Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.184
Filtrar
1.
Food Microbiol ; 116: 104363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689418

RESUMO

Norovirus is a significant global cause of viral gastroenteritis, with raw oyster consumption often linked to such outbreaks due to their filter-feeding in harvest waters. National water quality and depuration/relaying times are often classified using Escherichia coli, a poor proxy for norovirus levels in shellfish. The current norovirus assay is limited to only the digestive tracts of oysters, meaning the total norovirus load of an oyster may differ from reported results. These limitations motivated this work, building upon previous modelling by the authors, and considers the sequestration of norovirus into observed and cryptic (unobservable) compartments within each oyster. Results show that total norovirus levels in shellfish batches exhibit distinct peaks during the early depuration stages, with each peak's magnitude dependent on the proportion of cryptic norovirus. These results are supported by depuration trial data and other studies, where viral levels often exhibit multiphase decays. This work's significant result is that any future norovirus legislation needs to consider not only the harvest site's water classification but also the total viral load present in oysters entering the market. We show that 62 h of depuration should be undertaken before any norovirus testing is conducted on oyster samples, being the time required for cryptic viral loads to have transited into the digestive tracts where they can be detected by current assay, or have exited the oyster.


Assuntos
Norovirus , Ostreidae , Animais , Alimentos Marinhos , Bioensaio , Escherichia coli , Inocuidade dos Alimentos
2.
BMC Infect Dis ; 23(1): 595, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700223

RESUMO

BACKGROUND: Although many studies on asymptomatic norovirus infection in outbreaks have been conducted globally, structured data (important for emergency management of outbreaks) on the prevalence of this epidemic are still not available. This study assessed the global prevalence of asymptomatic norovirus infection in outbreaks. METHODS: We identified publications on asymptomatic infections from norovirus outbreaks by searching the PubMed, Embase, Cochrane Library, Medline, and Web of Science databases and screening references from the articles reviewed. Prevalence of asymptomatic norovirus infection in outbreaks was employed as the primary summary data. The random-effects model of the meta-analysis was fitted to generate estimates of the prevalence in the overall and subgroup populations. RESULTS: In total, 44 articles with a sample size of 8,115 asymptomatic individuals were included. The estimated pooled prevalence of asymptomatic norovirus infection in outbreaks was 21.8% (95%CI, 17.4-27.3). The asymptomatic prevalence of norovirus GII (20.1%) was similar to that of GI (19.8%); however, the proportion prevalence of asymptomatic individuals involved in the former (33.36%) was significantly higher than that of in the latter (0.92%) and the former (93.18%) was reported much more frequently than the latter (15.91%) in the included articles. These studies had significant heterogeneity (I2 = 92%, τ2 = 0.4021, P < 0.01). However, the source of heterogeneity could not be identified even after subgroup analysis of 10 possible influencing factors (geographical area, outbreak settings, outbreak seasons, sample types, norovirus genotypes, transmission routes, subjects' occupations, subjects' age, per capita national income, and clear case definition). Meta-regression analysis of these 10 factors demonstrated that the geographical area could be partly responsible for this heterogeneity (P = 0.012). CONCLUSIONS: The overall pooled asymptomatic prevalence of norovirus in outbreaks was high, with genome II dominating. Asymptomatic individuals may play an important role in norovirus outbreaks. This knowledge could help in developing control strategies and public health policies for norovirus outbreaks.


Assuntos
Epidemias , Norovirus , Humanos , Infecções Assintomáticas/epidemiologia , Prevalência , Surtos de Doenças , Norovirus/genética
3.
Clin Lab ; 69(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702670

RESUMO

BACKGROUND: Gastrointestinal (GI) infections, caused by various pathogens such as bacteria, viruses, protozoa, and parasites, are the second most common infectious diseases. Molecular diagnostics that can simultaneously detect these pathogens are commonly used in syndromic approaches. The authors aimed to identify the causative pathogens of GI infections to provide clinically useful information. METHODS: This retrospective study used molecular diagnostic methods to determine the incidence and distribution of GI pathogens according to gender, age, and season and analyze their coinfection from August 2020 to December 2022. RESULTS: The overall incidence of at least one GI pathogen was 40.1% (991/2, 471). The positivity rates for bacteria and viruses were 33.1% (817/2, 471) and 9.2% (227/2,471), respectively; the positivity rate for bacteria was significantly higher than that for viruses (p < 0.001). The incidence of GI pathogens according to age group was highest in group 3 (59.9%), followed by group 4 (57.0%). The most common bacterial pathogen associated with GI infections was C. difficile, followed by diarrheagenic E. coli, Campylobacter spp., and Salmonella spp. Enteropathogenic E. coli accounted for a large percentage of diarrheagenic E. coli (63.6%, 157/247). Among the viral pathogens, norovirus GI/GII was the most commonly detected virus, followed by adenovirus F40/41 and rotavirus A. For bacterial- or viral-positive cases, the distribution of GI pathogens according to age group showed the highest proportion of C. difficile in all groups, except for group 2. In group 2, rotavirus A accounted for the highest percentage (61.1%, 22/36). The incidence of GI pathogens was the highest in summer (36.1%), followed by autumn (32.7%), and winter (18.0%). The co-infection rate with two or more pathogens was 16.9% (167/991). The rates of co-infection with two or more bacteria, bacteria and viruses, and two viruses were 58.1%, 31.7%, and 10.2%, re-spectively. CONCLUSIONS: Information on the incidence and distribution of GI pathogens might be clinically useful; however, unlike the distribution of other infectious pathogens, it is necessary to consider that microorganisms identified through molecular diagnostics can be detected even in healthy people without clinical symptoms.


Assuntos
Clostridioides difficile , Coinfecção , Doenças Transmissíveis , Gastroenteropatias , Norovirus , Rotavirus , Humanos , Coinfecção/epidemiologia , Escherichia coli , Incidência , Estudos Retrospectivos , Gastroenteropatias/diagnóstico , Gastroenteropatias/epidemiologia , Hospitais Universitários , República da Coreia/epidemiologia
4.
Front Immunol ; 14: 1229724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662930

RESUMO

Genogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.4 strains, but the serological basis for GII.17 antigenic diversity has not been studied in children. Utilizing samples from a birth cohort, we investigated antibody and B-cell responses to GII.17 cluster variants in confirmed GII.17 infections in young children as well as demonstrated that the distinct genetic clusters co-circulate. Polyclonal serum antibodies bound multiple clusters but showed cluster-specific blockade activity in a surrogate virus neutralization assay. Antibodies secreted by immortalized memory B cells (MBCs) from an infant GII.17 case were highly specific to GII.17 and exhibited blockade activity against this genotype. We isolated an MBC-derived GII.17-specific Immunoglobulin A (IgA) monoclonal antibody called NVA.1 that potently and selectively blocked GII.17 cluster IIIb and recognized an epitope targeted in serum from cluster IIIb-infected children. These data indicate that multiple antigenically distinct GII.17 variants co-circulate in young children, suggesting retention of cluster diversity alongside potential for immune escape given the existence of antibody-defined cluster-specific epitopes elicited during infection.


Assuntos
Linfócitos B , Norovirus , Criança , Lactente , Humanos , Pré-Escolar , Anticorpos Monoclonais , Células B de Memória , Imunoglobulina A , Paraproteínas , Epitopos , Genótipo , Norovirus/genética
5.
BMC Infect Dis ; 23(1): 623, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735361

RESUMO

BACKGROUND: Norovirus is now recognized to be major cause of gastroenteritis worldwide, with significantly higher disease burden among immunocompromised patients. This study aimed to determine the prevalence of Norovirus among HIV-infected patients and to evaluate the impact of combination antiretroviral therapy (cART) status on Norovirus prevalence in a sub-urban area of Abuja, Nigeria. METHODS: This study included a total of Two hundred and fifteen subjects (85 cART-naïve and 130 cART-exposed) HIV-infected patients. Age range of study participants was 18 to 60 years. Faecal specimens where collected in screw capped containers and analyzed for Norovirus using Accupower Norovirus real-time PCR Test kit. CD4 + cell count was determined using flow cytometry. RESULTS: The prevalence of Norovirus among cART-naïve HIV-infected patients was 10.6%. Age and gender was not associated with norovirus infection. cART -naïve HIV-infected patients with CD4 + cell count < 200 was significantly more infected with Norovirus as compared to those with CD4 + count ≥ 200 (OR: 28.000, 95% CI 3.2237, 243.2007, P = 0.0025). Norovirus was also found to be significantly higher in cART-naïve HIV-infected patients than amongst cART-exposed counterparts (OR: 6.882, 95% CI: 1.4514, 32.6343, P = 0.015). CONCLUSIONS: The prevalence of Norovirus among cART-naïve HIV-infected patients was high; and was significantly higher in subjects with low CD4 + counts. Screening for Norovirus among cART-naïve HIV-infected patients is however emphasized to allow for effective Norovirus disease management.


Assuntos
Infecções por Caliciviridae , Infecções por HIV , Norovirus , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Nigéria/epidemiologia , Terapia Antirretroviral de Alta Atividade , Parafusos Ósseos , Infecções por Caliciviridae/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia
6.
Anal Chem ; 95(37): 13922-13931, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37671934

RESUMO

Photochemical (PEC) sensors were severely limited for multiplex detection applications due to the cross interference between multiplex signals at the single recognition interface. In this work, a distance-regulated PEC sensor was developed for multiplex detection by using an i-Motif sequence with conformational transformation activity as the signal transduction unit. Through dynamic regulation of the spatial distance between the end site of the functional sequence and the electrode material, the photogenerated electrons on the surface of the sensor were directionally transferred. Thus, a PEC sensor with "signal-on" and "signal-off" dual signal output modes was developed for simultaneous detection of multitarget molecules. Combining isothermal nucleic acid amplification, the PEC sensor constructed in this work was successfully applied to the detection of two virus (Norovirus and Rotavirus) nucleic acid sequences. Under the optimal condition, this bioassay protocol exhibits a linear range of 0.01-100 nM for both viruses with detection limits of 0.72 and 0.53 pM, respectively. In this study, a stimulus-mediated distance regulation strategy successfully addressed the transduction of multiplex detection signals at the single recognition interface of the PEC sensor. It is expected that the technical barriers to multiplex detection of PEC sensors will be overcome and the application of PEC sensing technology will be expanded in the field of environmental analysis.


Assuntos
Norovirus , Ácidos Nucleicos , Bioensaio , Eletrodos , Elétrons
7.
Sci Adv ; 9(37): eadi2562, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703370

RESUMO

Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.


Assuntos
Infecções por Enterovirus , Norovirus , Animais , Camundongos , Enterócitos , Células Epiteliais , Transdução de Sinais , Antivirais/farmacologia , Interferon lambda
8.
Sci Rep ; 13(1): 15558, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730810

RESUMO

When two outbreaks occur in the same institution within a short period of time, an important health and social concern is generated. Two gastroenteritis outbreaks occurring a week apart in the same facility were reported in Lleida, Spain, in 2018. The objective of this study was to describe the clinical, epidemiological and microbiological investigation carried out and to determine the risk factors. Demographic data, food consumption and symptoms were collected. Health inspections of the facility were carried out. Risk ratio and their 95% confidence intervals were estimated for the implication of each food consumed. The attack rate was 89.7% in the first outbreak and 69.6% in the second outbreak. The most frequent symptoms in the first and second outbreak were abdominal pain (88.5% and 100%, respectively), vomiting (80.8% and 87.5%, respectively) and nausea (69.2% and 81.3%, respectively). The first outbreak was associated with the consumption of a salad and the second with a cheese omelet. Norovirus GII.6 was detected by RT-PCR and sequenced in both groups of students and in the food handlers who prepared the meals. These results highlight the importance of exclusion from work of food handlers with gastroenteritis, the adequate availability of mechanisms for correct hand washing and the correct cleaning of surfaces.


Assuntos
Gastroenterite , Norovirus , Humanos , Férias e Feriados , Gastroenterite/epidemiologia , Surtos de Doenças , Ovos , Norovirus/genética
9.
Analyst ; 148(18): 4504-4512, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578304

RESUMO

Noroviruses are highly contagious and are one of the leading causes of acute gastroenteritis worldwide. Due to a lack of effective antiviral therapies, there is a need to diagnose and surveil norovirus infections to implement quarantine protocols and prevent large outbreaks. Currently, the gold standard of diagnosis uses reverse transcription polymerase chain reaction (RT-PCR), but PCR can have limited availability. Here, we propose a combination of a tunable peptide substrate and gold nanoparticles (AuNPs) to colorimetrically detect the Southampton norovirus 3C-like protease (SV3CP), a key protease in viral replication. Careful design of the substrate employs a zwitterionic peptide with opposite charged moieties on the C- and N- termini to induce a rapid color change visible to the naked eye; thus, this color change is indicative of SV3CP activity. This work expands on existing zwitterionic peptide strategies for protease detection by systematically evaluating the effects of lysine and arginine on nanoparticle charge screening. We also determine a limit of detection for SV3CP of 28.0 nM with comparable results in external breath condensate, urine, and fecal matter for 100 nM of SV3CP. The key advantage of this system is its simplicity and accessibility, thus making it an attractive tool for qualitative point-of-care diagnostics.


Assuntos
Infecções por Caliciviridae , Nanopartículas Metálicas , Norovirus , Humanos , Peptídeo Hidrolases , Norovirus/genética , Ouro , Colorimetria , Peptídeos , Endopeptidases , Fezes , Infecções por Caliciviridae/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Water Res ; 243: 120357, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549447

RESUMO

Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.


Assuntos
Bivalves , Norovirus , Fagos RNA , Humanos , Animais , Norovirus/genética , Fagos RNA/genética , Reprodutibilidade dos Testes , Água , Microbiologia da Água
11.
Viruses ; 15(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37632024

RESUMO

Acute gastroenteritis (AGE) accounts for considerable morbidity and mortality in the paediatric population worldwide, especially in low-income countries. Human norovirus (HNoV), particularly GII.4 strains, are important agents of AGE. This study aimed to detect and characterise HNoV in children with and without AGE. Between 2019 and 2021, 300 stool samples (200 AGE and 100 without AGE) were collected from children below 5 years of age referred to the healthcare facilities of the rural communities of Vhembe District, South Africa. After detection using real-time RT-PCR, HNoV positive samples were subjected to RT-PCR and Sanger sequencing. Partial nucleotide sequences (capsid/RdRp) were aligned using the Muscle tool, and phylogenetic analysis was performed using MEGA 11. The nucleotides' percent identity among HNoV strains was compared using ClustalW software. A significant difference in HNoV prevalence between AGE children (37%; 74/200) and non-AGE (14%; 14/100) was confirmed (p < 0.0001). Genogroup II (GII) HNoV was predominant in AGE children (80%; 59/74), whereas most non-AGE children were infected by the GI norovirus genogroup (64%; 9/14). GII.4 Sydney 2012 [P31] strains were dominant (59%; 19/32) during the study period. A phylogenetic analysis revealed a close relationship between the HNoV strains identified in this study and those circulating worldwide; however, ClustalW showed less than 50% nucleotide similarity between strains from this study and those from previously reported norovirus studies in the same region. Our findings indicate significant changes over time in the circulation of HNoV strains, as well as the association between high HNoV prevalence and AGE symptoms within the study area. The monitoring of HuNoV epidemiology, along with stringent preventive measures to mitigate the viral spread and the burden of AGE, are warranted.


Assuntos
Norovirus , Humanos , Criança , Pré-Escolar , Prevalência , Norovirus/genética , População Rural , África do Sul/epidemiologia , Filogenia , Nucleotídeos
12.
Ann Med ; 55(2): 2246474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37604118

RESUMO

OBJECTIVE: This study aims to estimate the transmissibility of norovirus outbreaks in schools by different transmission routes, and to evaluate the effects of isolation, school-closure and disinfection measures under different intervention intensities, finally, scientific prevention and control suggestions are proposed. METHOD: 23 outbreaks of norovirus infectious diarrhea occurring in Jiangsu Province's school from 2012-2018 were selected and fitted to the model. The data includes various types of school places and pathogen genotype. A 'SEIAQRW' model with two transmission routes was established. The transmissibility of each outbreak was assessed using effective reproduction number, the efficacy of different intervention measures and intensities were evaluated by calculating the total attack rate and peak incidence. RESULTS: The mean effective reproduction number of noroviruses was estimated to be 8.92 for the human-to-human route of transmission and 2.19 for the water or food-to-human route of transmission. When all symptomatic cases were isolated, the median peak incidence for both transmission routes both being less than 1.8%. There was a smaller reduction in total attack rate compared to peak incidence, the median total attack rate for the two transmission routes decreased by 17.59% and 42.09%, respectively. When the effect of school-closure or disinfection is more than 90%, the total attack rate and peak incidence in the human-to-human route are reduced by more than 90% compared to no intervention, and the peak incidence in the water or food-to-human routes can be reduced to less than 1.4%, but the reduction in the total attack rate is only 50% or so. CONCLUSION: Norovirus outbreaks have a high rate of transmission in schools. In the case of norovirus outbreaks, isolation should be complemented by other interventions, and the implementation of high-intensity school closures or disinfection of the external environment can be effective in reducing the spread of the virus.


Assuntos
Norovirus , Humanos , Genótipo , Instituições Acadêmicas , Água
13.
Emerg Infect Dis ; 29(9): 1837-1841, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37610173

RESUMO

Newly evolved GII.4 Sydney[P16] norovirus with multiple residue mutations, already circulating in parts of China, became predominant and caused an abrupt increase in diagnosed norovirus cases among children with gastroenteritis in Shanghai during 2021-2022. Findings highlight the need for continuous long-term monitoring for GII.4 Sydney[P16] and emergent GII.4 norovirus variants.


Assuntos
Gastroenterite , Norovirus , Criança , Humanos , China/epidemiologia , Norovirus/genética , Gastroenterite/epidemiologia , Mutação
14.
Arch Virol ; 168(9): 231, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584776

RESUMO

Noroviruses (NoVs) are a global concern, causing widespread outbreaks and sporadic acute gastroenteritis (AGE) cases across all age groups. Recent research has shed light on the emergence of novel recombinant strains of NoV in various countries. To delve deeper into this phenomenon, we extensively analyzed 1,175 stool samples collected from Japanese infants and children with AGE from six different prefectures in Japan over three years, from July 2018 to June 2021. Our investigation aimed to determine the prevalence and genetic characteristics of NoV associated with sporadic AGE while exploring the possibility of detecting NoV recombination events. Among the analyzed samples, we identified 355 cases positive for NoV, 11 cases attributed to GI genotypes, and 344 associated with GII genotypes. Notably, we discovered four distinct GI genotypes (GI.2, GI.3, GI.4, and GI.6) and seven diverse GII genotypes (GII.2, GII.3, GII.4, GII.6, GII.7, GII.14, and GII.17). The predominant genotypes were GII.4 (56.4%; 194 out of 344), followed by GII.2 and GII.3. Through dual genotyping based on sequencing of the ORF1/ORF2 junction region, we identified a total of 14 different RdRp/capsid genotypes. Of particular interest were the prevalent recombinant genotypes GII.4[P31] and GII.2[P16]. Notably, our study revealed a decrease in the number of children infected with NoV during and after the COVID-19 pandemic. These findings underscore the importance of continuous NoV surveillance efforts.


Assuntos
Infecções por Caliciviridae , Variação Genética , Norovirus , Criança , Pré-Escolar , Humanos , Lactente , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , COVID-19 , Fezes/virologia , Genótipo , Japão/epidemiologia , Norovirus/classificação , Norovirus/genética , Filogenia , Prevalência , Adolescente , Proteínas do Capsídeo/genética
16.
Vaccine ; 41(41): 6008-6016, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37625992

RESUMO

BACKGROUND: Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. METHODS: NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. RESULTS: Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. CONCLUSIONS: The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.


Assuntos
Infecções por Caliciviridae , Norovirus , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Humanos , Coelhos , Animais , Camundongos , Anticorpos Antivirais , Norovirus/genética , Imunoglobulina G
17.
J Virol Methods ; 321: 114804, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643662

RESUMO

Norovirus (NoV) is a highly contagious enteric virus that causes widespread outbreaks and a substantial number of deaths across communities. As clinical surveillance is often insufficient, wastewater-based epidemiology (WBE) may provide novel pathways of tracking outbreaks. To utilise WBE, it is important to use accurate and sensitive methods for viral quantification. In this study, we developed a one-step duplex RT-qPCR assay to simultaneously test the two main human pathogenic NoV genogroups, GI and GII, in wastewater samples. The assay had low limits of detection (LOD), namely 0.52 genome copies (gc)/µl for NoVGI and 1.37 gc/µl for NoVGII. No significant concentration-dependent interactions were noted for both NoVGI and for NoVGII when the two targets were mixed at different concentrations in the samples. When tested on wastewater-derived RNA eluents, no significant difference between duplex and singleplex concentrations were found for either target. Low levels of inhibition (up to 32 %) were noted due to organic matter present in the wastewater extracts. From these results we argue that the duplex RT-qPCR assay developed enables the sensitive detection of both NoVGI and NoVGII in wastewater-derived RNA eluents, in a time and cost-effective way and may be used for surveillance to monitor public and environmental health.


Assuntos
Norovirus , Humanos , Norovirus/genética , Águas Residuárias , Bioensaio , Surtos de Doenças , RNA
18.
Food Environ Virol ; 15(3): 246-254, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37528267

RESUMO

Soft fruits are at particular risk of contamination with enteric viruses such as Hepatitis A virus (HAV), Hepatitis E Virus (HEV), Norovirus (NoV), Human Adenovirus (HAdV) and Sapovirus (SaV). The aim of this study was to investigate, for the first time, the presence of these biological agents in ready to eat (RTE) berries at point of retail in Ireland. A sampling strategy was designed in which RTE fresh and frozen strawberries and raspberries were purchased from five retailers between May and October 2018. Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR) assays for HEV RNA, Nov RNA, SaV RNA, and human Adenovirus species F DNA (HAdV-F) were performed on 239 samples (25g portions). Viral nucleic acid was present in 6.7% (n = 16) of samples tested as follows: HAV RNA (n = 5), HAdV-F DNA (n = 5), HEV RNA (n = 3) and NoV GII RNA (n = 3). Sapovirus RNA was not detected in any product. No significant differences were found between berry type, fresh/frozen status, or supermarket source. This study suggests a risk that exists across all retail outlets however only low levels of nucleic acid ranging from 0 to 16 genome copies/g were present. Although these findings may reflect non-viable/non-infectious virus the continued provision of risk mitigation advice to consumers is warranted and further work is required to ensure control measures to reduce contamination are implemented and enforced.


Assuntos
Adenovírus Humanos , Vírus da Hepatite A , Hepatite A , Hepatite E , Norovirus , Ácidos Nucleicos , Humanos , Adenovírus Humanos/genética , Frutas , Microbiologia de Alimentos , Irlanda , Norovirus/genética , Vírus da Hepatite A/genética , RNA Viral/genética , RNA Viral/análise , DNA , Contaminação de Alimentos/análise
19.
Front Cell Infect Microbiol ; 13: 1216364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424789

RESUMO

Introduction: Virus-like particles (VLPs) are similar in size and shape to their respective viruses, but free of viral genetic material. This makes VLP-based vaccines incapable of causing infection, but still effective in mounting immune responses. Noro-VLPs consist of 180 copies of the VP1 capsid protein. The particle tolerates C-terminal fusion partners, and VP1 fused with a C-terminal SpyTag self-assembles into a VLP with SpyTag protruding from its surface, enabling conjugation of antigens via SpyCatcher. Methods: To compare SpyCatcher-mediated coupling and direct peptide fusion in experimental vaccination, we genetically fused the ectodomain of influenza matrix-2 protein (M2e) directly on the C-terminus of norovirus VP1 capsid protein. VLPs decorated with SpyCatcher-M2e and VLPs with direct M2 efusion were used to immunize mice. Results and discussion: We found that direct genetic fusion of M2e on noro-VLP raised few M2e antibodies in the mouse model, presumably because the short linker positions the peptide between the protruding domains of noro-VLP, limiting its accessibility. On the other hand, adding aluminum hydroxide adjuvant to the previously described SpyCatcher-M2e-decorated noro-VLP vaccine gave a strong response against M2e. Surprisingly, simple SpyCatcher-fused M2e without VLP display also functioned as a potent immunogen, which suggests that the commonly used protein linker SpyCatcher-SpyTag may serve a second role as an activator of the immune system in vaccine preparations. Based on the measured anti-M2e antibodies and cellular responses, both SpyCatcher-M2e as well as M2e presented on the noro-VLP via SpyTag/Catcher show potential for the development of universal influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Norovirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Humanos , Vacinas contra Influenza/genética , Proteínas do Capsídeo/genética , Norovirus/genética , Imunização , Vacinação , Peptídeos/genética , Camundongos Endogâmicos BALB C , Anticorpos Antivirais , Vacinas de Partículas Semelhantes a Vírus/genética
20.
Front Immunol ; 14: 1188431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435073

RESUMO

The development of an efficacious vaccine against norovirus is of paramount importance given its potential to reduce the global burden of norovirus-associated morbidity and mortality. Here, we report a detailed immunological analysis of a phase I, double-blind, placebo-controlled clinical trial performed on 60 healthy adults, ages 18 to 40. Total serum immunoglobulin and serum IgA against vaccine strains and cross-reactive serum IgG against non-vaccine strains were measured by enzyme immunoassays, whereas cell-mediated immune responses were quantified using intracellular cytokine staining by flow cytometry. A significant increase in humoral and cellular responses, e.g., IgA and CD4+ polypositive T cells, was triggered by the GI.4 Chiba 407 (1987) and GII.4 Aomori 2 (2006) VLP-based norovirus vaccine candidate rNV-2v, which is formulated without adjuvant. No booster effect was observed after the second administration in the pre-exposed adult study population. Furthermore, a cross-reactive immune response was elicited, as shown by IgG titers against GI.3 (2002), GII.2 OC08154 (2008), GII.4 (1999), GII.4 Sydney (2012), GII.4 Washington (2018), GII.6 Maryland (2018), and GII.17 Kawasaki 308 (2015). Due to viral infection via mucosal gut tissue and the high variety of potentially relevant norovirus strains, a focus should be on IgA and cross-protective humoral and cell-mediated responses in the development of a broadly protective, multi-valent norovirus vaccine. Clinical trial registration: https://clinicaltrials.gov, identifier NCT05508178. EudraCT number: 2019-003226-25.


Assuntos
Adjuvantes Imunológicos , Norovirus , Adulto , Humanos , Vacinas Combinadas , Adjuvantes Farmacêuticos , Imunoglobulina A , Imunoglobulina G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...