Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641540

RESUMO

The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15-55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 µg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 µg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.


Assuntos
Antibacterianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas Metálicas/química , Oxalobacteraceae/metabolismo , Salmonella enteritidis/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície , Difração de Raios X
2.
Artigo em Inglês | MEDLINE | ID: mdl-34499597

RESUMO

A Gram-reaction-negative, yellow-pigmented, non-spore-forming rod, aerobic, motile bacterium, designated SJY3T, was isolated from soil samples collected from a Pu-erh tea cellar in Bolian Pu-erh tea estate Co. Ltd. in Pu'er city, Yunnan, south-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Massilia. The closest phylogenetic relative was Massilia arenae CICC 24458T (99.5 %), followed by M. timonae CCUG45783T (97.9 %), M. oculi CCUG43427AT (97.8 %), and M. aurea DSM 18055T (97.8 %). The major fatty acids were C16 : 0 and C16 : 1 ω7c and/or C16 : 1 ω6c. The major respiratory quinone was ubiquinone Q-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. Genome sequencing revealed a genome size of 5.97 M bp and a G+C content of 65.4 mol%. Pairwise determined whole genome average nucleotide identity (gANI) values and digital DNA-DNA hybridization (dDDH) values were all below the threshold. Although the 16S rRNA gene similarity of stain SJY3T and Massilia arenae CICC 24458T was more than 99 %, the gANI, dDDH values and genomic tree clearly indicated that they were not of the same species. In summary, strain SJY3T represents a new species, for which we propose the name Massilia puerhi sp. nov. with the type strain SJY3T (=CGMCC 1.17158T=KCTC 82193T).


Assuntos
Oxalobacteraceae/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oxalobacteraceae/isolamento & purificação , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Chá , Ubiquinona/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-34520338

RESUMO

A novel rhizobacterium, designated strain NEAU-GH312T, with antibacterial activity against Ralstonia solanacearum was isolated from rhizosphere soil of rice (Heilongjiang Province, PR China) and characterized with a polyphasic approach. Cells of strain NEAU-GH312T were Gram-stain-negative, aerobic, non-spore-forming, motile with peritrichous flagella and rod-shaped. Colonies were light orange, convex and semi-translucent on Reasoner's 2A (R2A) agar after 2 days of incubation at 28 °C. Growth was observed on R2A agar at 10-40 °C, pH 4.0-8.0 and with 0-5 % (w/v) NaCl. The respiratory quinone was ubiquinone Q-8. The major cellular fatty acids of strain NEAU-GH312T were C16 : 1 ω7c and/or C16 : 1 ω6c, C16 : 0 and C18 : 1 ω7c and/or C18 : 1 ω6c. The main polar lipids were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Phylogenetic analyses confirmed the well-supported affiliation of strain NEAU-GH312T within the genus Massilia, close to the type strains of Massilia arvi THG-RS2OT (98.7 %), Massilia norwichensis NS9T (98.7 %) and Massilia kyonggiensis TSA1T (98.6 %). Strain NEAU-GH312T had a genome size of 6.68 Mb and an average DNA G+C content of 66.3 mol%. Based on the genotypic, phenotypic and chemotaxonomic data obtained in this study, strain NEAU-GH312T could be classified as representative of a novel species of the genus Massilia, for which the name Massilia rhizosphaerae sp. nov. is proposed, with strain NEAU-GH312T (=DSM 109722T=CCTCC AB 2019142T) as the type strain.


Assuntos
Oryza , Ralstonia solanacearum , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oxalobacteraceae , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
4.
Antonie Van Leeuwenhoek ; 114(10): 1529-1540, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34324104

RESUMO

A bacterial strain, Gram-stain negative, rod-shaped, aerobic and cellulose-degrading, designated NEAU-DD11T, was isolated from rhizosphere soil of rice collected from Northeast Agricultural University in Harbin, Heilongjiang Province, North-east China. Base on 16S rRNA gene sequence analysis, strain NEAU-DD11T belongs to the genus Massilia and shared high sequence similarities with Massilia phosphatilytica 12-OD1T (98.46%) and Massilia putida 6NM-7 T (98.41%). Phylogenetic analysis based on the 16S rRNA gene and whole genome sequences indicated that strain NEAU-DD11T formed lineage related to M. phosphatilytica 12-OD1T and M. putida 6NM-7 T. The major fatty acids of the strain were C16:0, C17:0-cyclo and C16:1ω7c. The respiratory quinone was Q-8. The polar lipids profile of the strain showed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified polar lipid and an unidentified phospholipid. In addition, the digital DNA-DNA hybridization values between strain NEAU-DD11T and M. phosphatilytica 12-OD1T and M. putida 6NM-7 T were 45.4 and 35.6%, respectively, which are lower than the accepted threshold value of 70%. The DNA G + C content of strain NEAU-DD11T was 66.2%. The whole genome analysis showed the strain contained carbohydrate enzymes such as glycoside hydrolase and polysaccharide lyase, which enabled the strain to have the function of degrading cellulose. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, we conclude that strain NEAU-DD11T represents a novel species of the genus Massilia, for which the name Massilia cellulosiltytica sp. nov. is proposed. The type strain is NEAU-DD11T (= CCTCC AB 2019141 T = DSM 109721 T).


Assuntos
Oryza , Técnicas de Tipagem Bacteriana , Celulose , DNA Bacteriano/genética , Ácidos Graxos , Humanos , Oxalobacteraceae , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Solo , Microbiologia do Solo
5.
J Biotechnol ; 336: 1-9, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118330

RESUMO

In today's, society multi-resistant pathogens have become an emerging threat, which makes the search for novel anti-infectives more urgent than ever. A promising class of substances are cyclic lipopeptides like the antifungal jagaricin. Jagaricin is formed by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum. It has shown antifungal activity against human pathogenic fungi like Candida albicans and Aspergillus fumigatus. In addition, jagaricin is nearly non-toxic for plants, which makes it a promising agent for agricultural applications. Cyclic lipopeptides formed by microorganisms originate from their secondary metabolism. This makes it very challenging to determine the inducing factor for product formation, especially for unknown microbial systems like J. agaricidamnosum. In the presented study, a biotechnological process for jagaricin formation was developed, investigating impact factors like the medium, oxygen availability, and phosphate. For this reason, experiments were conducted on microtiter plate, shake flask, and stirred tank bioreactor level. Ultimately, a final maximum jagaricin concentration of 251 mg L-1 (15.5 mgJagaricin∙gCDW-1) could be achieved, which is an increase of approximately 458 % in comparison to previous results in standard glucose medium. This concentration allows the production of significantly higher amounts of jagaricin and enables further experiments to investigate the potential of this substance.


Assuntos
Antifúngicos , Peptídeos Cíclicos , Antifúngicos/farmacologia , Candida albicans , Lipopeptídeos , Testes de Sensibilidade Microbiana , Oxalobacteraceae , Peptídeos Cíclicos/biossíntese
6.
Antonie Van Leeuwenhoek ; 114(8): 1275-1284, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34091798

RESUMO

A straw coloured, motile and Gram-stain-negative bacterium, designated RP-1-19T was isolated from soil of Arctic station, Svalbard, Norway. Based on the phylogenetic analysis of its 16S rRNA gene sequence, strain RP-1-19T formed a lineage within the family Oxalobacteraceae and clustered together within the genus Massilia. The closest members were M. violaceinigra B2T (98.6% sequence similarity), M. eurypsychrophilia JCM 30074T (98.3%) and M. atriviolacea SODT (98.1%). The only respiratory quinone was ubiquinone-8. The principal cellular fatty acids were summed feature 3 (iso-C15:0 2-OH/C16:1ω7c) and C16:0. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G + C content of the type strain was 63.2%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain RP-1-19T and closest members were ≤ 80 and 23.2%, respectively. The genome was 4,522,469 bp long with 30 scaffolds and 4076 protein-coding genes. The genome showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Genome analysis revealed the presence of cold-shock proteins CspA and CspC. Presence of cspA and cspC genes in the genome manifest ecophysiology of strain RP-1-19T that may help in cold-adaptation. Based on these data, strain RP-1-19T represents a novel species in the genus Massilia, for which the name Massilia polaris sp. nov. is proposed. The type strain is RP-1-19T (= KACC 21619T = NBRC 114359T).


Assuntos
Oxalobacteraceae , Fosfolipídeos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos , Oxalobacteraceae/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Artigo em Inglês | MEDLINE | ID: mdl-33956597

RESUMO

We isolated two new soil bacteria: ONC3T (from garden soil in NC, USA; LMG 31738T=NRRL B-65553T) and M1T (from farmed soil in MI, USA; NRRL B-65551T=ATCC TSD-197T=LMG 31739T) and characterized their metabolic phenotype based on Biolog, MALDI-TOF MS and fatty acid analyses, and compared 16S rRNA and whole genome sequences to other members of the Oxalobacteraceae after sequencing on an Illumina Nextera platform. Based on the results of 16S rRNA sequence analysis, ONC3T shows the highest sequence similarity to Massilia solisilvae J18T (97.8 %), Massilia terrae J11T (97.7 %) and Massilia agilis J9T (97.3 %). Strain M1T is most closely related to Noviherbaspirillum denitrificans TSA40T, Noviherbaspirillum agri K-1-15T and Noviherbaspirillum autotrophicum TSA66T (sequence identity of 98.2, 98.0 and 97.8 %, respectively). The whole genome of ONC3T has an assembled size of 5.62 Mbp, a G+C content of 63.8 mol% and contains 5104 protein-coding sequences, 56 tRNA genes and two rRNA operons. The genome of M1T has a length of 4.71 MBp, a G+C content of 63.81 mol% and includes 4967 protein-coding genes, two rRNA operons and 44 tRNA genes. Whole genome comparisons identified Massilia sp. WG5 with a 79.3 % average nucleotide identity (ANI) and 22.6 % digital DNA-DNA hybridization (dDDH), and Massilia sp. UBA11196 with 78.2 % average amino acid identity (AAI) as the most closely related species to ONC3T. M1T is most closely related to N. autotrophicum TSA66T with an ANI of 80.27 %, or N. denitrificans TSA40T with a dDDH of 22.3 %. The application of community-accepted standards such as <98.7 % in 16S sequence similarity and <95-96 % ANI or 70 % DDH support the classification of Massilia horti ONC3T and Noviherbaspirillum arenae M1T as novel species within the Oxalobacteraceae.


Assuntos
Oxalobacteraceae/classificação , Oxalobacteraceae/isolamento & purificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química
8.
Biomolecules ; 11(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946575

RESUMO

Endo-ß-1,4-xylanase is a key enzyme in the degradation of ß-1,4-d-xylan polysaccharides through hydrolysis. A glycoside hydrolase family 10 (GH10) endo-ß-1,4-xylanase (XylR) from Duganella sp. PAMC 27433, an Antarctic soil bacterium, was identified and functionally characterized. The XylR gene (1122-bp) encoded an acidic protein containing a single catalytic GH10 domain that was 86% identical to that of an uncultured bacterium BLR13 endo-ß-1,4-xylanase (ACN58881). The recombinant enzyme (rXylR: 42.0 kDa) showed the highest beechwood xylan-degrading activity at pH 5.5 and 40 °C, and displayed 12% of its maximum activity even at 4 °C. rXylR was not only almost completely inhibited by 5 mM N-bromosuccinimide or metal ions (each 1 mM) including Hg2+, Ca2+, or Cu2+ but also significantly suppressed by 1 mM Ni2+, Zn2+, or Fe2+. However, its enzyme activity was upregulated (>1.4-fold) in the presence of 0.5% Triton X-100 or Tween 80. The specific activities of rXylR toward beechwood xylan, birchwood xylan, oat spelts xylan, and p-nitrophenyl-ß-d-cellobioside were 274.7, 103.2, 35.6, and 365.1 U/mg, respectively. Enzymatic hydrolysis of birchwood xylan and d-xylooligosaccharides yielded d-xylose and d-xylobiose as the end products. The results of the present study suggest that rXylR is a novel cold-adapted d-xylobiose- and d-xylose-releasing endo-ß-1,4-xylanase.


Assuntos
Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Oxalobacteraceae/enzimologia , Oxalobacteraceae/genética , Sequência de Aminoácidos , Regiões Antárticas , Clonagem Molecular , DNA Bacteriano , Dissacarídeos/metabolismo , Endo-1,4-beta-Xilanases/química , Concentração de Íons de Hidrogênio , Hidrólise , Oxalobacteraceae/classificação , Oxalobacteraceae/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Microbiologia do Solo , Especificidade por Substrato , Temperatura , Xilanos/metabolismo , Xilose/metabolismo
9.
Nat Plants ; 7(4): 481-499, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833418

RESUMO

Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.


Assuntos
Flavonas/metabolismo , Nitrogênio/deficiência , Oxalobacteraceae/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Zea mays/metabolismo , Microbiota , Melhoramento Vegetal , Rizosfera , Transcriptoma , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
10.
Appl Environ Microbiol ; 87(12): e0023321, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33811027

RESUMO

The bacterial strain Collimonas fungivorans Ter331 (CfTer331) inhibits mycelial growth and spore germination in Aspergillus niger N402 (AnN402). The mechanisms underlying this antagonistic bacterial-fungal interaction have been extensively studied, but knowledge on the long-term outcome of this interaction is currently lacking. Here, we used experimental evolution to explore the dynamics of fungal adaptation to recurrent exposure to CfTer331. Specifically, five single-spore isolates (SSIs) of AnN402 were evolved under three selection scenarios in liquid culture, i.e., (i) in the presence of CfTer331 for 80 growth cycles, (ii) in the absence of the bacterium for 80 cycles, and (iii) in the presence of CfTer331 for 40 cycles and then in its absence for 40 cycles. The evolved SSI lineages were then evaluated for phenotypic changes from the founder fungal strain, such as germinability with or without CfTer331. The analysis showed that recurrent exposure to CfTer331 selected for fungal lineages with reduced germinability and slower germination, even in the absence of CfTer331. In contrast, when AnN402 evolved in the absence of the bacteria, lineages with increased germinability and faster germination were favored. SSIs that were first evolved in the presence of CfTer331 and then in its absence showed intermediate phenotypes but overall were more similar to SSIs that evolved in the absence of CfTer331 for 80 cycles. This suggests that traits acquired from exposure to CfTer331 were reversible upon removal of the selection pressure. Overall, our study provides insights into the effects on fungi from the long-term coculture with bacteria. IMPORTANCE The use of antagonistic bacteria for managing fungal diseases is becoming increasingly popular, and thus there is a need to understand the implications of their long-term use against fungi. Most efforts have so far focused on characterizing the antifungal properties and mode of action of the bacterial antagonists, but the possible outcomes of the persisting interaction between antagonistic bacteria and fungi are not well understood. In this study, we used experimental evolution in order to explore the evolutionary aspects of an antagonistic bacterial-fungal interaction, using the antifungal bacterium Collimonas fungivorans and the fungus Aspergillus niger as a model system. We show that evolution in the presence or absence of the bacteria selects for fungal lineages with opposing and conditionally beneficial traits, such as slow and fast spore germination, respectively. Overall, our studies reveal that fungal responses to biotic factors related to antagonism could be to some extent predictable and reversible.


Assuntos
Aspergillus niger/crescimento & desenvolvimento , Oxalobacteraceae/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento , Interações Microbianas
11.
Mar Drugs ; 19(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918939

RESUMO

Empedopeptins-eight amino acid cyclic lipopeptides-are calcium-dependent antibiotics that act against Gram-positive bacteria such as Staphylococcus aureus by inhibiting cell wall biosynthesis. However, to date, the biosynthetic mechanism of the empedopeptins has not been well identified. Through comparative genomics and metabolomics analysis, we identified empedopeptin and its new analogs from a marine bacterium, Massilia sp. YMA4. We then unveiled the empedopeptin biosynthetic gene cluster. The core nonribosomal peptide gene null-mutant strains (ΔempC, ΔempD, and ΔempE) could not produce empedopeptin, while dioxygenase gene null-mutant strains (ΔempA and ΔempB) produced several unique empedopeptin analogs. However, the antibiotic activity of ΔempA and ΔempB was significantly reduced compared with the wild-type, demonstrating that the hydroxylated amino acid residues of empedopeptin and its analogs are important to their antibiotic activity. Furthermore, we found seven bacterial strains that could produce empedopeptin-like cyclic lipopeptides using a genome mining approach. In summary, this study demonstrated that an integrated omics strategy can facilitate the discovery of potential bioactive metabolites from microbial sources without further isolation and purification.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/biossíntese , Genômica , Lipopeptídeos/biossíntese , Metabolômica , Oxalobacteraceae/metabolismo , Peptídeos Cíclicos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biologia Computacional , Mineração de Dados , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Lipopeptídeos/farmacologia , Estrutura Molecular , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oxalobacteraceae/genética , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Biossíntese de Proteínas , Proteômica , Metabolismo Secundário , Relação Estrutura-Atividade
12.
Artigo em Inglês | MEDLINE | ID: mdl-33909549

RESUMO

A Gram-stain-negative, aerobic, flagellated, non-spore-forming, rod-shaped bacterium, named B2R-29T, was isolated from water collected from a crater lake on Da Hinggan mountain, PR China. Strain B2R-29T was oxidase- and catalase-positive. On the basis of the results of 16S rRNA gene sequence analyses, strain B2R-29T clearly belonged to the family Oxalobacteraceae, class Betaproteobacteria and showed the highest similarity to Undibacterium oligocarboniphilum EM1T (97.4 %) and to the other species of Undibacterium (less than 96.8 %). In the phylogenetic tree, strain B2R-29T formed a clade with U. oligocarboniphilum EM1T and Undibacterium squillarum CMJ-9T, indicating that is a member of the genus Undibacterium. Digital DNA-DNA hybridization and average nucleotide identity analyses were performed and the values between strain B2R-29T and its closely related Undibacterium species were less than 75.1 % and 16.9 %, respectively. The chemotaxonomic data of B2R-29T were as follows: major uniquinone, Q-8; predominant polar lipids, phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol; major fatty acids, C16 : 0 and summed feature 3 (C16 : 1 ω7c / C16 : 1 ω6c); predominant polyamines, putrescine, 2-hydroxyputrescine and spermidine. The DNA G+C content was 51.7 mol% from the genomic sequencing data. In accordance with the phenotypic, physiological and chemotaxonomic properties mentioned above, strain B2R-29T represents a novel species of the genus Undibacterium for which the name Undibacterium crateris sp. nov. is proposed. The type strain is B2R-29T (=CGMCC 1.13792T=KCTC 72018T).


Assuntos
Lagos/microbiologia , Oxalobacteraceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oxalobacteraceae/isolamento & purificação , Fosfolipídeos/química , Poliaminas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
13.
Curr Microbiol ; 78(5): 2143-2150, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33864512

RESUMO

A novel BTEX degrading bacterial strain, designated ML15P13T, was isolated from Arctic soil at the Svalbard Islands, Norway, using an enrichment culture technique. This isolate is Gram-negative, aerobic, motile with multiple flagella at one polar end, and rod-shaped. Growth was observed at 4-35 °C, pH 6.0-8.0, and 0-0.5% (w/v) NaCl. According to 16S rRNA gene analysis, strain ML15P13T was grouped with members of the genus Massilia and closely related to Massilia atriviolacea SODT (98.4%), Massilia violaceinigra B2T (98.3%), Massilia eurypsychrophila B528-3T (97.7%), Massilia glaciei B448-2T (97.7%), and Massilia psychrophila B115-1T (96.6%). Average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity between genome sequences of strain ML15P13T and the closely related species ranged from 75.8 to 84.3%, from 19.6 ± 1.0 to 21.6 ± 0.3%, and from 68.8 to 71.0%, respectively. The major fatty acids were C16:0, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Q-8 was the major ubiquinone. The polar lipid profile showed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified phospholipid, and five unidentified polar lipids. The G + C content of the genomic DNA was 64.2 mol%. Based on the results for genotypic and phenotypic study, we conclude that strain ML15P13T represents a novel species of the genus Massilia, for which the name Massilia aromaticivorans sp. nov. is proposed. The type strain is ML15P13T (= KACC 21773T = JCM 34089T).


Assuntos
Fosfolipídeos , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Hibridização de Ácido Nucleico , Oxalobacteraceae , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Sci Rep ; 11(1): 6695, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758279

RESUMO

An ivory-coloured, motile, Gram-stain-negative bacterium, designated TW-1T was isolated from oil-contaminated experimental soil in Kyonggi University. The phylogenetic analysis based on 16S rRNA gene sequence revealed, strain TW-1T formed a lineage within the family Oxalobacteraceae and clustered as members of the genus Massilia. The closest members were M. pinisoli T33T (98.8% sequence similarity), M. putida 6NM-7T (98.6%), M. arvi THG-RS2OT (98.5%), M. phosphatilytica 12-OD1T (98.3%) and M. niastensis 5516S-1T (98.2%). The sole respiratory quinone is ubiquinone-8. The major cellular fatty acids are hexadeconic acid, cis-9, methylenehexadeconic acid, summed feature 3 and summed feature 8. The major polar lipids are phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G + C content of the type strain is 66.3%. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain TW-1T and closest members were below the threshold value for species demarcation. The genome size is 7,051,197 bp along with 46 contigs and 5,977 protein-coding genes. The genome showed 5 putative biosynthetic gene clusters (BGCs) that are responsible for different secondary metabolites. Cluster 2 showed thiopeptide BGC with no known cluster blast, indicating TW-1T might produce novel antimicrobial agent. The antimicrobial assessment also showed that strain TW-1T possessed inhibitory activity against Gram-negative pathogens (Escherichia coli and Pseudomonas aeruginosa). This is the first report of the species in the genus Massilia which produces antimicrobial compounds. Based on the polyphasic study, strain TW-1T represents novel species in the genus Massilia, for which the name Massilia antibiotica sp. nov. is proposed. The type strain is TW-1T (= KACC 21627T = NBRC 114363T).


Assuntos
Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Genoma Bacteriano , Genômica , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Genes Bacterianos , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Família Multigênica , Oxalobacteraceae/classificação , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
15.
Environ Res ; 197: 111069, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785325

RESUMO

This study evaluated the long-term organic removal performance and microbial community shift in simulated aquifer storage and recovery (ASR) conditions. For this purpose, anoxic soil box systems were operated at 15 °C for one year. The results showed that the assimilable organic carbon (AOC) concentration in the anoxic soil box systems was successfully decreased by 79.1%. The dissolved organic carbon (DOC) concentration increased during the initial operational periods; however, it subsequently decreased during long-term operation. Readily biodegradable organic fractions (i.e., low-molecular weight (LMW) neutrals and LMW acids) decreased along with time elapsed, whereas non-biodegradable fraction (i.e., humic substances) increased. Proteobacteria and Acidobacteriota were predominant in the anoxic box systems throughout the operational periods. Firmicutes and Bacteroidota suddenly increased during the initial operational period while Gemmatimonadota slightly increased during prolonged long-term operation. Interestingly, the microbial community structures were significantly shifted with respect to the operational periods while the effects of AOC/NO3- addition were negligible. Various bacterial species preferring low temperature or anoxic conditions were detected as predominant bacteria. Some denitrifying (i.e., Noviherbaspirillum denitrificans) and iron reducing bacteria (i.e., Geobacter spp.) appeared during the long-term operation; these bacterial communities also acted as organic degraders in the simulated ASR systems. The findings of this study suggest that the application of natural bioattenuation using indigenous soil microbial communities can be a promising option as an organic carbon management strategy in ASR systems.


Assuntos
Água Subterrânea , Microbiota , Carbono , Oxalobacteraceae , Solo
16.
Arch Microbiol ; 203(6): 3071-3076, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33787987

RESUMO

An orange-coloured, rod-shaped, and aerobic bacterial strain DKR-6 T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10-42 °C, at pH 5.5-9.5, and at 0-3.0% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-6 T was affiliated to the genus Noviherbaspirillum, with the closest species being Noviherbaspirillum massiliense JC206T (96.3% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine as the principal polar lipids; C16:0, C17:0 cyclo, summed feature 3 (C16:1ω7c and/or C16: 1ω6c), and summed feature 8 (C18:1ω7c/or C18:1ω6c) as the main fatty acids; and Q-8 as a sole ubiquinone. The DNA G + C content was 61.6%. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-6 T represents a novel species in the genus Noviherbaspirillum, for which the name Noviherbaspirillum pedocola sp. nov. is proposed with the type strain DKR-6 T (= KACC 22074 T = NBRC 114727 T).


Assuntos
Oxalobacteraceae , Fosfolipídeos , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Oxalobacteraceae/classificação , Oxalobacteraceae/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Especificidade da Espécie
17.
Arch Microbiol ; 203(6): 2843-2852, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33748874

RESUMO

A Gram-reaction-negative, strictly aerobic, betaproteobacterial strain, designated SAP-35T, was isolated from sap extracted from Acer pictum in Mt. Halla in Jeju, Republic of Korea, and its taxonomic status was examined by a polyphasic approach. Cells of the organism were non-sporulating, motile rods and grew at 4-30 °C, pH 6-7 and in the absence of NaCl. 16S rRNA gene- and whole genome-based phylogenetic analyses showed that strain SAP-35T belonged to the family Oxalobacteraceae and was closely related to Rugamonas rivuli (98.9% 16S rRNA gene sequence similarity) and Rugamonas aquatica (98.4%). The phylogenomic clustering and average amino acid identity values supported that strain SAP-35T belonged to the genus Duganella and two Rugamonas species should be transferred to the genus Duganella. The major isoprenoid quinone of the isolate was Q-8. The major polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. The predominant fatty acids were summed feature 3, C16:0 and C17:0 cyclo. The G + C content of genome was 64.9%. The average nucleotide identity and dDDH values between strain SAP-35T and the members of the genera Rugamonas and Duganella were < 85.1% and < 49%, respectively. Based on the combined data presented here, strain SAP-35T (= KCTC 72227T = NBRC 113903T) represents a novel species of the genus Duganella, for which the name Duganella aceris sp. nov. is proposed. Also, Rugamonas aquatica Lu et al. (Int J Syst Evol Microbiol 70: 3328-3334, 2020) and Rugamonas aquatica Lu et al. 2020 are reclassified as Duganella aquatica comb. nov., with the emended description of the genus Rugamonas.


Assuntos
Acer/microbiologia , Oxalobacteraceae/classificação , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Filogenia , RNA Ribossômico 16S/genética
18.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468687

RESUMO

To study the spatial and temporal dynamics of bacterial colonization under field conditions, we planted and sampled Arabidopsis thaliana during 2 years at two Michigan sites and surveyed colonists by sequencing 16S rRNA gene amplicons. Mosaic and dynamic assemblages revealed the plant as a patchwork of tissue habitats that differentiated with age. Although assemblages primarily varied between roots and shoots, amplicon sequence variants (ASVs) also differentiated phyllosphere tissues. Increasing assemblage diversity indicated that variants dispersed more widely over time, decreasing the importance of stochastic variation in early colonization relative to tissue differences. As tissues underwent developmental transitions, the root and phyllosphere assemblages became more distinct. This pattern was driven by common variants rather than those restricted to a particular tissue or transiently present at one developmental stage. Patterns also depended critically on fine phylogenetic resolution: when ASVs were grouped at coarse taxonomic levels, their associations with host tissue and age weakened. Thus, the observed spatial and temporal variation in colonization depended upon bacterial traits that were not broadly shared at the family level. Some colonists were consistently more successful at entering specific tissues, as evidenced by their repeatable spatial prevalence distributions across sites and years. However, these variants did not overtake plant assemblages, which instead became more even over time. Together, these results suggested that the increasing effect of tissue type was related to colonization bottlenecks for specific ASVs rather than to their ability to dominate other colonists once established.IMPORTANCE Developing synthetic microbial communities that can increase plant yield or deter pathogens requires basic research on several fronts, including the efficiency with which microbes colonize plant tissues, how plant genes shape the microbiome, and the microbe-microbe interactions involved in community assembly. Findings on each of these fronts depend upon the spatial and temporal scales at which plant microbiomes are surveyed. In our study, phyllosphere tissues housed increasingly distinct microbial assemblages as plants aged, indicating that plants can be considered collections of tissue habitats in which microbial colonists-natural or synthetic-are established with differing success. Relationships between host genes and community diversity might vary depending on when samples are collected, given that assemblages grew more diverse as plants aged. Both spatial and temporal trends weakened when colonists were grouped by family, suggesting that functional rather than taxonomic profiling will be necessary to understand the basis for differences in colonization success.


Assuntos
Arabidopsis/microbiologia , Flores/microbiologia , Consórcios Microbianos/genética , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , Arabidopsis/crescimento & desenvolvimento , Técnicas de Tipagem Bacteriana , Flores/crescimento & desenvolvimento , Methylobacterium/classificação , Methylobacterium/genética , Methylobacterium/isolamento & purificação , Oxalobacteraceae/classificação , Oxalobacteraceae/genética , Oxalobacteraceae/isolamento & purificação , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , RNA Ribossômico 16S/genética
19.
Arch Microbiol ; 203(2): 823-828, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33063170

RESUMO

A Gram-stain-negative, aerobic, non-motile and yellow-colored bacterium, strain 17J57-3 T, was isolated from soil collected in Pyeongchang city, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 17J57-3 T formed a distinct lineage within the family Oxalobacteraceae (order Burkholderiales, class Betaproteobacteria). Strain 17J57-3 T was the most closely related to Noviherbaspirillum humi U15T (96.4% 16S rRNA gene sequence similarity) and Noviherbaspirillum massiliense JC206T (96.2%). The draft genome size of strain 17J57-3 T was 6,117,206 bp. Optimal growth occurred at 30 °C, pH 7.0 without NaCl. The predominant cellular fatty acids were summed feature 3 (C16:1 ω6c/C16:1 ω7c) and C16:0. The major respiratory quinone was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strain 17J57-3 T represents a novel bacterial species within the genus Noviherbaspirillum, for which the name Noviherbaspirillum galbum is proposed. The type strain of Noviherbaspirillum galbum is 17J57-3 T (= KCTC 62213 T = NBRC 114384 T).


Assuntos
Oxalobacteraceae/classificação , Filogenia , Microbiologia do Solo , Ácidos Graxos , Oxalobacteraceae/genética , Fosfolipídeos , RNA Ribossômico 16S/genética , República da Coreia , Especificidade da Espécie
20.
Artigo em Inglês | MEDLINE | ID: mdl-33269999

RESUMO

A Gram-negative, rod-shaped bacterium, strain Duganella callida DN04T, was isolated from the soil of a maize field in North Carolina, USA. Based on the 16S rRNA gene sequence, the most similar Duganella species are D. sacchari Sac-22T, D. ginsengisoli DCY83T, and D. radicis Sac-41T with a 97.8, 97.6, or 96.9 % sequence similarity, respectively. We compared the biochemical phenotype of DN04T to D. sacchari Sac-22T and D. zoogloeoides 115T and other reference strains from different genera within the Oxalobacteraceae and while the biochemical profile of DN04T is most similar to D. sacchari Sac-22T and other Duganella and Massilia strains, there are also distinct differences. DN04T can for example utilize turanose, N-acetyl-d-glucosamine, inosine, and l-pyroglutamic acid. The four fatty acids found in the highest percentages were C15 : 0 iso (24.6 %), C15 : 1 isoG (19.4 %), C17 : 0 iso3-OH (16.8 %), and summed feature 3 (C16:1 ⍵7c and/or C16:1 ⍵6c) (12.5 %). We also applied whole genome sequencing to determine if DN04T is a novel species. The most similar AAI (average amino acid identity) score was 70.8 % (Massilia plicata NZ CP038026T), and the most similar ANI (average nucleotide identity) score was 84.8 % (D. radicis KCTC 22382T), which indicates that DN04T is a novel species. The genome-to-genome-distance calculation (GGDC) revealed a DDH of 28.3 % to D. radicis KCTC 22382T, which is much lower than the new species threshold. Based on the morphological, phenotypic, and genomic differences, we propose Duganella callida sp. nov. as a novel species within the Duganella genus (type strain DN04T=NRRL B-65552T=LMG 31736T).


Assuntos
Oxalobacteraceae/classificação , Filogenia , Microbiologia do Solo , Zea mays , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , North Carolina , Hibridização de Ácido Nucleico , Oxalobacteraceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...