Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.573
Filtrar
1.
PLoS One ; 17(5): e0267904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507560

RESUMO

A 180-day experiment was conducted to evaluate the effects of density on sex differentiation, sexual dimorphism, cortisol level, and stress related gene expression. Yellow perch, Perca flavescens, with initial mean body weight of 0.03 ± 0.001 g were reared in three different stocking densities: 1, 2, and 4 fish/L, termed as low (LD), moderate (MD), and high (HD) density, respectively, in a flow-through tank system. Results showed no significant differences in sex ratio in all density groups compared to normal population 1:1, and sexual size dimorphism (SSD) appeared when male and female were as small as the mean size reaching 11.5 cm and 12.3 cm in total length (TL) or 13.2g and 16.9g in body weight (BW), respectively. This female-biased sexual growth dimorphism was more pronounced in LD, although it was observed across all density groups. A significantly higher condition factor (K) of females than males in the LD group, and significantly higher R values of LD and MD than HD with the length/weight (L/W) linear relationships in females, were observed. Parallelly, fish reared in LD showed significantly higher mean body weight than those in the MD and HD groups, but there were no significant differences between the MD and HD. Similar results were also observed in all the other parameters of weight gain, specific growth rate (SGR), condition factor (K), and survival. These findings suggested that high density not only affected growth itself, but also affected SSD, growth trajectory or body shape, and general wellbeing in fish, especially in females. There were no significant differences in gonadosomatic index (GSI) and viscerosomatic index (VSI) among all the density groups; however, the hepatosomatic index (HSI) of LD was significantly higher than MD and HD, suggesting high density affected liver reserves or functions. Physiologically, plasma cortisol level was significantly highest in the LD among all groups, followed by MD, and lowest in HD. At the molecular level, the expression of the 70-kDa heat shock protein (Hsp70), glutathione peroxidase (GPx), and superoxide dismutase (SOD) genes involved in cellular stress were significantly upregulated in the HD group. The most significantly downregulated expression of these genes was consistently observed in the MD when compared to the LD and HD groups. In conclusion, increasing density induced chronic stress in yellow perch without affecting sex differentiation, but negatively affected expression of stress-related genes and mobilization of liver reserve, resulting in poorer wellbeing and reduced SSD, growth, and survival.


Assuntos
Percas , Animais , Peso Corporal , Feminino , Expressão Gênica , Hidrocortisona , Masculino , Percas/fisiologia , Caracteres Sexuais , Diferenciação Sexual/genética
2.
J Parasitol ; 108(2): 209-216, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435986

RESUMO

The genus Eustrongylides includes zoonotic nematodes that infect fish species and fish-eating birds of freshwater ecosystems. This study aimed to evaluate the occurrence of Eustrongylides in the paratenic host Perca fluviatilis (European perch) and in the definitive host, Phalacrocorax carbo sinensis (great cormorant), in Lake Annone, a shallow eutrophic lake located in the pre-mountainous area of the Alps in northwest Italy where wintering cormorants coexist with new breeding colonies. A total of 114 European perch and 48 cormorants were examined for the occurrence of Eustrongylides. All parasites collected were identified with microscopic examination and molecular analysis. Overall, 11 specimens of European perch (9.6%) and 13 individuals of cormorants (27%) harbored nematodes identified as fourth-stage larvae and adults of Eustrongylides excisus. The observed prevalence of Eustrongylides spp. appears to be intermediate between the higher values in cormorant breeding areas in northern Europe and the lower prevalence observed in their wintering sites in southernmost Europe. Considering the eutrophication status of freshwater ecosystems and the increasing population of the cormorants, Eustrongylides has an increasing potential range of dispersion in Europe, including Italy; thus an extensive surveillance should be carried out, especially given the zoonotic potential of this nematode.


Assuntos
Dioctophymatoidea , Helmintos , Nematoides , Percas , Animais , Aves/parasitologia , Ecossistema , Lagos , Percas/parasitologia
3.
Theriogenology ; 185: 127-133, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35397308

RESUMO

Eurasian perch is an important fish species for European aquaculture diversification, but the quality of reproduction still remains one of the main limitations for further industry development. In particular, the optimal condition to obtain the best quality of sperm is poorly understood. The aim of our study was to measure the possible effects of two experimental rearing temperatures (6 °C and the conventionally used 12 °C) and of hormonal stimulation, on the motility parameters (pMOT, VCL, VSL, LIN, ALH, BCF), osmolality and fertilizing capacity of Eurasian perch sperm at the end of the reproductive cycle. A prior untested, large-scale (5 mL cryotube and Polystyrene box) cryopreservation method was implemented using fresh sperm obtained from the two above mentioned temperature groups. Males were injected with 100 µg body weight kg-1 sGnRHa. No significant difference was recorded between the two rearing temperatures and between the saline control and sGnRHa treated groups on the different features of sperm quality. A similar fertilization rate was monitored in all sGnRHa treated (6 °C: 69 ± 13%, 12 °C: 81 ± 11%) and saline control groups (6 °C: 79 ± 10%, 12 °C: 87 ± 4%). Correspondingly, no significant difference in hatching rate was observed in the sGnRHa injected (6 °C: 27 ± 9%, 12 °C: 40 ± 20%) and saline control (6 °C: 35 ± 18%, 12 °C: 36 ± 7%) males. However, a notable negative effect of freezing process on sperm movement was observed following thawing in both temperature groups. No significant difference in the motility parameters was measured between the two temperature groups following large-scale cryopreservation. Furthermore, a similar result was observed in the fertilizing capacity (6 °C: 79 ± 10%, 12 °C: 75 ± 8) of thawed sperm as well as in the hatching rate (6 °C: 52 ± 13%, 12 °C: 46 ± 19%). Our results indicate that fresh Eurasian perch sperm can tolerate a reduced rearing temperature following hormonal treatment. The adopted large-scale cryopreservation method could be used efficiently in the future for the fertilization of large amounts of Eurasian perch eggs following a precise standardization process.


Assuntos
Percas , Preservação do Sêmen , Animais , Criopreservação/métodos , Criopreservação/veterinária , Feminino , Masculino , Percas/fisiologia , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Motilidade Espermática/fisiologia , Espermatozoides/fisiologia , Temperatura
4.
Syst Parasitol ; 99(3): 399-402, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306616

RESUMO

An analysis of the nomenclature of Heteraxinoides Yamaguti, 1943, Heteraxinoides Yamaguti, 1963, Allopseudaxine Yamaguti, 1943, Axine tripathii Price, 1962, and Axine tripathii Yamaguti, 1963 was conducted, which resulted in the proposal of the following: 1) the subgenus Heteraxinoides Yamaguti, 1943 is a nomen nudum; 2) Heteraxinoides Price, 1962 and Heteraxinoides inada (Ishii & Sawada, 1938) Price, 1962 represent the correct authorships for the respective taxa; 3) Heteraxinoides Yamaguti, 1963 and Heteraxinoides Yamaguti sensu Price are junior homonyms of Heteraxinoides Price, 1962; 4) Heteraxinoides Price, 1962 is a junior subjective synonym of Axine Abildgaard, 1794; 5) Heteraxinidae Price, 1962 is a junior objective synonym of Heteraxinidae Unnithan, 1957; 6) Allopseudaxine Yamaguti, 1943 is valid and available sensu the International Code of Zoological Nomenclature; and 7) the homonyms Axine tripathii Price, 1962 and Axine tripathii Yamaguti, 1963 are objective junior synonyms of Axine hemirhamphae Tripathi, 1959. Neoheteraxinoides nom. nov. is proposed to replace the junior homonym Heteraxinoides Yamaguti, 1963, and the following new combinations are advanced: Neoheteraxinoides argiropsi (Mamaev, 1977) comb. n., N. atlanticus (Gayevskaya & Kovaljova, 1979) comb. n., N. caprodontis (Yamaguti, 1968) comb. n., N. chinensis (Yamaguti, 1937) comb. n., N. hargisi (Price, 1962) comb. n., N. novaezealandiae (Dillon & Hargis, 1965) comb. n., N. oligoplitis (Meserve, 1938) comb. n., N. pseudosciaenai (Gupta & Khullar, 1968) comb. n., N. regis (Dillon & Hargis, 1965) comb. n., N. scorpis (Sanders, 1944) comb. n., N. triangularis (Goto, 1894) comb. n. (type species), N. xanthophilis (Hargis, 1956) comb. n., N. xanthophiloides (Price, 1962) comb. n., and N. zhukovi (Caballero & Bravo Hollis, 1963) comb. n.


Assuntos
Percas , Perciformes , Trematódeos , Animais , Especificidade da Espécie
5.
Microbiol Spectr ; 10(2): e0272721, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35286150

RESUMO

p53, as an important tumor suppressor protein, has recently been implicated in host antiviral defense. The present study found that the expression of mandarin fish (Siniperca chuatsi) p53 (Sc-p53) was negatively associated with infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) proliferation as well as the expression of glutaminase 1 (GLS1) and glutaminolysis pathway-related enzymes glutamate dehydrogenase (GDH) and isocitrate dehydrogenase 2 (IDH2). This indicated that Sc-p53 inhibited the replication and proliferation of ISKNV and SCRV by negatively regulating the glutaminolysis pathway. Moreover, it was confirmed that miR145-5p could inhibit c-Myc expression by targeting the 3' untranslated region (UTR). Sc-p53 could bind to the miR145-5p promoter region to promote its expression and to further inhibit the expression of c-Myc. The expression of c-Myc was proved to be positively correlated with the expression of GLS1 as well. All these suggested a negative relationship between the Sc-p53/miR145-5p/c-Myc pathway and GLS1 expression and glutaminolysis. However, it was found that after ISKNV and SCRV infection, the expressions of Sc-p53, miR145-5p, c-Myc, and GLS1 were all significantly upregulated, which did not match the pattern in normal cells. Based on the results, it was suggested that ISKNV and SCRV infection altered the Sc-p53/miR145-5p/c-Myc pathway. All of above results will provide potential targets for the development of new therapeutic strategies against ISKNV and SCRV. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV) as major causative agents have caused a serious threat to the mandarin fish farming industry (J.-J. Tao, J.-F. Gui, and Q.-Y. Zhang, Aquaculture 262:1-9, 2007, https://doi.org/10.1016/j.aquaculture.2006.09.030). Viruses have evolved the strategy to shape host-cell metabolism for their replication (S. K. Thaker, J. Ch'ng, and H. R. Christofk, BMC Biol 17:59, 2019, https://doi.org/10.1186/s12915-019-0678-9). Our previous studies showed that ISKNV replication induced glutamine metabolism reprogramming and that glutaminolysis was required for efficient replication of ISKNV and SCRV. In the present study, the mechanistic link between the p53/miR145-5p/c-Myc pathway and glutaminolysis in the Chinese perch brain (CPB) cells was provided, which will provide novel insights into ISKNV and SCRV pathogenesis and antiviral treatment strategies.


Assuntos
Doenças dos Peixes , Iridoviridae , Percas , Rhabdoviridae , Animais , Antivirais , Encéfalo/metabolismo , China , Doenças dos Peixes/genética , Iridoviridae/genética , Iridoviridae/metabolismo , Percas/metabolismo , Rhabdoviridae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Gene ; 825: 146434, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35304240

RESUMO

Vision is important for fish to forage food and fishes express opsin genes to receive visual signals. Chinese perch (Siniperca chuatsi) larvae prey on other fish species larvae at firstfeeding but donoteat any zooplankton, the expression of opsin genes in S. chuatsilarvae is unknown. In this study, we conducted a whole-genome analysis and demonstrated that S. chuatsihave5cone opsin genes (sws1, sws2Aα, sws2Aß, rh2and lws)and 2 rod opsin genes (rh1and rh1-exorh). The syntenicanalysisshowedthe flanking genes ofall opsin genes were conserved during fish evolution, but the ancestorof S. chuatsimightlost some opsin gene copies duringtheevolution.The phylogeneticanalysisshowed sws1of S. chuatsiwas closest to those of Lates calcariferwhich had a truncated sws1gene; the sws2Aα, sws2Aß,lws,rh2,rh1 andrh1-exorh of S. chuatsihad a closer relationship with those of Percomorpha fishes.Importantly, results of in situhybridization showed the sws1 opsingene,which is related to forage zooplankton,had extremely low levelexpression in retinaat early stages.Surprisingly, the rh2 opsin gene had a high level expression at firstfeeding stage. The sws2Aα, sws2Aßand lwshad a little expression at early stages but the lwsshowed a increasing trend with larval development, rh1 opsin gene expression appeared at15 dph. In thisstudy, we found a specialpattern of visual opsin genes expression in S. chuatsi, it might influence the larval first feeding and feeding habit.


Assuntos
Percas , Opsinas de Bastonetes , Animais , China , Opsinas/genética , Percas/genética , Filogenia , Opsinas de Bastonetes/genética
7.
BMC Ecol Evol ; 22(1): 35, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317750

RESUMO

BACKGROUND: Understanding how species biology may facilitate resilience to climate change remains a critical factor in detecting and protecting species at risk of extinction. Many studies have focused on the role of particular ecological traits in driving species responses, but less so on demographic history and levels of standing genetic variation. Additionally, spatial variation in the interaction of demographic and adaptive factors may further complicate prediction of species responses to environmental change. We used environmental and genomic datasets to reconstruct the phylogeographic histories of two ecologically similar and largely co-distributed freshwater fishes, the southern (Nannoperca australis) and Yarra (N. obscura) pygmy perches, to assess the degree of concordance in their responses to Plio-Pleistocene climatic changes. We described contemporary genetic diversity, phylogenetic histories, demographic histories, and historical species distributions across both species, and statistically evaluated the degree of concordance in co-occurring populations. RESULTS: Marked differences in contemporary genetic diversity, historical distribution changes and historical migration were observed across the species, with a distinct lack of genetic diversity and historical range expansion suggested for N. obscura. Although several co-occurring populations within a shared climatic refugium demonstrated concordant demographic histories, idiosyncratic population size changes were found at the range edges of the more spatially restricted species. Discordant responses between species were associated with low standing genetic variation in peripheral populations. This might have hindered adaptive potential, as documented in recent demographic declines and population extinctions for the two species. CONCLUSION: Our results highlight both the role of spatial scale in the degree of concordance in species responses to climate change, and the importance of standing genetic variation in facilitating range shifts. Even when ecological traits are similar between species, long-term genetic diversity and historical population demography may lead to discordant responses to ongoing and future climate change.


Assuntos
Variação Genética , Percas , Animais , Mudança Climática , Demografia , Variação Genética/genética , Percas/genética , Filogenia
8.
Sci Rep ; 12(1): 4229, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273308

RESUMO

Non-enterica subspecies of Salmonella enterica are rarely associated with human infections. Paradoxically, food safety legislations consider the entire genus Salmonella as pathogenic to humans. Globally, large amounts of seafoods are rejected and wasted due to findings of Salmonella. To inform better food safety decisions, we investigated the pathogenicity of Salmonella Salamae 42:r- and Salmonella Waycross isolated from Nile perch from Lake Victoria. Genome-wide analysis revealed absence of significant virulence determinants including on key Salmonella pathogenicity islands in both serovars. In epithelial cells, S. Salamae showed a weak invasion ability that was lower than the invH mutant of S. Typhimiurium used as negative control. Similarly, S. Salamae could not replicate inside macrophages. Moreover, intracellular replication in S. Waycross strains was significantly lower compared to the wild type S. Typhimurium. Our findings suggest a low pathogenicity of S. Salamae reinforcing the existing literature that non-enterica subspecies are avirulent. We propose that food legislations and actions taken on findings of Salmonella are revisited to avoid wasting valuable sea- and other foods.


Assuntos
Percas , Salmonella enterica , Animais , Proteínas de Bactérias , Humanos , Lagos , Salmonella/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-35270455

RESUMO

The aim of this study was to assess the risk to consumers associated with the intake of toxic metals and other trace elements in diets that include the female gonads, testicles, and muscles of four popular freshwater fish species in Poland-common bream (Abramis brama L.), European perch (Perca fluviatilis L.), common roach (Rutilus rutilus L.), and northern pike (Esox Lucius L.). The following methods were used to determine the elements: GF-AAS (Pb, Cd); CV-AAS (Hg); ICP-AES (Zn, Fe, Mn, Cu, Ni, Li, Cr, Al). The concentration of toxic elements (Hg, Cd, Pb) in the female gonads and testicles ranged from 0.004 ± 0.006 mg/kg (Cd) to 0.028 ± 0.018 mg/kg (Pb). Of the other elements, the lowest content was noted for Cr (0.122 ± 0.182 mg/kg) and the highest for Al (46.98 ± 31.89 mg/kg). The study confirmed that female gonads and testicles are a valuable source of essential trace elements (Zn, Fe). Considering the content of toxic elements, the raw material of female gonads and testicles posed no health risks (THQ < 1).


Assuntos
Cyprinidae , Mercúrio , Metais Pesados , Percas , Oligoelementos , Poluentes Químicos da Água , Animais , Cádmio , Monitoramento Ambiental/métodos , Feminino , Chumbo , Masculino , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Testículo , Oligoelementos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-35162178

RESUMO

Silver perch (Bidyanus bidyanus) has many nutrition and health benefits, being a rich source of macro and micronutrients, phospholipids, polyunsaturated fatty acids, and a variety of essential minerals while having a high protein content. In addition to direct consumption, it is often made into a soup as an important nutritional supplement for strengthening the body and delaying fatigue. By extracting the essence, its quality can be controlled, and it is convenient to supplement. This study aimed to evaluate the effect of supplementation with Santé premium silver perch essence (SPSPE) on improving exercise performance and anti-fatigue. Fifty male institute of cancer research (ICR) mice were divided into five groups (n = 10/group): (1) vehicle (vehicle control or water only), (2) isocaloric (0.93 g casein/kg/mice/day), (3) SPSPE-1X (0.99 g/kg/mice/day), (4) SPSPE-2X (1.98 g/kg/mice/day), and (5) SPSPE-5X (4.95 g/kg/mice/day). A sample or an equal volume of liquid was fed orally for four consecutive weeks. Grip strength and swimming exhaustion tests were used as exercise performance assessments. After 10 and 90 min of unloaded swimming, biochemical parameters of fatigue were evaluated. We found that supplementation with SPSPE for four consecutive weeks could significantly improve mice's grip strength, exercise endurance performance, and glycogen content (p < 0.05), and significantly reduced post-exercise fatigue biochemical parameters, such as lactate, blood ammonia (NH3), blood urea nitrogen (BUN) concentration, and muscle damage index creatine kinase (CK) activity (p < 0.05). In summary, supplementation with SPSPE for 4 weeks could effectively improve exercise performance, reduce sports fatigue, and accelerate fatigue recovery. In addition, it did not cause any physiological or histopathological damage.


Assuntos
Percas , Condicionamento Físico Animal , Animais , Suplementos Nutricionais , Fadiga/tratamento farmacológico , Fadiga/prevenção & controle , Ácido Láctico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/metabolismo , Natação
11.
Anim Reprod Sci ; 238: 106936, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121413

RESUMO

Seasonal reproduction of domesticated pikeperch has been the most critical spawning batch in several European countries. The present study aimed to monitor oocyte growth between mid-November and seasonal spawning to evaluate if oocyte growth trends may predict egg quality. Nineteen sexually mature females were monitored for oocyte sizes every two months. In mid-March, fish were transported to the indoor facility and artificially reproduced. Sixteen females ovulated and egg quality parameters were assessed and further related to oocyte sizes measured in November, January, and March, as well as to size increments between samplings. Based on the oocyte diameters, fish were assigned to two size groups, and the egg quality was compared. Oocyte growth was greater between the first two samplings compared to the consecutive period (150.1 ± 16.5 µm vs 24.7 ± 20.4 µm). Diameters assessed in November and March positively correlated with oil globule fragmentation, while diameters assessed in November and January positively correlated with larval malformation. Although in January larger oocytes showed better embryo survival than smaller ones (60.6 ± 9.5% vs 37.8 ± 23.2%,) they were characterized with greater percent of malformed larvae (25.0 ± 22.0% vs 5.4 ± 3.9%). It appears that fish with bigger oocytes in pre-season have an affinity toward increased embryo survival, however, they seem to have an issue with oil globule fragmentation and larvae malformation in case of seasonal spawning. Therefore, the selection of breeders for either pre-seasonal or seasonal reproduction batch according to the November oocyte size is recommended.


Assuntos
Oócitos , Percas , Animais , Feminino , Oogênese , Reprodução , Estações do Ano
12.
J Immunol ; 208(5): 1099-1114, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101892

RESUMO

Circular RNA (circRNA) is produced by splicing head to tail and is widely distributed in multicellular organisms, and circRNA reportedly can participate in various cell biological processes. In this study, we discovered a novel exon-intron circRNA derived from probable E3 ubiquitin-protein ligase RNF217 (RNF217) gene, namely, circRNF217, which was related to the antibacterial responses in teleost fish. Results indicated that circRNF217 played essential roles in host antibacterial immunity and inhibited the Vibrio anguillarum invasion into cells. Our study also found a microRNA miR-130-3p, which could inhibit antibacterial immune response and promote V. anguillarum invasion into cells by targeting NOD1. Moreover, we also found that the antibacterial effect inhibited by miR-130-3p could be reversed with circRNF217. In mechanism, our data revealed that circRNF217 was a competing endogenous RNA of NOD1 by sponging miR-130-3p, leading to activation of the NF-κB pathway and then enhancing the innate antibacterial responses. In addition, we also found that circRNF217 can promote the antiviral response caused by Siniperca chuatsi rhabdovirus through targeting NOD1. Our study provides new insights for understanding the impact of circRNA on host-pathogen interactions and formulating fish disease prevention to resist the severely harmful V. anguillarum infection.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata/imunologia , MicroRNAs/genética , Percas/imunologia , RNA Circular/genética , Vibrio/imunologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Percas/virologia , Rhabdoviridae/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
J Immunol ; 208(5): 1076-1084, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181639

RESUMO

Upon virus invasion of the host, APCs process Ags to short peptides for presentation by MHC class II (MHC-II). The recognition of virus-derived peptides in the context of MHC-II by CD4+ T cells initiates the adaptive immune response for virus clearance. As a survival instinct, viruses have evolved mechanisms to evade Ag processing and presentation. In this study, we discovered that IFN-γ induced endogenous MHC-II expression by a sea perch brain cell line through the STAT1/IFN regulatory factor 1 (IRF1)/CIITA signaling pathway. Furthermore, viral hemorrhagic septicemia virus infection significantly inhibited the IFN-γ-induced expression of IRF1, CIITA, MHC-II-α, and MHC-II-ß genes. By contrast, although STAT1 transcript was upregulated, paradoxically, the STAT1 protein level was attenuated. Moreover, overexpression analysis revealed that viral hemorrhagic septicemia virus N protein blocked the IFN-γ-induced expression of IRF1, CIITA, MHC-II-α, and MHC-II-ß genes, but not the STAT1 gene. We also found out that N protein interacted with STAT1 and enhanced the overall ubiquitination level of proteins, including STAT1 in Lateolabrax japonicus brain cells. Enhanced ubiquitination of STAT1 through K48-linked ubiquitination led to its degradation through the ubiquitin-proteasome pathway, thereby inhibiting the biological function of STAT1. Our study suggests that aquatic viruses target Ag presentation in lower vertebrates for immune evasion as do mammalian viruses.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Evasão da Resposta Imune/imunologia , Novirhabdovirus/imunologia , Nucleoproteínas/metabolismo , Percas/imunologia , Fator de Transcrição STAT1/metabolismo , Imunidade Adaptativa/imunologia , Animais , Apresentação do Antígeno/imunologia , Encéfalo/citologia , Encéfalo/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/biossíntese , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/imunologia , Novirhabdovirus/metabolismo , Proteínas Nucleares/metabolismo , Percas/virologia , Transdução de Sinais/imunologia , Transativadores/metabolismo , Transcrição Genética/genética , Ubiquitinação/fisiologia
14.
Mol Ecol ; 31(8): 2367-2383, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35202502

RESUMO

Extreme environments are inhospitable to the majority of species, but some organisms are able to survive in such hostile conditions due to evolutionary adaptations. For example, modern bony fishes have colonized various aquatic environments, including perpetually dark, hypoxic, hypersaline and toxic habitats. Eurasian perch (Perca fluviatilis) is among the few fish species of northern latitudes that is able to live in very acidic humic lakes. Such lakes represent almost "nocturnal" environments; they contain high levels of dissolved organic matter, which in addition to creating a challenging visual environment, also affects a large number of other habitat parameters and biotic interactions. To reveal the genomic targets of humic-associated selection, we performed whole-genome sequencing of perch originating from 16 humic and 16 clear-water lakes in northern Europe. We identified over 800,000 single nucleotide polymorphisms, of which >10,000 were identified as potential candidates under selection (associated with >3000 genes) using multiple outlier approaches. Our findings suggest that adaptation to the humic environment may involve hundreds of regions scattered across the genome. Putative signals of adaptation were detected in genes and gene families with diverse functions, including organism development and ion transportation. The observed excess of variants under selection in regulatory regions highlights the importance of adaptive evolution via regulatory elements, rather than via protein sequence modification. Our study demonstrates the power of whole-genome analysis to illuminate the multifaceted nature of humic adaptation and provides the foundation for further investigation of causal mutations underlying phenotypic traits of ecological and evolutionary importance.


Assuntos
Percas , Animais , Ecossistema , Genoma/genética , Substâncias Húmicas , Lagos , Percas/genética
15.
Chemosphere ; 296: 134035, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183584

RESUMO

The recent democratization of high-throughput molecular phenotyping allows the rapid expansion of promising untargeted multi-dimensional approaches (e.g. epigenomics, transcriptomics, proteomics, and/or metabolomics). Indeed, these emerging omics tools, processed for ecologically relevant species, may present innovative perspectives for environmental assessments, that could provide early warning of eco(toxico)logical impairments. In a previous pilot study (Sotton et al., Chemosphere 2019), we explore by 1H NMR the bio-indicative potential of metabolomics analyses on the liver of 2 sentinel fish species (Perca fluviatilis and Lepomis gibbosus) collected in 8 water bodies of the peri-urban Paris' area (France). In the present study, we further investigate on the same samples the high potential of high-throughput UHPLC-HRMS/MS analyses. We show that the LC-MS metabolome investigation allows a clear separation of individuals according to the species, but also according to their respective sampling lakes. Interestingly, similar variations of Perca and Lepomis metabolomes occur locally indicating that site-specific environmental constraints drive the metabolome variations which seem to be influenced by the production of noxious molecules by cyanobacterial blooms in certain lakes. Thus, the development of such reliable environmental metabolomics approaches appears to constitute an innovative bio-indicative tool for the assessment of ecological stress, such as toxigenic cyanobacterial blooms, and aim at being further follow up.


Assuntos
Cianobactérias , Percas , Animais , Cianobactérias/genética , Cianobactérias/metabolismo , França , Lagos , Metaboloma , Metabolômica/métodos , Paris , Projetos Piloto
16.
Environ Sci Technol ; 56(6): 3514-3523, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35201763

RESUMO

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.


Assuntos
Compostos de Metilmercúrio , Percas , Animais , Larva , Cadeias de Markov , Compostos de Metilmercúrio/toxicidade , Percas/fisiologia , Natação
17.
Fish Physiol Biochem ; 48(1): 161-171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039993

RESUMO

A study was conducted to evaluate the gonad differentiation of juvenile yellow perch (YP, Perca flavencens) and determine the latest labile period related to hormone treatment. Juvenile fish were subjected to two dietary concentrations of methyltestosterone (MT; 20 and 50 mg/kg feed) for 60 days in three (3) age groups of 38-, 46-, and 67-days post-hatching (dph), where control group were fed with standard commercial feed. Following a 10-month on-growing period, sex phenotypes were determined by gross and histological gonad morphology. Results showed the juvenile YP responded to the exogenous hormone when it was applied at 38 dph for both 20 and 50 mg/kg feed resulting in 100% males. At 46 dph, only 50 mg/kg feed resulted in 100% males. Both MT-treated at 38 and 46 dph significantly differed (P < 0.01) from the expected normal population of male:female (1:1). MT-treated at 67 dph resulted in 37% and 25% intersex fish for both 20 and 50 mg/kg feed dosage groups, respectively. MT-treated at 38 and 46 dph promoted growth and showed significantly heavier mean body weight (P < 0.05) compared to control. The gonadosomatic index (GSI) of MT-treated at 38 and 46 dph was significantly lower than that in control. This study provides the first evidence that juvenile YP can be successfully masculinized when the treatment is initiated at the age of up to 46 dph. The result is important for sex control in aquaculture.


Assuntos
Metiltestosterona , Percas , Diferenciação Sexual , Animais , Feminino , Gônadas , Masculino , Metiltestosterona/farmacologia , Percas/crescimento & desenvolvimento
18.
Sci Total Environ ; 819: 153073, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038521

RESUMO

Advancing wet peatland 'paludiculture' innovation present enormous potential to sustain carbon-cycles, reduce greenhouse-gas (GHG) gas emissions and to transition communities to low-carbon economies; however, there is limited scientific-evidence to support and enable direct commercial viability of eco-friendly products and services. This timely study reports on a novel, paludiculture-based, integrated-multi-trophic-aquaculture (IMTA) system for sustainable food production in the Irish midlands. This freshwater IMTA process relies on a naturally occurring ecosystem of microalgae, bacteria and duckweed in ponds for managing waste and water quality that is powered by wind turbines; however, as it is recirculating, it does not rely upon end-of-pipe solutions and does not discharge effluent to receiving waters. This constitutes the first report on the effects of extreme weather events on the performance of this IMTA system that produces European perch (Perca fluviatilis), rainbow trout (Oncorhynchus mykiis) during Spring 2020. Sampling coincided with lockdown periods of worker mobility restriction due to COVID-19 pandemic. Observations revealed that the frequency and intensity of storms generated high levels of rainfall that disrupted the algal and bacterial ecosystem in the IMTA leading to the emergence and predominance of toxic cyanobacteria that caused fish mortality. There is a pressing need for international agreement on standardized set of environmental indicators to advance paludiculture innovation that addresses climate-change and sustainability. This study describes important technical parameters for advancing freshwater aquaculture (IMTA), which can be future refined using real-time monitoring-tools at farm level to inform management decision-making based on evaluating environmental indicators and weather data. The relevance of these findings to informing global sustaining and disruptive research and innovation in paludiculture is presented, along with alignment with UN Sustainable Development goals. This study also addresses global challenges and opportunities highlighting a commensurate need for international agreement on resilient indicators encompassing linked ecological, societal, cultural, economic and cultural domains.


Assuntos
Aquicultura , Clima , Percas , Animais , COVID-19 , Controle de Doenças Transmissíveis , Meio Ambiente , Humanos , Pandemias , Áreas Alagadas
19.
Microbiol Spectr ; 10(1): e0231021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019690

RESUMO

Under oxidative stress, viruses prefer glycolysis as an ATP source, and glutamine is required as an anaplerotic substrate to replenish the TCA cycle. Infectious spleen and kidney necrosis virus (ISKNV) induces reductive glutamine metabolism in the host cells. Here we report that ISKNV infection the increased NAD+/NADH ratio and the gene expression of glutaminase 1 (GLS1), glutamate dehydrogenase (GDH), and isocitrate dehydrogenase (IDH2) resulted in the phosphorylation and activation of mammalian target of rapamycin (mTOR) in CPB cells. Inhibition of mTOR signaling attenuates ISKNV-induced the upregulation of GLS1, GDH, and IDH2 genes expression, and exhibits significant antiviral activity. Moreover, the expression of silent information regulation 2 homolog 3 (SIRT3) in mRNA level is increased to enhance the reductive glutamine metabolism in ISKNV-infected cells. And those were verified by the expression levels of metabolic genes and the activities of metabolic enzymes in SIRT3-overexpressed or SIRT3-knocked down cells. Remarkably, activation of mTOR signaling upregulates the expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, leading to increased expression of SIRT3 and metabolic genes. These results indicate that mTOR signaling manipulates reductive glutamine metabolism in ISKNV-infected cells through PGC-1α-dependent regulation of SIRT3. Our findings reveal new insights on ISKNV-host interactions and will contribute new cellular targets to antiviral therapy. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV) is the causative agent of farmed fish disease that has caused huge economic losses in fresh and marine fish aquaculture. The redox state of cells is shaped by virus into a favorable microenvironment for virus replication and proliferation. Our previous study demonstrated that ISKNV replication induced glutamine metabolism reprogramming, and it is necessary for the ISKNV multiplication. In this study, the mechanistic link between the mTOR/PGC-1α/SIRT3 pathway and reductive glutamine metabolism in the ISKNV-infected cells was provided, which will contribute new insights into the pathogenesis of ISKNV and antiviral treatment strategies.


Assuntos
Doenças dos Peixes/metabolismo , Proteínas de Peixes/metabolismo , Glutamina/metabolismo , Iridoviridae/fisiologia , Estresse Oxidativo , PPAR gama/metabolismo , Sirtuína 3/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Doenças dos Peixes/genética , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Glutaminase/genética , Glutaminase/metabolismo , Iridoviridae/genética , NAD/metabolismo , PPAR gama/genética , Percas/genética , Percas/metabolismo , Percas/virologia , Fosforilação , Transdução de Sinais , Sirtuína 3/genética , Serina-Treonina Quinases TOR/genética , Replicação Viral
20.
Fish Shellfish Immunol ; 121: 265-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026410

RESUMO

The aim of this study is to explore the effects of dietary bile acids (BAs) supplementation on lipid metabolism and gut health of Chinese perch (Siniperca chuatsi), and its possible mechanisms. Two isonitrogenous and isolipidic diets were formulated to supplement different levels of BAs (0 and 900 mg BAs kg-1 diet, respectively). All fish (Initial mean body weight: 171.29 ± 0.77g) were randomly divided into 2 groups (triplicate, 54 fish/group) and were fed with different experimental diets for 56 days, respectively. Dietary exogenous BAs supplementation at the concentration of 900 mg kg-1 significantly increased weight gain and survival rate, and decreased feed conversion ratio. BAs could inhibit lipid synthesis and promote lipid oxidation to reduce lipid deposition by activating farnesoid X receptor (FXR). Dietary BAs supplementation increased the abundance of Lactobacilli in Firmicutes, and the increase of Lactobacillus caused the increase of lactic acid level and the decrease of pH, which might be the reason for the gut villus length and gut wall high in this study. Dietary BAs supplementation increased the levels of catalase and superoxide dismutase and decreased the level of malondialdehyde in the gut and plasma, which might be contributed to the regulating the antioxidant stress phenotype of gut microbiota by the increased abundance of Firmicutes. Then it caused the increase of the globulin level in the plasma, meaning the enhancement of immune state. The increased immunity might also be thought to be responsible for increased survival rate. These results suggest dietary BAs reduce liver lipid deposition via activating FXR, and improve gut health by regulating gut microbiota in Chinese perch.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Percas , Receptores Citoplasmáticos e Nucleares , Animais , Ácidos e Sais Biliares/administração & dosagem , China , Dieta/veterinária , Fígado/metabolismo , Percas/microbiologia , Ganho de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...