RESUMO
Polyamine oxidases (PAOs) have been correlated with numerous physiological and developmental processes, as well as responses to biotic and abiotic stress conditions. Their transcriptional regulation is driven by signals generated by various developmental and environmental cues, including phytohormones. However, the inductive mechanism(s) of the corresponding genes remains elusive. Out of the five previously characterized Arabidopsis PAO genes, none of their regulatory sequences have been analyzed to date. In this study, a GUS reporter-aided promoter deletion approach was used to investigate the transcriptional regulation of AtPAO3 during normal growth and development as well as under various inductive environments. AtPAO3 contains an upstream open reading frame (uORF) and a short inter-cistronic sequence, while the integrity of both appears to be crucial for the proper regulation of gene expression. The full-length promoter contains several cis-acting elements that regulate the tissue-specific expression of AtPAO3 during normal growth and development. Furthermore, a number of TFBS that are involved in gene induction under various abiotic stress conditions display an additive effect on gene expression. Taken together, our data indicate that the transcription of AtPAO3 is regulated by multiple environmental factors, which probably work alongside hormonal signals and shed light on the fine-tuning mechanisms of PAO regulation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Genes ReporterRESUMO
BACKGROUND: The lipid storage myopathy (LSM) diagnosis is based on the patient's clinical manifestations and muscle pathology. However, when genetic testing is lacking, there is a high rate of misdiagnosis of the disease. This study aimed to investigate the clinical and pathological features of genetically diagnosed LSM in northern China, analyze genetic mutations' characteristics, and improve the LSM diagnostic rate. METHODS: Twenty patients with LSM diagnosed were collected; meanwhile, the clinical data, muscle samples, and routine pathological staining of muscle specimens were collected. The morphological changes of muscle fibers were observed under an optical microscope. RESULTS: Among the included patients, 18 cases had ETFDH (HGNC ID: 3483) mutations, and two had PNPLA2 mutations. Family pedigree verification was performed on three patients with heterozygous mutations in the ETFDH gene complex. Histopathological staining showed that all patients had fine vacuoles in the muscle fibers, and some of them merged to form fissures, and the lipid droplets increased in cells. After therapy, 18 patients were associated with a favorable prognosis, and two patients were ineffective with the treatment of neutral lipid storage myopathy (NLSDM) caused by PNPLA2 mutation. DISCUSSION: The clinical manifestations of LSM are complex and diverse, mainly manifested by proximal muscle weakness and exercise intolerance in the extremities. The pathological images of LSM muscles are abnormal storage of lipid droplets in muscle fibers, primarily involving type I fibers. The LSM patients were mainly multiple acyl-CoA dehydrogenase deficiency (MADD) caused by the ETFDH gene mutation. It is necessary to perform an accurate typing diagnosis of LSM.
Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/uso terapêutico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genéticaRESUMO
BACKGROUND: Newborn screening (NBS) for multiple acyl-CoA dehydrogenase deficiency (MADD) has poor sensitivity. This study aimed to evaluate the feasibility of incorporating second-tier genetic screening for MADD. METHODS: A total of 453,390 newborns were screened for inherited metabolic disorders using tandem mass spectrometry from January 2017 to May 2022. A matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay was developed to identify 23 common ETFDH variants and used for second-tier screening of MADD. RESULTS: Overall, 185 newborns with suspected MADD received second-tier genetic screening. Thirty-three (17.8 %) newborns with positive results, of which 7 were homozygotes, 5 were compound heterozygotes, 21 were heterozygotes. Further genetic analysis revealed that 6 of the 21 newborns had a second ETFDH variant. Therefore, 18 patients were finally diagnosed with MADD, with a positive predictive value of 9.73 %. The detection rate and diagnostic rate of MALDI-TOF MS assay were 83.33 % and 66.67 %, respectively. Thus the incidence of MADD in our population was estimated at 1:25,188. Nine different ETFDH variants were identified in MADD patients. The most common ETFDH variant being c.250G > A with an allelic frequency of 47.22 %, followed by c.524G > A (13.89 %) and c.998A > G (13.89 %). All patients had elevation of multiple acylcarnitines at NBS. However, seven patients had normal acylcarnitine levels and two patients showed mild elevation of only two acylcarnitines during the recall review. CONCLUSION: We have established a high throughput MALDI-TOF MS assay for MADD screening. Half of the MADD patients would not be detected under conventional screening protocols. Incorporating second-tier genetic screening into the current NBS could improve the performance of MADD NBS.
Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Recém-Nascido , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Riboflavina/metabolismo , Testes Genéticos , Triagem Neonatal , MutaçãoRESUMO
Multiple-acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder which can be split into three types. Type III MADD is associated with acute or subacute proximal muscle weakness and other variable non-specific features making it a challenging diagnosis for the clinician. This case report describes MADD in a 64 year-old lady, thought to be one of the latest first presentations of the disease. Unusually for this condition, the initial presentation was with dyspnoea. Furthermore, since this case provides further evidence that gene variants can predict age of onset, we advocate for further subclassification of type III MADD into late onset MADD (LO-MADD) when homozygous gene variants are present and very LO-MADD when heterozygous gene variants are found.
Assuntos
Acil-CoA Desidrogenases , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Pessoa de Meia-Idade , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Mutação , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Acil-CoA Desidrogenases/genéticaRESUMO
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the 'Zunla-1' pepper genome (named CaPAO1-CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.
Assuntos
Arabidopsis , Capsicum , Arabidopsis/genética , Capsicum/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Melhoramento Vegetal , EsperminaRESUMO
Polyamine oxidase (PAO) is a key enzyme maintaining polyamine homeostasis, which affects plant physiological activities. Until now, the gene members and function of PAOs in tea (Camellia sinenesis) have not been fully identified. Here, through the expression in Escherichia coli and Nicotiana benthamiana, we identified six genes annotated as CsPAO in tea genome and transcriptome and determined their enzyme reaction modes and gene expression profiles in tea cultivar 'Yinghong 9'. We found that CsPAO1,2,3 could catalyze spermine, thermospermine, and norspermidine, and CsPAO2,3 could catalyze spermidine in the back-conversion mode, which indicated that the precursor of γ-aminobutyric acid might originate from the oxidation of putrescin but not spermidine. We further investigated the changes of CsPAO activity with temperature and pH and their stability. Kinetic parameters suggested that CsPAO2 was the major PAO modifying polyamine composition in tea, and it could be inactivated by ß-hydroxyethylhydrazine and aminoguanidine. Putrescine content and CsPAO2 expression were high in tea flowers. CsPAO2 responded to wound, drought, and salt stress; CsPAO1 might be the main member responding to cold stress; anoxia induced CsPAO3. We conclude that in terms of phylogenetic tree, enzyme characteristics, and expression profile, CsPAO2 might be the dominant CsPAO in the polyamine degradation pathway.
Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Putrescina , Espermina/metabolismo , Chá , Ácido gama-Aminobutírico/metabolismoRESUMO
BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II is an extremely rare autosomal recessive inborn error of fatty acid beta oxidation and branched-chain amino acids, secondary to mutations in the genes encoding the electron transfer flavoproteins A and B (ETFs; ETFA or ETFB) or ETF dehydrogenase (ETFDH). The clinical manifestation of MADD are heterogeneous, from severe neonatal forms to mild late-onset forms. CASE PRESENTATION: We report the case of a preterm newborn who died a few days after birth for a severe picture of untreatable metabolic acidosis. The diagnosis of neonatal onset MADD was suggested on the basis of clinical features displaying congenital abnormalities and confirmed by the results of expanded newborn screening, which arrived the day the newborn died. Molecular genetic test revealed a homozygous indel variant c.606 + 1 _606 + 2insT in the ETFDH gene, localized in a canonical splite site. This variant, segregated from the two heterozygous parents, is not present in the general population frequency database and has never been reported in the literature. DISCUSSION AND CONCLUSION: Recently introduced Expanded Newborn Screening is very important for a timely diagnosis of Inherited Metabolic Disorders like MADD. In some cases which are the most severe, diagnosis may arrive after symptoms are already present or may be the neonate already died. This stress the importance of collecting all possible samples to give parents a proper diagnosis and a genetic counselling for future pregnacies.
Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Humanos , Recém-Nascido , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismoRESUMO
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an inborn metabolic disorder that affects fatty acid oxidation and the catabolism of branched-chain amino acids, vitamins B and energy metabolism. In this study, the induced pluripotent stem cell (iPSC) line LZUSHi002-A from PBMCs of a 10-year-old male patient with ETFDH mutations using the episomal plasmids was established, which is an ideal in vitro model to understand the exact pathogenesis of MADD.
Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Masculino , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação/genética , Ácidos Graxos/metabolismo , Vitaminas , Aminoácidos de Cadeia Ramificada/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismoRESUMO
The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 µM, Ki 1.60 µM) and 7 (IC50 0.23 µM, Ki 0.46 µM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.
Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Espermina , Acroleína/metabolismo , Flavinas , Peróxido de Hidrogênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo , Espermina/farmacologiaRESUMO
Polyamine oxidase (PAOX) (N1-acetylpolyamine oxidase) is a major enzyme in the polyamine catabolism pathway that generates hydrogen peroxide. Hydrogen peroxide plays a crucial role in skin aging via extracellular matrix (ECM) degradation by increasing the matrix metalloproteinase-1 (MMP-1) levels. We analyzed the integrity of the ECM in foreskin fibroblasts using PAOX expression. PAOX increased the MMP-1 secretion and type Ι collagen degradation in 2D and 3D cultures of fibroblasts, respectively. Similarly, PAOX overexpression increased the messenger ribonucleic acid (mRNA) level of MMP-1. PAOX expression induced polyamine catabolism, decreased the spermine levels, and increased the putrescine levels. However, the exogenous polyamine treatment did not change the MMP-1 and type I collagen levels as much as PAOX expression. PAOX expression increased the reactive oxygen species (ROS) production in fibroblasts, and exogenous hydrogen peroxide increased both the ROS production and MMP-1 secretion. Furthermore, N-acetylcysteine, an antioxidant, reversed the PAOX-induced ROS production and MMP-1 secretion. PAOX induced the signaling pathways that activate activator protein-1 (AP-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which are important transcription factors for MMP-1 transactivation. We concluded that PAOX increased the ROS levels in fibroblasts, leading to an increase in MMP-1 expression. Therefore, we propose that PAOX is a potential target molecule in protecting the ECM integrity.
Assuntos
Metaloproteinase 1 da Matriz , Fator de Transcrição AP-1 , Acetilcisteína/farmacologia , Antioxidantes/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , NF-kappa B/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Poliaminas/metabolismo , Putrescina/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermina/metabolismo , Fator de Transcrição AP-1/metabolismoRESUMO
Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors.
Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Domínio Catalítico , Humanos , Camundongos , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Especificidade por SubstratoRESUMO
Objective: To investigate the effects of SI-4650, a novel small molecule inhibitor of spermine oxidase (SMO), on the proliferation and epithelial mesenchymal transformation (EMT) of human ovarian cancer SKVO-3 cells as well as its underlying molecular mechanisms. Methods: SKVO-3 cells treated with 0 µmol/L SI-4650 were used as control group, SKVO-3 cells treated with 30, 60 µmol/L SI-4650 were used as experimental group. The effects of SI-4650 on the activity of SMO, the polyamine contents and the cellular reactive oxygen species (ROS) were detected. Cell proliferation, cell cycle and mitochondrial membrane potential change of SKVO-3 cells were tested. The effects of SI-4650 on apoptosis, migration and invasion were investigated. The effects of SI-4650 on Bax, Bcl-2, Caspase3, E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase 2 ( MMP2) and MMP 9 expression levels in SKVO-3 cells were detected. Results: Comparison between blank control group and experimental groups,SI-4650 could improve the content of SI-4650 in SKVO-3 cells. SI-4650 could inhibit the activity of SMO (Pï¼0.01), reduce the ROS (Pï¼0.01)and polyamine content in SKVO-3 cells (Pï¼0.01). Treatment of SKVO-3 cells with SI-4650 inhibited the proliferation (the inhibition rate was 32.27% and 47.31% in experimental groups), caused S-phase cell cycle arrest (Pï¼0.01) and induced apoptosis (Pï¼0.01). The expressions of Bax and c-Caspase3 in SKVO-3 cells were increased (Pï¼0.01),the content of Bcl-2 was decreased (Pï¼0.01), and the mitochondrial membrane potential was decreased (Pï¼0.01), and the number of apoptotic cells was increased(31.41% and 43.51% in experimental groups). At the same time, SI-4650 could change the expression levels of EMT-related factors, increased the expression level of E-cad , decreased the expression levels of N-cad, Vimentin, MMP-2 and MMP-9, and inhibited the migration and invasion of SKVO-3 cells. Conclusion: SI-4650 can effectively inhibit proliferation, invasion and metastasis of human ovarian cancer SKVO-3 cells, and the mechanism may be related to its ability to depress the activity of SMO, interfere polyamine metabolism and induce cell cycle arrest, mitochondrial apoptosis and inhibit EMT. This study reveals potential application of SI-4650 in the treatment of ovarian cancer.
Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Metaloproteinase 2 da Matriz , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Poliaminas , Proteínas Proto-Oncogênicas c-bcl-2 , Espécies Reativas de Oxigênio , Vimentina , Proteína X Associada a bcl-2RESUMO
Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17ß-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17ß-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERß) was responsible for the repression of PAOX by 17ß-estradiol. A luciferase reporter assay showed that 17ß-estradiol downregulates PAOX promoter activity and that 17ß-estradiol-dependent PAOX repression disappeared after deletions (-3126/-2730 and -1271/-1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17ß-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.
Assuntos
Neoplasias da Mama , Receptor beta de Estrogênio , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliaminas , Fator de Transcrição AP-1/genéticaRESUMO
Aims: To evaluate the clinical, pathological, and genetic features of patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD). Methods: Thirty-one patients with RR-MADD admitted to our hospital from January 2005 to November 2020 were enrolled, and their clinical data were collected. Pathological characteristics of the muscle tissue and possible pathogenic gene mutations were analyzed. Results: The most common clinical features in all patients were symmetrical proximal muscle weakness. Laboratory examination revealed elevated levels of creatine kinase, homocysteine, and uric acid, acylcarnitines, and organic acid. The muscle biopsy revealed typical pathological changes like lipid deposition. Genetic analysis identified ETFDH mutations in 29 patients, among which one had homozygotes, 19 had compound heterozygotes, 7 had heterozygous mutations, and 2 had heterozygous mutations of both ETFDH and ETFA. Two patients had no pathogenic gene mutations. All patients were treated with riboflavin, and their symptoms improved, which was consistent with the diagnosis of RR-MADD. Conclusion: The clinical manifestations and genetic test results of patients with RR-MADD are heterogeneous. Therefore, a comprehensive analysis of clinical, pathological, and genetic testing is essential for the early diagnosis of RR-MADD.
Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Flavoproteínas Transferidoras de Elétrons/genética , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/uso terapêutico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Riboflavina/farmacologia , Riboflavina/uso terapêuticoRESUMO
The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites' genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.
Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Plasmodium , Inibidores Enzimáticos/farmacologia , Humanos , Oxigenases de Função Mista/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plasmodium/metabolismo , Proteínas Recombinantes/metabolismo , Tiofenos/farmacologiaRESUMO
BACKGROUND: Glycine is a proteogenic amino acid that is required for numerous metabolic pathways, including purine, creatine, heme, and glutathione biosynthesis. Glycine formation from serine, catalyzed by serine hydroxy methyltransferase, is the major source of this amino acid in humans. Our previous studies in a mouse model have shown a crucial role for the 10-formyltetrahydrofolate dehydrogenase enzyme in serine-to-glycine conversion. OBJECTIVES: We sought to determine the genomic influence on the serine-glycine ratio in 803 Hispanic children from 319 families of the Viva La Familia cohort. METHODS: We performed a genome-wide association analysis for plasma serine, glycine, and the serine-glycine ratio in Sequential Oligogenic Linkage Analysis Routines while accounting for relationships among family members. RESULTS: All 3 parameters were significantly heritable (h2 = 0.22-0.78; P < 0.004). The strongest associations for the serine-glycine ratio were with single nucleotide polymorphisms (SNPs) in aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and glycine decarboxylase (GLDC) and for glycine with GLDC (P < 3.5 × 10-8; effect sizes, 0.03-0.07). No significant associations were found for serine. We also conducted a targeted genetic analysis with ALDH1L1 exonic SNPs and found significant associations between the serine-glycine ratio and rs2886059 (ß = 0.68; SE, 0.25; P = 0.006) and rs3796191 (ß = 0.25; SE, 0.08; P = 0.003) and between glycine and rs3796191 (ß = -0.08; SE, 0.02; P = 0.0004). These exonic SNPs were further associated with metabolic disease risk factors, mainly adiposity measures (P < 0.006). Significant genetic and phenotypic correlations were found for glycine and the serine-glycine ratio with metabolic disease risk factors, including adiposity, insulin sensitivity, and inflammation-related phenotypes [estimate of genetic correlation = -0.37 to 0.35 (P < 0.03); estimate of phenotypic correlation = -0.19 to 0.13 (P < 0.006)]. The significant genetic correlations indicate shared genetic effects among glycine, the serine-glycine ratio, and adiposity and insulin sensitivity phenotypes. CONCLUSIONS: Our study suggests that ALDH1L1 and GLDC SNPs influence the serine-to-glycine ratio and metabolic disease risk.
Assuntos
Glicina Desidrogenase (Descarboxilante) , Resistência à Insulina , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Serina , Criança , Estudo de Associação Genômica Ampla , Glicina/genética , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Hispânico ou Latino/genética , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Serina/genéticaRESUMO
The enzyme spermine oxidase (SMOX) is involved in polyamine catabolism and converts spermine to spermidine. The enzymatic reaction generates reactive hydrogen peroxide and aldehydes as by-products that can damage DNA and other biomolecules. Increased expression of SMOX is frequently found in lung, prostate, colon, stomach and liver cancer models, and the enzyme also appears to play a role in neuronal dysfunction and vascular retinopathy. Because of growing evidence that links SMOX activity with DNA damage, inflammation, and carcinogenesis, the enzyme has come into view as a potential drug target. A major challenge in cancer research is the lack of characterization of antibodies used for identification of target proteins. To overcome this limitation, we generated a panel of high-affinity rabbit monoclonal antibodies against various SMOX epitopes and selected antibodies for use in immunoblotting, SMOX quantification assays, immunofluorescence microscopy and immunohistochemistry. Immunohistochemistry analysis with the antibody SMAB10 in normal and transformed tissues confirms that SMOX is upregulated in several different cancers. Together, the panel of antibodies generated herein adds to the toolbox of high-quality reagents to study SMOX biology and to facilitate SMOX drug development.
Assuntos
Antineoplásicos Imunológicos , Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Anticorpos Monoclonais , Humanos , Imuno-Histoquímica , Masculino , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Espermina/metabolismoRESUMO
Maize chlorotic mottle virus (MCMV) is the key pathogen causing maize lethal necrosis (MLN). Due to the sharply increased incidence of MLN in many countries, there is an urgent need to identify resistant lines and uncover the underlying resistance mechanism. Here, we showed that the abundance of maize (Zea mays) microR167 (Zma-miR167) positively modulates the degree of resistance to MCMV. Zma-miR167 directly targets Auxin Response Factor3 (ZmARF3) and ZmARF30, both of which negatively regulate resistance to MCMV. RNA-sequencing coupled with gene expression assays revealed that both ZmARF3 and ZmARF30 directly bind the promoter of Polyamine Oxidase 1 (ZmPAO1) and activate its expression. Knockdown or inhibition of enzymatic activity of ZmPAO1 suppressed MCMV infection. Nevertheless, MCMV-encoded p31 protein directly targets ZmPAO1 and enhances the enzyme activity to counteract Zma-miR167-mediated defense to some degree. We uncovered a role of the Zma-miR167-ZmARF3/30 module for restricting MCMV infection by regulating ZmPAO1 expression, while MCMV employs p31 to counteract this defense.
Assuntos
Peróxido de Hidrogênio , Tombusviridae , Peróxido de Hidrogênio/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Doenças das Plantas/genética , Tombusviridae/genética , Tombusviridae/metabolismo , Zea mays/genéticaRESUMO
Soil salinity inhibits seed germination and reduces seedling survival rate, resulting in significant yield reductions in crops. Here, we report the identification of a polyamine oxidase, OsPAO3, conferring salt tolerance at the germination stage in rice (Oryza sativa L.), through map-based cloning approach. OsPAO3 is up-regulated under salt stress at the germination stage and highly expressed in various organs. Overexpression of OsPAO3 increases activity of polyamine oxidases, enhancing the polyamine content in seed coleoptiles. Increased polyamine may lead to the enhance of the activity of ROS-scavenging enzymes to eliminate over-accumulated H2O2 and to reduce Na+ content in seed coleoptiles to maintain ion homeostasis and weaken Na+ damage. These changes resulted in stronger salt tolerance at the germination stage in rice. Our findings not only provide a unique gene for breeding new salt-tolerant rice cultivars but also help to elucidate the mechanism of salt tolerance in rice.
Assuntos
Oryza , Tolerância ao Sal , Germinação/genética , Peróxido de Hidrogênio , Oryza/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Melhoramento Vegetal , Poliaminas , Tolerância ao Sal/genética , Plântula/genéticaRESUMO
Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs.