and Actinobacteria were dominant phyla in soil, while Proteobacteria and Bacteroides were dominant phyla in water. Since the carbon and nitrogen metabolism genes were abundant, the pathways of carbon fixation and nitrogen metabolism were analyzed. Calvin cycle, reductive tricarboxylic acid cycle and 3-hydroxypropionic acid cycle were the main carbon fixation pathways, while Proteobacteria, Chloroflexi, and Crenarchaeota were the main carbon-fixing bacteria group. As for the nitrogen cycle, nitrogen fixation and dissimilatory nitrate reduction were dominant in water, while nitrification and denitrification were dominant in soil. Proteobacteria, Nitrospirae, Verrucomicrobia, Actinobacteria, Thaumarchaeota and Euryarchaeota contributed to the nitrogen cycle. The study on microbial diversity of Napahai plateau wetlands provides new knowledge for the comprehensive management and protection of wetland environment in China.


Assuntos
Carbono , Áreas Alagadas , Ecossistema , Metagenômica , Nitrogênio , Microbiologia do Solo
6.
J Environ Sci (China) ; 109: 1-14, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607658

RESUMO

Biological nutrient removal grows into complicated scenario due to the microbial consortium shift and kinetic competition between phosphorus (P)-accumulating and nitrogen (N)-removing microorganisms. In this study, three sequential batch reactors with constant operational conditions except aeration patterns at 6 h cycle periods were tested. Intermittent aeration was applied to develop a robust nutrient removal system aimed to achieve high energy saving and removal efficiency. The results showed higher correspondence of P-uptake, polymeric substance synthesis and glycogen degradation in intermittent-aeration with longer interval periods compared to continuous-aeration. Increasing the intermittent-aeration duration from 25 to 50 min, resulted in higher process performance where the system exhibited approximately 30% higher nutrient removal. This study indicated that nutrient removal strongly depends on reaction phase configuration representing the importance of aeration pattern. The microbial community examined the variation in abundance of bacterial groups in suspended sludge, where the 50 min intermittent aeration, favored the growth of P-accumulating organisms and nitrogen removal microbial groups, indicating the complications related to nutrient removal systems. Successful intermittently aerated process with high capability of simple implementation to conventional systems by elemental retrofitting, is applicable for upgrading wastewater treatment plants. With aeration as a major operational cost, this process is a promising approach to potentially remove nutrients in high competence, in distinction to optimizing cost-efficacy of the system.


Assuntos
Nitrogênio , Fósforo , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
7.
J Environ Sci (China) ; 109: 135-147, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607662

RESUMO

Effective cultivation of stable aerobic granular sludge (AGS) is a crucial step in the successful application of this technology, and the formation of AGS could be facilitated by some environmental stress conditions. Four identical sequencing batch reactors (SBRs) were established to investigate the aerobic granulation process under the same alternating ammonia nitrogen feeding strategy superimposed with different environmental conditions (inorganic carbon source, temperature, N/COD). Although various superimposed conditions induced a significant difference in the size, settling velocity, mechanic strength of AGS, mature aerobic granules could be successfully obtained in all four reactors after 70 days' operation, indicating the alternating ammonia nitrogen feeding strategy was the most critical factor for AGS formation. Based on the results of redundancy analysis, the presence of an inorganic carbon source could facilitate the cultivation of AGS with nitrification function, while the moderate temperature and fluctuant N/COD might benefit the cultivation of more stable AGS. In addition, superimposed stress conditions could result in the difference in the microbial population between four reactors, but the population diversity and abundance of microorganisms were not the determinants of AGS formation. This study provided an effective method for the cultivation of AGS by using alternating ammonia nitrogen feeding strategy.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Esgotos
8.
Waste Manag ; 135: 457-466, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34624744

RESUMO

The objective of the present work is to investigate to what extent emission reductions observed during landfill aeration are permanent. To do so, lab-scale degradation experiments using waste from an old landfill have been conducted under different conditions (anaerobic, (partly) aerobic returning to anaerobic, aerobic) and balances for carbon and nitrogen have been established. For the latter, all emissions of C and N (except N2) and their pools at the start and end of the experiment have been determined. In addition, the chloroform fumigation-extraction method (biocidal treatment) has been applied to determine microbially bound carbon and to estimate nitrogen in microbial biomass accordingly. The results reveal that 18 g TOC·kg DM-1 of the waste material were mineralized during aerobic treatment for 699 days, which is equivalent to about 14% of the initial TOC content. For the anaerobic treatment, only 10 g TOC·kg DM-1 were released. For the aerobic-anaerobic reactors, a slight increase in methane emissions approximately 10 months after termination of aeration was observed. With respect to leachate emissions, the results indicate significantly lower emission levels (factor 1.5 for TOC and factor 4 for TN) for the reactors, which were aerated at least sometimes. The biocidal treatment highlights that this emission reduction is rather based on an increased sorption capacity of aerated waste (higher ion exchange capacity) than a lower overall pollutant potential. It is shown that regardless of the operation mode, most nitrogen remained in solids (83.1-92.6%) and is subject to internal recycling during waste degradation.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Reatores Biológicos , Carbono , Nitrogênio/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
9.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3079-3088, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658192

RESUMO

In July 2019-July 2020, we conducted a field trial to examine the effects of nitrogen addition (60 kg N·hm-2·a-1), biochar application (10 t·hm-2), and their combination on soil N2O emission and the relationship between soil N2O emission and environmental factors in a typical Moso bamboo (Phyllostachys edulis) plantation in Hangzhou City of Zhejiang Province. Soil N2O flux of Moso bamboo plantation was measured by the static chamber-gas chromatography technique. The results showed that nitrogen addition treatment increased the annual cumulative N2O emission by 14.6%, while biochar application and the combination treatment reduced it by 20.8% and 10.6%, respectively. Soil N2O flux rate was significantly correlated with soil temperature, NO3--N concentration, urease and protease activities, and soil NH4+-N concentration across all treatments. In conclusion, under the background of nitrogen deposition, the application of biochar would have a significant reduction effect on soil N2O fluxes in Moso bamboo plantations.


Assuntos
Nitrogênio , Solo , Carvão Vegetal , Poaceae
10.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3119-3126, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658196

RESUMO

A field manipulative experiment was carried out during 2015 and 2016 to examine the changes and influencing factors of root production, turnover rate, and standing crop under different nitrogen (N) addition levels, i.e., 0, 1, 2, 4, 8 and 16 g N·m-2·a-1, in a Tibetan alpine steppe. The results showed that root production and standing crop decreased linearly or exponentially with increasing N addition rates. Compared with control, 16 g N·m-2·a-1 significantly reduced the two-year average root production and standing crop by 43.0% and 45.7%, respectively. Root turnover rate increased first and then decreased along the N addition gradient, with the maximum appearing under 2 and 4 g N·m-2·a-1 treatments for 2015 and 2016, respectively. Results from linear mixed-effects models showed that root starch content was the main factor modulating the N-induced changes in root production and turnover rate, explaining 21.7% and 25.4% of their variations. Root protein content mainly contributed to the variations in standing crop, with an explanation of 20.8% of its variance. Overall, N addition had negative effect on root production and standing crop, and low N promoted while high N inhibited root turnover rate. Root metabolic parameters were the main factors modulating the N-induced changes in root dynamics.


Assuntos
Nitrogênio , Raízes de Plantas , China , Tibet
11.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3195-3203, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658205

RESUMO

As sand dunes gradually become fixed, soil particle size, soil organic carbon (SOC) and total nitrogen (TN) contents vary across different locations of the dunes. To investigate the spatial variation of soil particle size distribution and soil nutrition in the fixed sand dunes, we examined particle composition, SOC and TC features in different locations of dunes in the Eastern Ningxia. The results showed that the particle sizes of each soil layer were mainly characterized by medium and coarse sands. The SOC and TN contents were higher in surface soil layers, with a maximum of 5.781 and 0.412 g·kg-1, respectively, which were observed in interdune lands and dune ridges, while the leeward slope of the dunes showed the least. The SOC content of both the leeward and windward slope gradually decreased with increasing soil depth along the dune. By contrast, that of the interdune lands decreased first and then increased. At small scale, both the SOC and TN contents showed a clear spatial heterogeneity. There was a positive correlation between soil nutrition contents (SOC and TN) and silt and very fine sand contents in the fixed sand dunes, and a negative correlation with medium and coarse sand contents. Our results implied that soil particle size composition influenced SOC and TN contents. The contents of soil nutrition increased with increa-sing contribution of fine particles, highlighting the role of fine particles in adhesion and accumulation of organic matter.


Assuntos
Carbono , Solo , Nitrogênio/análise , Tamanho da Partícula , Areia
12.
Ying Yong Sheng Tai Xue Bao ; 32(9): 3257-3266, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34658212

RESUMO

In order to understand the composition and stability of soil aggregate in paddy filed, as well as the changes of soil aggregate-associated nitrogen (N), phosphorus (P) and potassium (K) after straw addition combined with chemical fertilization, soil samples were collected from a 34-year positioning experiment with three treatments, including no chemical fertilizer (CK), chemical fertilizer only (NPK), and straw addition plus chemical fertilizer (NPKS). The composition of water-stable aggregates at the soil layers of 0-20 cm and 20-40 cm were analyzed with the wet sieving method, as well as the distribution characteristics, contribution rate and activation rate of soil aggregate-associated N, P, and K. Results showed that the fractions of >2 mm and 0.25-1 mm aggregates dominated the soil water-stable aggregates in paddy field, while the contribution of <0.053 mm aggregates was lowest. Compared with CK, NPKS treatment increased the contents of >2 mm and 1-2 mm aggregates at the layers of 0-20 and 20-40 cm, and reduced the contents of 0.053-0.25 mm and <0.053 mm. Similar result in NPK treatment was observed at the layer of 0-20 cm. Compared with tat under the NPK treatment, mean weight diameter (MWD) and geometric mean diameter (GMD) increased by 3.9%-15.5% and 6.3%-41.7% in NPKS treatment, respectively. However, the unstable aggregate index (ELT) reduced by 5.7%-28.7% in the NPKS treatment. NPKS significantly increased the contents of total N (TN), available P (AP), and available K (AK) in soil aggregates, especially in the >0.25 mm aggregates. There were no significant diffe-rences about alkali-hydrolysable N (AN) and total K (TK) between NPK and NPKS treatments. The nutrient contribution of soil aggregates in paddy field was affected by aggregate composition. NPKS significantly increased the contribution of AN, AP, and AK within >1 mm aggregates. In all, straw addition combined with chemical fertilizer could increase the stability of soil aggregates at the layers of 0-20 cm and 20-40 cm, and increase the contents of soil aggregate-associated N, P and K, especially for the >1 mm aggregates. Our results provided insights into ensuring soil quality and sustainable development of resources in paddy field by adjusting the ratio of soil C to N.


Assuntos
Nitrogênio , Fósforo , Agricultura , Fertilizantes , Potássio
13.
Anal Chim Acta ; 1183: 338977, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34627517

RESUMO

Water contamination due to heavy metal ions has become a major environmental problem worldwide. In this work, "on-off-on" fluorescence switches comprising N,S-doped carbon dots (N,S-CDs) have been developed for selective recognition of Hg2+ and as reversive probes for guanine. N,S-CDs were synthesized in a facile one-step hydrothermal approach using citric acid and methionine as precursors. The synthesized N,S-CDs display fluorescence with excitation/emission maxima of 370/440 nm and a quantum yield of 32.5%. Under the variable pH (2-12), the fluorescent N,S-CDs with a linear range from 0.05 to 100 µM displayed selective discrimination for Hg2+ with the limit of 6.24 nM over several other cations, anions, and neutral analytes resulting in the quenching of fluorescence response. Furthermore, the addition of guanine at the LOD of 6.4 nM can restore N,S-CDs' fluorescence in a reversible manner. For this kind of fluorescence switch, its purposed applications on environmental samples are employed successfully to detect Hg2+ in tap water and river water.


Assuntos
Mercúrio , Pontos Quânticos , Carbono , Guanina , Nitrogênio , Espectrometria de Fluorescência
14.
J Environ Manage ; 300: 113747, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34649328

RESUMO

As a new strategy for treating excess nutrients in roadway runoff, a self-filtering roadway could be accomplished by including engineered infiltration media within a vegetated filter strip (VFS) located in the roadway shoulder. However, nutrient removal performance will depend on the design to effectively infiltrate roadway runoff and the capacity of subsurface media to sequester or remove nutrients from infiltrated runoff. The objective of this study is to test hydraulic and nutrient removal performance of a roadside VFS over varied rainfall-runoff event sizes and filter widths. Two identical 1:1 scale physical models of roadway shoulders and embankments, one containing engineered media (Treatment model) and the other without (Control model), were tested with simulated rainfall and runoff from 1- and 2-lane roadways. Overall, 32 paired hydraulic experiments and 28 paired nutrient removal experiments were completed to assess performance across frequent and extreme rainfall-runoff events. The results indicate that scalability of performance with filter width varied by parameter. Runoff generation scaled predictably with filter width, as runoff generated close to the pavement and total infiltration increased with filter length. A 6 m-wide VFS containing the engineered media infiltrated all rainfall-runoff except during the most extreme storm events (1-h storms of 76.2 mm and 50.8 mm), where respectively 35% and 22% of rainfall-runoff did not infiltrate and left the system as surface runoff. A majority of phosphorus was retained within a 1.5 m filter while nitrate removal was not observed until 6 m. The Treatment model strongly outperformed the Control model with respect to nitrate (arithmetic mean ± standard deviation of 94 ± 6% reduction vs. 23 ± 64% increase, p < .001) and total nitrogen removal (80 ± 5% vs. 38 ± 23% reduction, p < .001) due to higher rates of microbially-mediated denitrification in the Treatment model. The two models performed comparably with regard to phosphorus reduction (84 ± 9% vs. 82 ± 12% reduction). A minimum 6 m filter width is recommended to ensure sufficient infiltration of runoff and nitrogen removal. Results of this study address uncertainty regarding nutrient removal performance of VFS in urban runoff applications and highlight a potential strategy for standardizing VFS performance across varied soil properties by including engineered media within the filter.


Assuntos
Fósforo , Solo , Nitratos , Nitrogênio , Nutrientes , Chuva , Movimentos da Água
15.
Sensors (Basel) ; 21(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640950

RESUMO

A sample of nitrogen and boron co-doped graphene (NB-Gr) was obtained by the hydrothermal method using urea and boric acid as doping sources. According to XRD analysis, the NB-Gr sample was formed by five-layer graphene. In addition, the XPS analysis confirmed the nitrogen and boron co-doping of the graphene sample. After synthesis, the investigation of the electro-catalytic properties of the bare (GC) and graphene-modified electrode (NB-Gr/GC) towards cymoxanil detection (CYM) was performed. Significant differences between the two electrodes were noticed. In the first case (GC) the peak current modulus was small (1.12 × 10-5 A) and appeared in the region of negative potentials (-0.9 V). In contrast, when NB-Gr was present on top of the GC electrode it promoted the transfer of electrons, leading to a large peak current increase (1.65 × 10-5 A) and a positive shift of the peak potential (-0.75 V). The NB-Gr/GC electrode was also tested for its ability to detect cymoxanil from a commercial fungicide (CURZATE MANOX) by the standard addition method, giving a recovery of 99%.


Assuntos
Grafite , Acetamidas , Boro , Nitrogênio
16.
Appl Microbiol Biotechnol ; 105(18): 6627-6648, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34468802

RESUMO

Mixotrophic bacteria provide a desirable alternative to the use of classical heterotrophic or chemolithoautotrophic bacteria in environmental technology, particularly under limiting nutrients conditions. Their bi-modal ability of adapting to inorganic or organic carbon feed and sulfur, nitrogen, or even heavy metal stress conditions are attractive features to achieve efficient bacterial activity and favorable operation conditions for the environmental detoxification or remediation of contaminated waste and wastewater. This review provides an overview on the state of the art and summarizes the metabolic traits of the most promising and emerging non-model mixotrophic bacteria for the environmental detoxification of contaminated wastewater and waste containing excess amounts of limiting nutrients. Although mixotrophic bacteria usually function with low organic carbon sources, the unusual capabilities of mixotrophic electroactive exoelectrogens and electrotrophs in bioelectrochemical systems and in microbial electrosynthesis for accelerating simultaneous metabolism of inorganic or organic C and N, S or heavy metals are reviewed. The identification of the mixotrophic properties of electroactive bacteria and their capability to drive mono- or bidirectional electron transfer processes are highly exciting and promising aspects. These aspects provide an appealing potential for unearthing new mixotrophic exoelectrogens and electrotrophs, and thus inspire the next generation of microbial electrochemical technology and mixotrophic bacterial metabolic engineering. KEY POINTS: • Mixotrophic bacteria efficiently and simultaneously remove C and N, S or heavy metals. • Exoelectrogens and electrotrophs accelerate metabolism of C and N, S or heavy metals. • New mixotrophic exoelectrogens and electrotrophs should be discovered and exploited.


Assuntos
Metais Pesados , Águas Residuárias , Bactérias/genética , Processos Heterotróficos , Nitrogênio
17.
Braz J Biol ; 83: e246436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495159

RESUMO

Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-1 combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-1 level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-1 to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


Assuntos
Proteínas Hemolisinas , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Fertilizantes , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Nitrogênio , Fósforo , Plantas Geneticamente Modificadas/genética
18.
Planta ; 254(4): 63, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477992

RESUMO

MAIN CONCLUSION: The expression of stay-green (SG) characteristic in sorghum under water stress was related to N supply. SG genotype performed better than a non-stay-green (NSG) genotype at medium and high N levels. The differences in physiological parameters between SG and NSG genotypes were not significant at low N level and severe water stress. Grain sorghum [Sorghum bicolor (L.) Moench] with stay-green (SG) trait has the potential to produce more biomass and use soil water and nitrogen (N) more efficiently under post-flowering water stress. Previous studies were mostly conducted without N deficiency and more information is needed for interactions among soil N availability, SG genotype, and post-flowering water stress. In this study, the differences in leaf growth and senescence, shoot and root biomass, evapotranspiration (ET), water use efficiency (WUE), leaf photosynthetic responses, and nitrogen use efficiency (NUE) between a SG genotype (BTx642) and a non-stay-green (NSG) genotype (Tx7000) were examined. The two genotypes were grown at three N levels (Low, LN; Medium, MN; High, HN) and under three post-flowering water regimes (No water deficit, ND; Moderate water deficit, MD; Severe water deficit, SD). The genotypic difference was generally significant while it frequently interacted with N levels and water regimes. At medium and high N levels, SG genotype consistently had greater green leaf area, slower senescence rate, more shoot biomass and root biomass, and greater WUE and NUE than the NSG genotype under post-flowering drought. However, differences in several variables (e.g., leaf senescence, ET, WUE and NUE) between genotypes were not significant under SD at LN. At HN and MN, photosynthetic function of SG genotype was better maintained under drought. At LN, SG genotype maintained greater green leaf area but had lower photosynthetic activity than the NSG genotype. Nonetheless, adequate N supply is important for SG genotype under drought and greater root biomass may contribute to greater NUE in SG genotype.


Assuntos
Sorghum , Secas , Grão Comestível , Nitrogênio , Sorghum/genética , Água
19.
Chemosphere ; 283: 131204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467947

RESUMO

To overcome the bottlenecks of waste resource utilization and energy shortage that restrict the commercial production of microalgae biodiesel, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture oleaginous microalgae Chlorella pyrenoidosa FACHB-1216 and Scenedesmus quadricauda FACHB-1297 under the mixotrophic and heterotrophic cultivation. Four VFAs ratios (acetic acids (AA): propionic acids (PA): butyric acids (BA)) were tested to determine the effects and mechanisms of the VFAs on the two microalgae. The highest lipid content (29.54%) and lipid production (71.10 mg L-1) were achieved by S. quadricauda at the VFAs ratio of 6: 1: 3 under heterotrophic condition, with 46.27% and 67.52% removal efficiencies of total nitrogen and phosphorus, respectively. The assimilation efficiency of AA was the highest at 73.37%, followed by that of PA and BA. For C. pyrenoidosa, VFAs promoted the rapid reproduction within 2 days under the heterotrophic condition at different initial inoculation densities. At the optimal VFA ratio, algae achieved the highest biomass concentration (0.14 ± 0.02 g L-1), with a specific growth rate of 0.91 d-1 and biomass productivity of 125.17 mg L-1 d-1. The removal rates of total nitrogen and phosphorus were 47.03% and 74.40%, respectively, and the assimilation efficiency of AA was the best (61.06%). High AA assimilation efficiency under the heterotrophic condition was beneficial for the algal growth and lipid accumulation. These results simultaneously produced microalgae-based bioenergy and recycled VFAs in anaerobically digested effluent.


Assuntos
Chlorella , Microalgas , Biomassa , Ácidos Graxos , Ácidos Graxos Voláteis , Processos Heterotróficos , Lipídeos , Nitrogênio
20.
BMC Res Notes ; 14(1): 347, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488867

RESUMO

OBJECTIVES: Existing information on Arctic marine food web structure is fragmented. Integrating data across research programs is an important strategy for building a baseline understanding of food web structure and function in many Arctic regions. Naturally-occurring stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) measured directly in the tissues of organisms are a commonly-employed method for estimating food web structure. The objective of the current dataset was to synthesize disparate δ15N, and secondarily δ13C, data in the Canadian Beaufort continental shelf region relevant to trophic and ecological studies at the local and pan-Arctic scales. DATA DESCRIPTION: The dataset presented here contains nitrogen and carbon stable isotope ratios (δ15N, δ13C) measured in marine organisms from the Canadian Beaufort continental shelf region between 1983 and 2013, gathered from 27 published and unpublished sources with associated sampling metadata. A total of 1077 entries were collected, summarizing 8859 individual organisms/samples representing 333 taxa across the Arctic food web, from top marine mammal predators to primary producers.


Assuntos
Organismos Aquáticos , Nitrogênio , Animais , Regiões Árticas , Canadá , Ecossistema , Cadeia Alimentar , Isótopos de Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...