Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.375
Filtrar
1.
Clin Lab ; 69(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145061

RESUMO

BACKGROUND: A probiotic is a living microorganism that promotes host health when grown under appropriate conditions. Kidney stones are one of the universal agonizing diseases that have increased dramatically in recent years. One of the causes of this disease is hyperoxaluria (HOU), which is known to be an important factor in the formation of oxalate stones and is manifested by high levels of oxalate in the urine. In addition, about 80% of kidney stones contain oxalate, and decomposition of this material by microbes is one way to dispose of it. METHODS: Therefore, we examined a bacterial mixture containing Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, and Bifidobacterium longum to prevent of oxalate production in Wistar rats with kidney stones. We divided the rats into 6 groups defined in the method. RESULTS: The results of this study clearly show a decrease in urinary oxalate levels by exogenous means by L. plantarum, L. casei, L. acidophilus, and B. longum at the beginning of the experiment. Therefore, these bacteria can be used to control and prevent the formation of kidney stones. CONCLUSIONS: However, further studies should be conducted on the effects of these bacteria, and it is recommended to identify the gene responsible for the degradation of oxalate in order to develop a new probiotic.


Assuntos
Cálculos Renais , Lactobacillus , Ratos , Animais , Lactobacillus/metabolismo , Bifidobacterium/metabolismo , Ratos Wistar , Cálculos Renais/prevenção & controle , Cálculos Renais/urina , Oxalatos/metabolismo , Bactérias
2.
Anal Chim Acta ; 1262: 341223, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37179054

RESUMO

It is well known that the coexisting metal ions could significantly influence the atomic spectroscopy (AS) analysis. In this work, a cation-modulated mercury ions (Hg2+) strategy via chemical vapor generation (CVG) was developed for oxalate assay due to the phenomenon that the Ag + can significantly reduce the Hg2+ signal. The regulation effect was studied in depth via experimental investigations. Since Ag + can be reduced to silver nanoparticles (Ag NPs) by reductant SnCl2, the decrease of the Hg2+ signal is attributed to the formation of a silver-mercury (Ag-Hg) amalgam. Due to the oxalate can react with Ag + to generate Ag2C2O4, which can reduce the generation of Ag-Hg amalgam, a portable and low-power point discharge chemical vapor generation atomic emission spectrometry (PD-CVG-AES) system was constructed to quantify the content of oxalate via monitoring the signal of Hg2+. Under optimal conditions, the limit of detection (LOD) was as low as 40 nM in the range of 0.1-10 µM for oxalate assay, while exhibiting good specificity. This method was applied to quantitative oxalate in 50 clinical urine samples of urinary stones patients. The levels of oxalate detected in clinical samples were consistent with clinical imaging results, which is promising for point-of-care testing in clinical diagnosis.


Assuntos
Mercúrio , Nanopartículas Metálicas , Urolitíase , Humanos , Gases , Íons , Mercúrio/análise , Nanopartículas Metálicas/química , Oxalatos , Prata/química , Análise Espectral , Urolitíase/urina
3.
PLoS One ; 18(5): e0285556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167324

RESUMO

Oxalate oxidase is an enzyme that degrades oxalate and is used in commercial urinary assays to measure oxalate levels. The objective of this study was to establish an enhanced expression system for secretion and purification of oxalate oxidase using Pichia pastoris. A codon optimized synthetic oxalate oxidase gene derived from Hordeum vulgare (barley) was generated and cloned into the pPICZα expression vector downstream of the N-terminal alpha factor secretion signal peptide sequence and used for expression in P. pastoris X-33 strain. A novel chimeric signal peptide consisting of the pre-OST1 sequence fused to pro-αpp8 containing several amino acid substitutions was also generated to enhance secretion. Active enzyme was purified to greater than 90% purity using Q-Sepharose anion exchange chromatography. The purified oxalate oxidase enzyme had an estimated Km value of 256µM, and activity was determined to be 10U/mg. We have developed an enhanced oxalate oxidase expression system and method for purification.


Assuntos
Hordeum , Hordeum/genética , Pichia/genética , Pichia/metabolismo , Sinais Direcionadores de Proteínas , Oxalatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Eur Rev Med Pharmacol Sci ; 27(8): 3699-3713, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37140319

RESUMO

OBJECTIVE: Kidney stones are a common complication of hyperoxaluria. The aim of this study is to investigate the protective and preventive effects of Ulva lactuca aqueous extract, ulvan polysaccharides and atorvastatin on ethylene glycol-induced hyperoxaluria. MATERIALS AND METHODS: Male Wistar rats between 110 and 145 g in weight were used in the study, Ulva lactuca aqueous extract and polysaccharides were prepared. The male albino rats were supplemented with 0.75 percent ethylene glycol (v/v) in their drinking water for six weeks to induce hyperoxaluria. Ulvan infusions (100 mg/kg body weight), ulvan polysaccharides (100 mg/kg body weight), and atorvastatin (two milligrams/kg body weight) to treat hyperoxaluric rats for four weeks (every other day) were used. Weight loss, serum creatinine, serum urea, serum uric acid, serum oxalate, kidney oxalate, kidney lipid peroxidation, and kidney DNA fragmentation and kidney histopathological studies were done. RESULTS: Weight loss, rise of serum creatinine, serum urea, serum uric acid, serum oxalate, kidney oxalate, kidney lipid peroxidation, and kidney DNA fragmentation were all shown to be prevented by the addition of atorvastatin, polysaccharides, or aqueous extract, respectively. Catalase (CAT) activity, glutathione peroxidase (GPX) activity, glutathione-S-transferase (GST) activity, and histopathological perturbations were all significantly reduced by the medicines that were studied. CONCLUSIONS: Hyperoxaluria caused by ethylene glycol may be prevented by a combination of Ulva lactuca aqueous extract, ulvan polysaccharides, and atorvastatin. A reduction in renal oxidative stress and an improvement of the antioxidant defense system may be responsible for these protective benefits. However, Ulva lactuca infusion and ulvan polysaccharides need to be studied further in humans, in order to determine their efficacy and safety.


Assuntos
Hiperoxalúria , Ulva , Masculino , Humanos , Animais , Ratos , Atorvastatina/farmacologia , Ácido Úrico , Etilenoglicol/toxicidade , Creatinina , Ratos Wistar , Rim/patologia , Polissacarídeos/farmacologia , Antioxidantes/efeitos adversos , Oxalatos/efeitos adversos , Peso Corporal , Redução de Peso , Ureia
5.
Front Immunol ; 14: 1142207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228601

RESUMO

Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.


Assuntos
Cálculos Renais , Humanos , Cálculos Renais/etiologia , Cálculos Renais/metabolismo , Espécies Reativas de Oxigênio , Oxalatos
6.
J Inorg Biochem ; 244: 112207, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37054508

RESUMO

The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.


Assuntos
Ferro , Transferrina , Humanos , Ferro/química , Transferrina/metabolismo , Ânions/química , Carbonatos , Calorimetria , Termodinâmica , Oxalatos
7.
Urolithiasis ; 51(1): 80, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118061

RESUMO

Nedosiran is an N-acetyl-D-galactosamine (GalNAc)-conjugated RNA interference agent targeting hepatic lactate dehydrogenase (encoded by the LDHA gene), the putative enzyme mediating the final step of oxalate production in all three genetic subtypes of primary hyperoxaluria (PH). This phase I study assessed the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of subcutaneous nedosiran in patients with PH subtype 3 (PH3) and an estimated glomerular filtration rate  ≥ 30 mL/min/1.73 m2. Single-dose nedosiran 3 mg/kg or placebo was administered in a randomized (2:1), double-blinded manner. Safety/tolerability, 24-h urinary oxalate (Uox) concentrations, and plasma nedosiran concentrations were assessed. The main PD endpoint was the proportion of participants achieving a > 30% decrease from baseline in 24-h Uox at two consecutive visits. Six participants enrolled in and completed the study (nedosiran, n = 4; placebo, n = 2). Nedosiran was well-tolerated and lacked safety concerns. Although the PD response was not met, 24-h Uox excretion declined 24.5% in the nedosiran group and increased 10.5% in the placebo group at Day 85. Three of four nedosiran recipients had a > 30% reduction in 24-h Uox excretion during at least one visit, and one attained near-normal (i.e., ≥ 0.46 to < 0.60 mmol/24 h; ≥ 1.0 to < 1.3 × upper limit of the normal reference range) 24-h Uox excretion from Day 29 to Day 85. Nedosiran displayed predictable plasma PK. The acceptable safety and trend toward Uox-lowering after single-dose nedosiran treatment enables further clinical development of nedosiran in patients with PH3 who currently have no viable therapeutic options. A plain language summary is available in the supplementary information.


Assuntos
Hiperoxalúria Primária , Hiperoxalúria , Humanos , Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/genética , Hiperoxalúria/urina , Oxalatos/urina , Taxa de Filtração Glomerular
8.
Nat Commun ; 14(1): 1730, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012268

RESUMO

An oxalate-degrading bacterium in the gut microbiota absorbs food-derived oxalate to use this as a carbon and energy source, thereby reducing the risk of kidney stone formation in host animals. The bacterial oxalate transporter OxlT selectively uptakes oxalate from the gut to bacterial cells with a strict discrimination from other nutrient carboxylates. Here, we present crystal structures of oxalate-bound and ligand-free OxlT in two distinct conformations, occluded and outward-facing states. The ligand-binding pocket contains basic residues that form salt bridges with oxalate while preventing the conformational switch to the occluded state without an acidic substrate. The occluded pocket can accommodate oxalate but not larger dicarboxylates, such as metabolic intermediates. The permeation pathways from the pocket are completely blocked by extensive interdomain interactions, which can be opened solely by a flip of a single side chain neighbouring the substrate. This study shows the structural basis underlying metabolic interactions enabling favourable symbiosis.


Assuntos
Microbioma Gastrointestinal , Oxalatos , Animais , Oxalatos/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Bactérias/metabolismo
9.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049969

RESUMO

Oxalate is a divalent organic anion that affects many biological and commercial processes. It is derived from plant sources, such as spinach, rhubarb, tea, cacao, nuts, and beans, and therefore is commonly found in raw or processed food products. Oxalate can also be made endogenously by humans and other mammals as a byproduct of hepatic enzymatic reactions. It is theorized that plants use oxalate to store calcium and protect against herbivory. Clinically, oxalate is best known to be a major component of kidney stones, which commonly contain calcium oxalate crystals. Oxalate can induce an inflammatory response that decreases the immune system's ability to remove renal crystals. When formulated with platinum as oxaliplatin (an anticancer drug), oxalate has been proposed to cause neurotoxicity and nerve pain. There are many sectors of industry that are hampered by oxalate, and others that depend on it. For example, calcium oxalate is troublesome in the pulp industry and the alumina industry as it deposits on machinery. On the other hand, oxalate is a common active component of rust removal and cleaning products. Due to its ubiquity, there is interest in developing efficient methods to quantify oxalate. Over the past four decades, many diverse methods have been reported. These approaches include electrochemical detection, liquid chromatography or gas chromatography coupled with mass spectrometry, enzymatic degradation of oxalate with oxalate oxidase and detection of hydrogen peroxide produced, and indicator displacement-based methods employing fluorescent or UV light-absorbing compounds. Enhancements in sensitivity have been reported for both electrochemical and mass-spectrometry-based methods as recently as this year. Indicator-based methods have realized a surge in interest that continues to date. The diversity of these approaches, in terms of instrumentation, sample preparation, and sensitivity, has made it clear that no single method will work best for every purpose. This review describes the strengths and limitations of each method, and may serve as a reference for investigators to decide which approach is most suitable for their work.


Assuntos
Cálculos Renais , Oxalatos , Humanos , Animais , Oxalato de Cálcio , Cromatografia Gasosa-Espectrometria de Massas , Rim/metabolismo , Mamíferos/metabolismo
10.
Arch Ital Urol Androl ; 95(1): 11114, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971199

RESUMO

INTRODUCTION: To analyze the dose-dependent preventive effect of a plant-based herbal product on the new crystal formation in a rat model. MATERIALS AND METHODS: A total of 42 rats were divided into 7 groups and zinc discs were placed into the bladder of rats to provide a nidus for the development of new crystal formation: Group 1: control, Group 2: 0.75 percent ethylene glycol (EG); Group 3: 0.75 percent EG plus 0.051 ml of the compound; Group 4: 0.75 percent EG plus 0.179 ml of the compound; Group 5: 0.75 percent EG plus 0.217 ml of the compound; Group 6: 0.75 percent EG plus 0.255 ml of the compound; Group 7 0.75 percent EG plus 0.332 of the compound). The analysis and comparison focused on the disc weights, changes in urinary oxalate and calcium levels, urinary pH, and the histopathologic evaluation of the inflammatory changes in the bladder after 14 days. RESULTS: According to the evaluation of discs placed in the bladders of the animals, animals receiving the herbal compound on a dose-dependent basis showed a limited increase in the disc weights values after 14 days, despite a considerable increase in animals receiving EG alone (p = 0.001). Further evaluation of the increase in disc weights on a dose-dependent basis in different subgroups (from Groups 3 to 7) demonstrated that the limitation of crystal deposition began to be more prominent as the dose of herbal compound increased. This effect was more evident particularly in comparisons between group 7 and others, according to LSD multiple comparison tests (p = 0.001). As anticipated, there has been no discernible change in the weight of the discs in the control group. Although urinary calcium levels in animals of Groups 2, 6, and 7 were significantly higher than the other groups, we were not able to demonstrate a close correlation between urinary oxalate levels and the increasing dose levels. Even though mean urine pH levels were statistically considerably higher in Group 3, there was no statistically significant correlation between the oxalate and calcium levels between all groups, and no association was seen with the administration of herbal agents. The transitional epithelium between the three groups of animals' bladder samples did not exhibit any appreciable difference according to pathological analysis. CONCLUSIONS: In this animal model, the treatment of the compound was successful in lowering the amount of crystal deposition surrounding the zinc discs, most noticeably at a dosage of 0.332 ml, three times per day.


Assuntos
Oxalato de Cálcio , Medicamentos de Ervas Chinesas , Cálculos Renais , Zinco , Animais , Ratos , Cálcio , Oxalato de Cálcio/urina , Rim/patologia , Cálculos Renais/patologia , Oxalatos , Zinco/urina , Bexiga Urinária/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia
12.
Urolithiasis ; 51(1): 49, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920530

RESUMO

In primary hyperoxaluria type 1 excessive endogenous production of oxalate and glycolate leads to increased urinary excretion of these metabolites. Although genetic testing is the most definitive and preferred diagnostic method, quantification of these metabolites is important for the diagnosis and evaluation of potential therapeutic interventions. Current metabolite quantification methods use laborious, technically highly complex and expensive liquid, gas or ion chromatography tandem mass spectrometry, which are available only in selected laboratories worldwide. Incubation of ortho-aminobenzaldehyde (oABA) with glyoxylate generated from glycolate using recombinant mouse glycolate oxidase (GO) and glycine leads to the formation of a stable dihydroquinazoline double aromatic ring chromophore with specific peak absorption at 440 nm. The urinary limit of detection and estimated limit of quantification derived from eight standard curves were 14.3 and 28.7 µmol glycolate per mmol creatinine, respectively. High concentrations of oxalate, lactate and L-glycerate do not interfere in this assay format. The correlation coefficient between the absorption and an ion chromatography tandem mass spectrometry method is 93% with a p value < 0.00001. The Bland-Altmann plot indicates acceptable agreement between the two methods. The glycolate quantification method using conversion of glycolate via recombinant mouse GO and fusion of oABA and glycine with glyoxylate is fast, simple, robust and inexpensive. Furthermore this method might be readily implemented into routine clinical diagnostic laboratories for glycolate measurements in primary hyperoxaluria type 1.


Assuntos
Hiperoxalúria Primária , Hiperoxalúria , Camundongos , Animais , Hiperoxalúria Primária/terapia , Oxalatos/urina , Glicolatos/urina , Glioxilatos/metabolismo , Glicina , Hiperoxalúria/diagnóstico , Hiperoxalúria/urina
13.
Mikrochim Acta ; 190(4): 131, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912979

RESUMO

An "on-off-on"-type electrochemiluminescence (ECL) aptamer sensor based on Ru@Zn-oxalate metal-organic framework (MOF) composites is constructed for sensitive detection of sulfadimethoxine (SDM). The prepared Ru@Zn-oxalate MOF composites with the three-dimensional structure provide good ECL performance for the "signal-on." The MOF structure with a large surface area enables the material to fix more Ru(bpy)32+. Moreover, the Zn-oxalate MOF with three-dimensional chromophore connectivity provides a medium which can accelerate excited-state energy transfer migration among Ru(bpy)32+ units, and greatly reduces the influence of solvent on chromophore, achieving a high-energy Ru emission efficiency. The aptamer chain modified with ferrocene at the end can hybridize with the capture chain DNA1 fixed on the surface of the modified electrode through base complementary pairing, which can significantly quench the ECL signal of Ru@Zn-oxalate MOF. SDM specifically binds to its aptamer to separate ferrocene from the electrode surface, resulting in a "signal-on" ECL signal. The use of the aptamer chain further improves the selectivity of the sensor. Thus, high-sensitivity detection of SDM specificity is realized through the specific affinity between SDM and its aptamer. This proposed ECL aptamer sensor has good analytical performance for SDM with low detection limit (27.3 fM) and wide detection range (100 fM-500 nM). The sensor also shows excellent stability, selectivity, and reproducibility, which proved its analytical performance. The relative standard deviation (RSD) of SDM detected by the sensor is between 2.39 and 5.32%, and the recovery is in the range 97.23 to 107.5%. The sensor shows satisfactory results in the analysis of actual seawater samples, which is expected to play a role in the exploration of marine environmental pollution.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metalocenos , Sulfadimetoxina , Técnicas Biossensoriais/métodos , Oxalatos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Oligonucleotídeos , Zinco
14.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902464

RESUMO

A convenient and practical method for the synthesis of bioactive ester-containing chroman-4-ones through the cascade radical cyclization of 2-(allyloxy)arylaldehydes and oxalates is described. The preliminary studies suggest that an alkoxycarbonyl radical might be involved in the current transformation, which was generated via the decarboxylation of oxalates in the presence of (NH4)2S2O8.


Assuntos
Ésteres , Oxalatos , Metais , Ciclização , Cromanos
15.
Int Immunopharmacol ; 117: 110042, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940552

RESUMO

Schizandrin B (SchB) protects against oxidative, inflammatory, and ferroptotic injury. Oxidative stress and inflammation are indispensably involved in nephrolithiasis and ferroptosis also plays an important role in stone formation. It is unclear whether SchB can ameliorate nephrolithiasis; its underlying mechanism is also unknown. First, we employed bioinformatics to investigate the mechanisms of nephrolithiasis. To evaluate the efficacy of SchB, HK-2 cell models of oxalate-induced damage, Erastin-induced ferroptosis, and the Sprague Dawley rat model of Ethylene Glycol-induced nephrolithiasis were established. Then, Nrf2 siRNA and GSK3ß overexpression plasmids were transfected into HK-2 cells to elucidate the role of SchB in regulating oxidative stress-mediated ferroptosis. In our study, oxidative stress and inflammation were strongly associated with nephrolithiasis. Administration of SchB attenuated the cell viability, dysfunctional mitochondria, oxidative stress and inflammatory response in vitro and alleviated renal injury and crystal deposition in vivo. SchB treatment also reduced the levels of cellular Fe2+ accumulation, lipid peroxidation and MDA, and regulated ferroptosis-related proteins, including XCT, GPX4, FTH1 and CD71, in Erastin-induced or oxalate-induced HK-2 cells. Mechanistically, SchB facilitated Nrf2 nuclear translocation, and silencing Nrf2 or overexpressing GSK3ß worsened oxalate-induced oxidative injury and abolished the beneficial effect of SchB against ferroptosis in vitro. To summarize, SchB could alleviate nephrolithiasis by positively regulating GSK3ß/Nrf2 signaling-mediated ferroptosis.


Assuntos
Ferroptose , Nefrolitíase , Ratos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta , Ratos Sprague-Dawley , Inflamação , Oxalatos/farmacologia
16.
Adv Kidney Dis Health ; 30(2): 164-176, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36868731

RESUMO

Calcium stones are common and recurrent in nature, yet few therapeutic tools are available for secondary prevention. Personalized approaches for stone prevention have been informed by 24-hour urine testing to guide dietary and medical interventions. However, current evidence is conflicting about whether an approach guided by 24-hour urine testing is more effective than a generic one. The available medications for stone prevention, namely thiazide diuretics, alkali, and allopurinol, are not always prescribed consistently, dosed correctly, or tolerated well by patients. New treatments on the horizon hold the promise of preventing calcium oxalate stones by degrading oxalate in the gut, reprogramming the gut microbiome to reduce oxalate absorption, or knocking down expression of enzymes involved in hepatic oxalate production. New treatments are also needed to target Randall's plaque, the root cause of calcium stone formation.


Assuntos
Líquidos Corporais , Cálcio , Humanos , Alopurinol , Álcalis , Doença Crônica , Oxalatos
17.
Artigo em Inglês | MEDLINE | ID: mdl-36942317

RESUMO

Background: Nephrolithiasis is a common disease that seriously affects the health and life quality of patients. Despite the reported effect of hyperoside (Hyp) against nephrolithiasis, the specific mechanism has not been clarified. Therefore, this study is aimed at investigating the effect and potential mechanism of Hyp on renal injury and calcium oxalate (CaOx) crystal deposition. Methods: Rat and cell models of renal calculi were constructed by ethylene glycol (EG) and CaOx induction, respectively. The renal histopathological damage, CaOx crystal deposition, and renal function damage of rats were assessed by HE staining, Pizzolato staining, and biochemical detection of blood and urine parameters. MTT and crystal-cell adhesion assays were utilized to determine the activity of HK-2 cells and crystal adhesion ability, biochemical detection and enzyme-linked immunosorbent assay (ELISA) to measure the levels of oxidative stress-related substances and inflammatory factors, and western blot to test the expression levels of proteins related to the AMPK/Nrf2 signaling pathway. Results: Briefly speaking, Hyp could improve the renal histopathological injury and impaired renal function, reduce the deposition of CaOx crystals in the renal tissue of rats with renal calculi, and decrease the adhesion of crystals to CaOx-treated HK-2 cells. Besides, Hyp also significantly inhibited oxidative stress response. Furthermore, Hyp was associated with the downregulation of malondialdehyde, lactate dehydrogenase, and reactive oxygen species and upregulation of superoxide dismutase activity. Additionally, Hyp treatment also suppressed inflammatory response and had a correlation with declined levels of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor. Further exploration of mechanism manifested that Hyp might play a protective role through promoting AMPK phosphorylation and nuclear translation of Nrf2 to activate the AMPK/Nrf2 signaling pathway. Conclusion: Hyp can improve renal pathological and functional damage, decrease CaOx crystal deposition, and inhibit oxidative stress and inflammatory response. Such effects may be achieved by activating the AMPK/Nrf2 signaling pathway.


Assuntos
Calcinose , Cálculos Renais , Ratos , Animais , Oxalato de Cálcio/metabolismo , Oxalato de Cálcio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Oxalatos/metabolismo , Oxalatos/farmacologia , Rim/patologia , Cálculos Renais/tratamento farmacológico , Cálculos Renais/metabolismo , Cálculos Renais/patologia , Transdução de Sinais , Estresse Oxidativo , Calcinose/patologia
19.
Mar Pollut Bull ; 189: 114823, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931154

RESUMO

Mutual transformations of rhizospheric arsenic (As) in pollution-prone mangrove sediments affected by root exudate oxalate were simulated. This study focuses on the effect of oxalate on As release, mobilization, and phase speciation associated with P and Fe was examined under anoxic conditions in time-dependent changes. Results showed that oxalate addition significantly facilitated As-Fe-P release from As-contaminated mangrove sediments. Sediment As formed the adsorptive and the carbonate-binding fractionations, facilitating the re-adsorption processes. Solution As and As5+ correlated with NaOH-P positively but with NaHCO3-P and HCl-P negatively. Dominant Fe3+ (>84 %) from the amorphous Fe regulated suspension changes and then time-dependent co-precipitation with As and P. Sediment P formed strong complexes with Fe oxides and could be substituted for As via STEM analysis. Oxalate ligand exchange, competitive adsorption of oxalate, and Fe-reduced dissolution are confirmed to involve, allowing for an insight As/P/Fe mobilization and fate in mangrove wetland.


Assuntos
Arsênio , Ferro , Ferro/química , Arsênio/análise , Oxalatos/química , Fosfatos , Poluição Ambiental , Sedimentos Geológicos/química
20.
Commun Biol ; 6(1): 270, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922584

RESUMO

Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that acetate treatment may improve the renal function in hyperoxaluria rat model. However, its underlying mechanisms remain largely unknown. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we find the oral administration of 5% acetate reduced the elevated serum creatinine, urea, and protected against hyperoxaluria-induced renal injury and fibrosis with less infiltrated macrophages in the kidney. Treatment of acetate in renal tubular epithelial cells in vitro decrease the macrophages recruitment which might have reduced the oxalate-induced renal tubular cells injury. Mechanism dissection suggests that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of miR-493-3p by increasing H3K9 and H3K27 acetylation at its promoter region. The miR-493-3p can suppress the expression of macrophage migration inhibitory factor (MIF), thus inhibiting the macrophages recruitment and reduced oxalate-induced renal tubular cells injury. Importantly, results from the in vivo rat model also demonstrate that the effects of acetate against renal injury were weakened after blocking the miR-493-3p by antagomir treatment. Together, these results suggest that acetate treatment ameliorates the hyperoxaluria-induced renal injury via inhibiting macrophages infiltration with change of the miR-493-3p/MIF signals. Acetate could be a new therapeutic approach for the treatment of oxalate nephropathy.


Assuntos
Acetatos , Hiperoxalúria , Fatores Inibidores da Migração de Macrófagos , MicroRNAs , Animais , Ratos , Acetatos/farmacologia , Hiperoxalúria/complicações , Hiperoxalúria/tratamento farmacológico , Hiperoxalúria/genética , Oxirredutases Intramoleculares/metabolismo , Rim/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxalatos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...