Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.474
Filtrar
2.
Angle Orthod ; 94(5): 566-573, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230015

RESUMO

OBJECTIVES: To investigate whether the inhibition of 12/15-lipoxygenase (12/15-LOX), one of the core enzymes of the arachidonic acid cascade, suppresses orthodontically induced root resorption (OIRR), and examine the involvement of the hyaline degeneration of periodontal ligament cells and odontoclast differentiation. MATERIALS AND METHODS: The left maxillary first molars of 10-week-old male Wistar rats were moved mesially for 14 days using a closed-coil spring (25 cN) inserted between the first molar and incisor. The rats were intraperitoneally administered with a 12/15-LOX specific inhibitor (ML-351; 0.05 mmol/kg) daily in the experimental group or vehicle (dimethyl sulfoxide) in the control group. Tooth movement was measured using microcomputed tomography on day 14. The appearance of OIRR, hyaline degeneration, osteoclasts, and odontoclasts was evaluated via histological analysis. Immunohistochemical staining for receptor-activated NF-kB ligand (RANKL) and osteoprotegerin was performed. RESULTS: OIRR observed on day 14 in the control group was strongly suppressed by ML-351 treatment. Hyaline degeneration observed on the compression side on day 3 and the appearance of osteoclasts and odontoclasts on days 3 and 14 were significantly suppressed by ML-351. RANKL expression on day 3 was significantly suppressed by ML-351. These key processes in OIRR were substantially suppressed by ML-351 treatment. CONCLUSIONS: Inhibition of 12/15-LOX reduced OIRR by suppressing hyaline degeneration and subsequent odontoclast differentiation.


Assuntos
Araquidonato 12-Lipoxigenase , Araquidonato 15-Lipoxigenase , Inibidores de Lipoxigenase , Osteoclastos , Ratos Wistar , Reabsorção da Raiz , Técnicas de Movimentação Dentária , Animais , Masculino , Técnicas de Movimentação Dentária/métodos , Reabsorção da Raiz/etiologia , Reabsorção da Raiz/prevenção & controle , Reabsorção da Raiz/patologia , Ratos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Osteoclastos/efeitos dos fármacos , Microtomografia por Raio-X , Ligante RANK/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Osteoprotegerina/metabolismo , Dente Molar
3.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250530

RESUMO

Developing bones can adapt their shape in response to mechanical stresses from neighbouring growing organs. In a new study, Koichi Matsuo and colleagues examine how bone-forming osteoblasts and bone-resorbing osteoclasts coordinate growth in the mouse fibula. They describe the process called 'endo-forming trans-pairing', where bone resorption by osteoclasts in the outer periosteum is paired with bone formation by osteoblasts in the inner endosteum to shape the growing bone. To learn more about the story behind the paper, we caught up with first author Yukiko Kuroda and the corresponding author Koichi Matsuo, Professor at the School of Medicine, Keio University, Japan.


Assuntos
Osteoclastos , Animais , Osteoclastos/metabolismo , Osteoclastos/citologia , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/citologia , Desenvolvimento Ósseo/genética , Japão , História do Século XXI , Reabsorção Óssea/genética , Osteogênese , História do Século XX
4.
PLoS One ; 19(9): e0309807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39236007

RESUMO

This study explored the mechanism of curcumin (CUR) suppressing osteoclastogenesis and evaluated its effects on osteoarthritis (OA) mouse. Bone marrow-derived macrophages were isolated as osteoclast precursors. In the presence or absence of CUR, cell proliferation was detected by CCK-8, osteoclastogenesis was detected by tartrate-resistant acid phosphatase (TRAP) staining, F-actin rings formation was detected by immunofluorescence, bone resorption was detected by bone slices, IκBα, nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were detected using western blot, osteoclastogenesis-related gens were measured using quantitative polymerase chain reaction. A knee OA mouse model was designed by destabilizing the medial meniscus (DMM). Thirty-six male mice were divided into sham+vehicle, OA+vehicle, and OA+CUR groups. Mice were administered with or without CUR at 25 mg/kg/d from the first post-operative day until sacrifice. After 4 and 8 weeks of OA induction, micro-computed tomography was performed to analyze microstructure changes in subchondral bone, hematoxylin and eosin staining was performed to calculate the thickness of the calcified and hyaline cartilage layers, toluidine blue O staining was performed to assess the degenerated cartilage, TRAP-stained osteoclasts were counted, and NF-κB, phosphorylated Jun N-terminal Kinases (p-JNK), and receptor activator of nuclear factor κB ligand (RANKL) were detected using immunohistochemistry. CUR suppressed osteoclastogenesis and bone resorption without cytotoxicity. CUR restrained RANKL-induced activation of NF-κB, p-JNK and up-regulation of osteoclastogenesis-related genes. CUR delayed cartilage degeneration by suppressing osteoclastogenesis and bone resorption in early OA. The mechanism of CUR inhibiting osteoclastogenesis might be associated with NF-κB/JNK signaling pathway, indicating a novel strategy for OA treatment.


Assuntos
Curcumina , Sistema de Sinalização das MAP Quinases , NF-kappa B , Osteoclastos , Osteogênese , Animais , Camundongos , Masculino , NF-kappa B/metabolismo , Curcumina/farmacologia , Osteogênese/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia
5.
Bone Res ; 12(1): 52, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39231935

RESUMO

Osteoporosis remains incurable. The most widely used antiresorptive agents, bisphosphonates (BPs), also inhibit bone formation, while the anabolic agent, teriparatide, does not inhibit bone resorption, and thus they have limited efficacy in preventing osteoporotic fractures and cause some side effects. Thus, there is an unmet need to develop dual antiresorptive and anabolic agents to prevent and treat osteoporosis. Hydroxychloroquine (HCQ), which is used to treat rheumatoid arthritis, prevents the lysosomal degradation of TNF receptor-associated factor 3 (TRAF3), an NF-κB adaptor protein that limits bone resorption and maintains bone formation. We attempted to covalently link HCQ to a hydroxyalklyl BP (HABP) with anticipated low antiresorptive activity, to target delivery of HCQ to bone to test if this targeting increases its efficacy to prevent TRAF3 degradation in the bone microenvironment and thus reduce bone resorption and increase bone formation, while reducing its systemic side effects. Unexpectedly, HABP-HCQ was found to exist as a salt in aqueous solution, composed of a protonated HCQ cation and a deprotonated HABP anion. Nevertheless, it inhibited osteoclastogenesis, stimulated osteoblast differentiation, and increased TRAF3 protein levels in vitro. HABP-HCQ significantly inhibited both osteoclast formation and bone marrow fibrosis in mice given multiple daily PTH injections. In contrast, HCQ inhibited marrow fibrosis, but not osteoclast formation, while the HABP alone inhibited osteoclast formation, but not fibrosis, in the mice. HABP-HCQ, but not HCQ, prevented trabecular bone loss following ovariectomy in mice and, importantly, increased bone volume in ovariectomized mice with established bone loss because HABP-HCQ increased bone formation and decreased bone resorption parameters simultaneously. In contrast, HCQ increased bone formation, but did not decrease bone resorption parameters, while HABP also restored the bone lost in ovariectomized mice, but it inhibited parameters of both bone resorption and formation. Our findings suggest that the combination of HABP and HCQ could have dual antiresorptive and anabolic effects to prevent and treat osteoporosis.


Assuntos
Conservadores da Densidade Óssea , Reabsorção Óssea , Difosfonatos , Hidroxicloroquina , Ovariectomia , Animais , Ovariectomia/efeitos adversos , Feminino , Camundongos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Camundongos Endogâmicos C57BL , Anabolizantes/farmacologia , Anabolizantes/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Osteoporose/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo
7.
Chem Biol Interact ; 401: 111164, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39111524

RESUMO

Ganoderic Acid A (GAA) has demonstrated beneficial effects in anti-inflammatory and anti-oxidative stress studies. However, it remains unknown whether GAA exerts positive impacts on bone loss induced by lipopolysaccharide (LPS). This study aims to investigate the influence of GAA on bone loss in LPS-treated rats. The study assesses changes in the viability and osteogenic potential of MC3T3-E1 cells, as well as osteoclast differentiation in RAW264.7 cells in the presence of LPS using CCK-8, ALP staining, AR staining, and Tartrate-resistant acid phosphatase (TRAP) staining. In vitro experiments indicate that LPS-induced inhibition of osteoclasts (OC) and Superoxide Dismutase 2 (SOD2) correlates with heightened levels of inflammation and oxidative stress. Furthermore, GAA has displayed the ability to alleviate oxidative stress and inflammation, enhance osteogenic differentiation, and suppress osteoclast differentiation. Animal experiment also proves that GAA notably upregulates SOD2 expression and downregulates TNF-α expression, leading to the restoration of impaired bone metabolism, improved bone strength, and increased bone mineral density. The collective experimental findings strongly suggest that GAA can enhance osteogenic activity in the presence of LPS by reducing inflammation and oxidative stress, hindering osteoclast differentiation, and mitigating bone loss in LPS-treated rat models.


Assuntos
Diferenciação Celular , Ácidos Heptanoicos , Inflamação , Lanosterol , Lipopolissacarídeos , Osteoclastos , Osteogênese , Estresse Oxidativo , Ratos Sprague-Dawley , Superóxido Dismutase , Animais , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Camundongos , Ratos , Células RAW 264.7 , Superóxido Dismutase/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Lanosterol/análogos & derivados , Lanosterol/farmacologia , Lanosterol/uso terapêutico , Ácidos Heptanoicos/farmacologia , Ácidos Heptanoicos/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo
8.
ACS Nano ; 18(33): 22431-22443, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39103298

RESUMO

Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method. This nanoparticle can protect Apt from rapid nuclease degradation, avoid the high cytotoxicity of free ALN, and effectively concentrate in the cancellous bone by virtue of the bone-binding ability of DNA and ALN. More importantly, the acid microenvironment of cancellous bone triggers the disassociation of nanoparticles for sustained drug release, from which ALN inhibits the osteoclast-mediated bone resorption while Apt promotes osteogenic differentiation. Our work represents a pioneering demonstration of nucleic acid-driven crystallization of a bisphosphonate into a tempting carrier-free dual-medication nanoassembly. This inaugural advancement augments the antiosteoporosis efficacy through direct inhibition of osteoclasis and promotion of osteogenesis simultaneously and establishes a paradigm for profound understanding of the underlying synergistic antiosteoporosis mechanism of antiresorptive and antisclerostin components. It is envisioned that this study provides a highly generalizable strategy applicable to the tailoring of a diverse array of DNA-inorganic nanocomposites for targeted regulation of intricate pathological niches.


Assuntos
Alendronato , Cristalização , Osteoclastos , Osteogênese , Osteoporose , Alendronato/química , Alendronato/farmacologia , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Animais , Camundongos , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Células RAW 264.7 , Humanos , Sinergismo Farmacológico
9.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 186-192, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39097878

RESUMO

This study aimed to explore the regulatory effect of remifentanil-mediated mitochondrial autophagy on osteoclast formation and further investigate its mechanism. Macrophage cell line RAW264.7 was taken and induced to differentiate into mature osteoclasts using nuclear factor kB receptor activating factor ligand (RANKL). The cell model was treated with different concentrations of remifentanil or down-regulated expression of mitochondrial autophagy-related gene PINK1. The survival, death and ROS production of osteoclasts were detected by CCK8 kit and flow cytometry, MMP level was detected by JC-1 method, mitochondrial morphology and autophagy were observed by transmission electron microscopy, and mitochondrial autophagy-related protein expression was detected by Western blot. The number of osteoclasts in the remifentanil-treated group was significantly reduced compared to the control group, accompanied by a reduction in reactive oxygen species (ROS) and mitochondrial membrane potential levels (MMP). Further results showed that remifentanil could significantly up-regulate the activity of PINK1/Parkin pathway, promote the occurrence of mitochondrial autophagy, and damaged mitochondria, and inhibit the formation of osteoclasts. Remifentanil successfully inhibited osteoclast formation by regulating mitochondrial autophagy mediated by PINK1/Parkin pathway. The results of this study revealed that remifentanil plays an important role in the physiology and pathology of osteoclasts, which may provide new ideas and strategies for the clinical treatment of remifentanil in tibial fractures.


Assuntos
Autofagia , Potencial da Membrana Mitocondrial , Mitocôndrias , Osteoclastos , Proteínas Quinases , Espécies Reativas de Oxigênio , Remifentanil , Ubiquitina-Proteína Ligases , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Remifentanil/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células RAW 264.7 , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
10.
Clin Oral Investig ; 28(9): 486, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145807

RESUMO

OBJECTIVES: To evaluate the effects of coenzyme Q10 (CoQ10) on alveolar bone remodeling and orthodontic tooth movement (OTM). MATERIALS AND METHODS: An orthodontic appliance was placed in 42 female Sprague‒Dawley rats were divided into two groups: the orthodontic force (OF) group (n = 21) and the OF + CoQ10 (CoQ10) treatment group (n = 21). Each group was divided into 3 subgroups, and the rats were sacrificed on days 3, 7 and 14. The rats in CoQ10 and OF groups were administered 100 mg/kg b.w./day CoQ10 (in 1 mL/b.w. soybean oil) and 1 mL b.w./day soybean oil, respectively, by orogastric gavage. The OTM was measured at the end of the experiment. The osteoclast, osteoblast and capillary numbers; vascular endothelial growth factor (VEGF), receptor activator nuclear kappa B ligand (RANKL) and osteoprotegrin (OPG) levels in tissue; and total antioxidant status (TAS) and total oxidant status (TOS) in blood were determined. RESULTS: Compared with the OF group, the CoQ10 treatment group exhibited decreased orthodontic tooth movement and osteoclast and capillary numbers. Indeed, the levels of VEGF and RANKL decreased, while the levels of OPG increased except on day 7. Additionally, the CoQ10 treatment group exhibited lower TOS and higher TAS on days 7 and 14 (p < 0.05). Histological findings showed that the morphology of osteoblasts changed in the CoQ10 group; however, there was no significant difference in the number of osteoblasts between the groups (p > 0.05). CONCLUSION: Due to its effect on oxidative stress and inflammation, CoQ10 regulates bone remodeling by inhibiting osteoclast differentiation, promoting osteoblast differentiation and reducing the amount of OTM. CLINICAL RELEVANCE: Considering that OTM may be slowed with the use of CoQ10, topics such as orthodontic treatment duration, orthodontic force activation and appointment frequency should be considered in treatment planning. It is predicted that the use of CoQ10 will support the effectiveness of treatment in clinical applications such as preventing relapse in orthodontic treatment by regulating bone modulation and anchorage methods that suppress/optimize unwanted tooth movement.


Assuntos
Remodelação Óssea , Ratos Sprague-Dawley , Técnicas de Movimentação Dentária , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Animais , Ratos , Feminino , Remodelação Óssea/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ligante RANK/metabolismo , Processo Alveolar/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Antioxidantes/farmacologia
11.
Biofabrication ; 16(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39116896

RESUMO

Osteoporosis is the most common bone disorder, which is a highly dangerous condition that can promote bone metastases. As the current treatment for osteoporosis involves long-term medication therapy and a cure for bone metastasis is not known, ongoing efforts are required for drug development for osteoporosis. Animal experiments, traditionally used for drug development, raise ethical concerns and are expensive and time-consuming. Organ-on-a-chip technology is being developed as a tool to supplement such animal models. In this study, we developed a bone-on-a-chip by co-culturing osteoblasts, osteocytes, and osteoclasts in an extracellular matrix environment that can represent normal bone, osteopenia, and osteoporotic conditions. We then simulated bone metastases using breast cancer cells in three different bone conditions and observed that bone metastases were most active in osteoporotic conditions. Furthermore, it was revealed that the promotion of bone metastasis in osteoporotic conditions is due to increased vascular permeability. The bone-on-a-chip developed in this study can serve as a platform to complement animal models for drug development for osteoporosis and bone metastasis.


Assuntos
Neoplasias Ósseas , Dispositivos Lab-On-A-Chip , Osteoporose , Osteoporose/patologia , Osteoporose/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Animais , Humanos , Osteoblastos/metabolismo , Técnicas de Cocultura , Camundongos , Osteoclastos/patologia , Osteoclastos/metabolismo , Osteócitos/patologia , Osteócitos/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Feminino
12.
Prog Orthod ; 25(1): 29, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129034

RESUMO

BACKGROUND: Orthodontic tooth movement (OTM) is a dynamic equilibrium of bone remodeling, involving the osteogenesis of new bone and the osteoclastogenesis of old bone, which is mediated by mechanical force. Periodontal ligament stem cells (PDLCSs) in the periodontal ligament (PDL) space can transmit mechanical signals and regulate osteoclastogenesis during OTM. KAT6A is a histone acetyltransferase that plays a part in the differentiation of stem cells. However, whether KAT6A is involved in the regulation of osteoclastogenesis by PDLSCs remains unclear. RESULTS: In this study, we used the force-induced OTM model and observed that KAT6A was increased on the compression side of PDL during OTM, and also increased in PDLSCs under compression force in vitro. Repression of KAT6A by WM1119, a KAT6A inhibitor, markedly decreased the distance of OTM. Knockdown of KAT6A in PDLSCs decreased the RANKL/OPG ratio and osteoclastogenesis of THP-1. Mechanistically, KAT6A promoted osteoclastogenesis by binding and acetylating YAP, simultaneously regulating the YAP/TEAD axis and increasing the RANKL/OPG ratio in PDLSCs. TED-347, a YAP-TEAD4 interaction inhibitor, partly attenuated the elevation of the RANKL/OPG ratio induced by mechanical force. CONCLUSION: Our study showed that the PDLSCs modulated osteoclastogenesis and increased the RANKL/OPG ratio under mechanical force through the KAT6A/YAP/TEAD4 pathway. KAT6A might be a novel target to accelerate OTM.


Assuntos
Histona Acetiltransferases , Osteogênese , Osteoprotegerina , Ligamento Periodontal , Ligante RANK , Técnicas de Movimentação Dentária , Fatores de Transcrição , Técnicas de Movimentação Dentária/métodos , Ligante RANK/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Fatores de Transcrição/metabolismo , Osteogênese/fisiologia , Humanos , Histona Acetiltransferases/metabolismo , Osteoprotegerina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Osteoclastos/metabolismo , Células-Tronco , Transdução de Sinais/fisiologia , Animais
13.
Int J Nanomedicine ; 19: 7983-7996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135672

RESUMO

Introduction: Osteoporosis, characterized by dysregulation of osteoclastic bone resorption and osteoblastic bone formation, severely threatens human health during aging. However, there is still no good therapy for osteoporosis, so this direction requires our continuous attention, and there is an urgent need for new drugs to solve this problem. Methods: Traditional Chinese Medicine Salvia divinorum monomer pomolic acid (PA) could effectively inhibit osteoclastogenesis and ovariectomized osteoporosis. However, its poor solubility and lack of targeting severely limits its further application. A novel bone-targeting nanomedicine (PA@TLipo) has been developed to reconstruct the osteoporotic microenvironment by encapsulating pomolic acid in alendronate-functionalized liposomes. Through a series of operations such as synthesis, purification, encapsulation, and labeling, the PA@TLipo have been prepared. Moreover, the cytotoxicity, bone targeting and anti-osteoporosis effect was verified by cell and animal experiments. Results: In the aspect of targeting, the PA@TLipo can effectively aggregate on the bone tissue to reduce bone loss, and in terms of toxicity, PA@TLipo could increase the bone target ability in comparison to nontargeted liposome, thereby mitigating systemic cytotoxicity. Moreover, PA@TLipo inhibited osteoclast formation and bone resorption in vitro and reduced bone loss in ovariectomy-induced osteoporotic mice. Conclusion: In this study, a novel therapeutic agent was designed and constructed to treat osteoporosis, consisting of a liposome material as the drug pocket, PA as the anti-osteoporosis drug, and ALN as the bone-targeting molecule. And our study is the first to employ a bone-targeted delivery system to deliver PA for OVX-induced bone loss, providing an innovative solution for treating osteoporosis.


Assuntos
Alendronato , Lipossomos , Osteoporose , Animais , Lipossomos/química , Alendronato/química , Alendronato/farmacologia , Alendronato/administração & dosagem , Osteoporose/tratamento farmacológico , Feminino , Camundongos , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/administração & dosagem , Osteoclastos/efeitos dos fármacos , Células RAW 264.7 , Humanos , Osso e Ossos/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Homeostase/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ovariectomia
14.
Commun Biol ; 7(1): 962, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122919

RESUMO

With increases in life expectancy, the number of patients requiring joint replacement therapy and experiencing periprosthetic osteolysis, the most common complication leading to implant failure, is growing or underestimated. In this study, we found that osteolysis progression and osteoclast differentiation in the surface of the skull bone of adult mice were accompanied by significant expansion of lymphatic vessels within bones. Using recombinant VEGF-C protein to activate VEGFR3 and promote proliferation of lymphatic vessels in bone, we counteracted excessive differentiation of osteoclasts and osteolysis caused by titanium alloy particles or inflammatory cytokines LPS/TNF-α. However, this effect was not observed in aged mice because adipogenically differentiated mesenchymal stem cells (MSCs) inhibited the response of lymphatic endothelial cells to agonist proteins. The addition of the JAK inhibitor ruxolitinib restored the response of lymphatic vessels to external stimuli in aged mice to protect against osteolysis progression. These findings suggest that inhibiting SASP secretion by adipogenically differentiated MSCs while activating lymphatic vessels in bone offers a new method to prevent periprosthetic osteolysis during joint replacement follow-up.


Assuntos
Vasos Linfáticos , Células-Tronco Mesenquimais , Osteólise , Animais , Osteólise/prevenção & controle , Camundongos , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Envelhecimento , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Masculino , Fenótipo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Crânio/patologia , Crânio/efeitos dos fármacos , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Titânio
15.
Nutrients ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125380

RESUMO

BACKGROUND: Excessive fluoride exposure induces skeletal fluorosis, but the specific mechanism responsible is still unclear. Therefore, this study aimed to identify the pathogenesis of fluoride-induced bone injuries. METHODS: We systematically searched fluoride-induced bone injury-related genes from five databases. Then, these genes were subjected to enrichment analyses. A TF (transcription factor)-mRNA-miRNA network and protein-protein interaction (PPI) network were constructed using Cytoscape, and the Human Protein Atlas (HPA) database was used to screen the expression of key proteins. The candidate pharmacological targets were predicted using the Drug Signature Database. RESULTS: A total of 85 studies were included in this study, and 112 osteoblast-, 35 osteoclast-, and 41 chondrocyte-related differential expression genes (DEGs) were identified. Functional enrichment analyses showed that the Atf4, Bcl2, Col1a1, Fgf21, Fgfr1 and Il6 genes were significantly enriched in the PI3K-Akt signaling pathway of osteoblasts, Mmp9 and Mmp13 genes were enriched in the IL-17 signaling pathway of osteoclasts, and Bmp2 and Bmp7 genes were enriched in the TGF-beta signaling pathway of chondrocytes. With the use of the TF-mRNA-miRNA network, the Col1a1, Bcl2, Fgfr1, Mmp9, Mmp13, Bmp2, and Bmp7 genes were identified as the key regulatory factors. Selenium methyl cysteine, CGS-27023A, and calcium phosphate were predicted to be the potential drugs for skeletal fluorosis. CONCLUSIONS: These results suggested that the PI3K-Akt signaling pathway being involved in the apoptosis of osteoblasts, with the IL-17 and the TGF-beta signaling pathways being involved in the inflammation of osteoclasts and chondrocytes in fluoride-induced bone injuries.


Assuntos
Apoptose , Fluoretos , Inflamação , Osteoblastos , Transdução de Sinais , Humanos , Fluoretos/efeitos adversos , Apoptose/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Inflamação/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Mapas de Interação de Proteínas , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Ósseas/induzido quimicamente , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Bone Res ; 12(1): 49, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198395

RESUMO

Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.


Assuntos
Acetilcoenzima A , Camundongos Knockout , Mitocôndrias , Osteoclastos , Osteogênese , Animais , Osteoclastos/metabolismo , Acetilcoenzima A/metabolismo , Camundongos , Mitocôndrias/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Camundongos Endogâmicos C57BL
17.
Mol Med ; 30(1): 125, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152382

RESUMO

BACKGROUND: Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways. METHODS: Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively. RESULTS: After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. CONCLUSIONS: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , NF-kappa B , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Camundongos , Células RAW 264.7 , Flavonoides/farmacologia , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Osteoporose/metabolismo , Osteoporose/etiologia , Ovariectomia/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos
18.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(4): 427-433, 2024 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39183069

RESUMO

Segmental bone defects and nonunion of fractures caused by trauma, infection, tumor or systemic diseases with limited osteogenesis and prolonged bone healing cycles are challenging issues in orthopedic clinical practice. Therefore, identifying regulatory factors for bone tissue regeneration and metabolism is crucial for accelerating bone repair and reconstructing defective areas. Silence information regulator 6 (SIRT6), functioning as a deacetylase and nucleotide transferase, is extensively involved in the regulation of differentiation, apoptosis, metabolism, and inflammation in bone cells including osteoblasts and osteoclasts, and is considered to be an important factor in regulating bone metabolism. SIRT6 forms a complex with B lymphocyte-induced maturation protein 1 (Blimp1), down-regulates the expression of the nuclear factor κB (NF-κB) pathway, and promotes the expression of the ERα-FasL axis signal to inhibit osteoclast formation and maturation differentiation, thereby hindering bone resorption and increasing bone mass. In addition, SIRT6 activates the Akt-mTOR pathway to regulate the autophagy level and osteogenesis of bone marrow mesenchymal stem cells, inhibits glycolysis and reactive oxygen production in osteoblasts, promotes osteoblast differentiation through the CREB/CCN1/COX2 pathway and the bone morphogenetic protein (BMP) signaling pathway, enhances bone formation, and accelerates bone regeneration and repair of skeletal tissue. This article provides an overview of the research progress on SIRT6 in the pathophysiology of bone regeneration, revealing its potential as a novel therapeutic target for bone tissue repair to alleviate the progression of skeletal pathological diseases.


Assuntos
Regeneração Óssea , Osteogênese , Sirtuínas , Humanos , Sirtuínas/metabolismo , Osteoblastos , Animais , Diferenciação Celular , Transdução de Sinais , Osteoclastos , NF-kappa B/metabolismo
19.
Sci Rep ; 14(1): 19973, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198677

RESUMO

Osteoblasts and osteoclasts play an important role in maintaining the structural integrity of bone tissue, in which osteoclasts degrade bone structure and osteoblasts restore bone tissue. The imbalance of osteoblast and osteoclast function can lead to many bone-related diseases, such as osteoporosis and inflammatory osteolysis. The drug that can both promote bone formation and inhibit bone loss will be able to treat those diseases. In this study, it was found that LMK-235, an selective HDAC4/5 inhibitor, inhibited the differentiation and maturation of osteoclasts by regulating NF-κB and p-Smad2/3 signaling pathways via inhibition of HDAC4. At the same time, we found that LMK-235 promoted osteoblast mineralization by upregulating Runx2 expression via inhibition of HDAC4. In vivo, LMK-235 was able to alleviate lipopolysaccharide (LPS)-induced calvarial osteolysis and promote the repair of bone defects. Taken together, LMK-235 suppresses osteoclast differentiation and promotes osteoblast formation by inhibiting HDAC4. This may provide a valuable treatment for bone diseases caused by abnormal osteoclast bone resorption and osteoblast bone regeneration.


Assuntos
Diferenciação Celular , Histona Desacetilases , Osteoblastos , Osteoclastos , Osteogênese , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/metabolismo , Osteólise/patologia , Pirimidinas , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
20.
Aging (Albany NY) ; 16(16): 11926-11938, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39189924

RESUMO

Osteoclast activity plays a crucial role in the pathological mechanisms of osteoporosis and bone remodeling. The treatment of these disorders involves the use of pharmacological medicines that work by inhibiting the activity of osteoclasts. Nevertheless, the prevalent and infrequent negative consequences of current antiresorptive and bone anabolic treatments pose significant drawbacks, hence restricting their prolonged administration in patients, particularly those who are elderly and/or suffer from many medical conditions. We are currently in the process of creating a new molecule called N-(4-methoxyphen) methyl caffeamide (MPMCA), which is a derivative of caffeic acid. This compound has shown potential in preventing the production of osteoclasts and causing existing osteoclasts to undergo cell apoptosis. Our investigation discovered that MPMCA hinders osteoclast function via suppressing the MAPK pathways. The expectation is that the findings of this study will stimulate the advancement of a novel approach to treating anti-resorption.


Assuntos
Apoptose , Ácidos Cafeicos , Osteoclastos , Osteogênese , Ácidos Cafeicos/farmacologia , Osteogênese/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Reabsorção Óssea/terapia , Células RAW 264.7 , Animais , Camundongos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA