RESUMO
The Arnold Cat Map (ACM) is a popular chaotic map used in image encryption. Chaotic maps are known for their sensitivity to initial conditions and their ability to permute, or rearrange, pixels. However, ACM is periodic, and its period is relatively short. This periodicity decreases the effective key-space and security of a cryptosystem using ACM. Further, ACM is typically only able to be performed on square images. To solve the low periodicity and typical limitation to square images, this paper proposes performing ACM on overlapping square partitions which cover the entirety of an image. The presence of overlap results in a greatly increased image period. The resulting system will be referred to as overlapping ACM or OACM. Several papers have already discussed systems involving overlapping ACM. However, they did not discuss the implementation or periodicity of such a system in detail. This paper does cover the implementation and periodicity analysis of OACM and proposes a simple symmetric encryption system which uses OACM. The proposed encryption system is not as sophisticated or secure as other modern encryption schemes, since it is mainly intended as an initial test of OACM's utility. Histogram and sensitivity analyses did however indicate a level of security against various cryptographic attacks, and OACM performed reasonably in both the permutation and diffusion stages of the cryptosystem.
Assuntos
Algoritmos , Segurança Computacional , Processamento de Imagem Assistida por Computador/métodos , PeriodicidadeRESUMO
Rhythmic entrainment is a fundamental aspect of musical behavior, but the skills required to accurately synchronize movement to the beat seem to develop over many years. Motion capture studies of corporeal synchronization have shown immature abilities to lock in to the beat in children before age 5, and reliable synchronization ability in adults without musical training; yet there is a lack of data on full-body synchronization skills between early childhood and adulthood. To document typical rhythmic synchronization during middle childhood, we used a wireless motion capture device to measure period- and phase-locking of full body movement to rhythm and metronome stimuli in 6 to 11 year-old children in comparison with adult data. Results show a gradual improvement with age; however children's performance did not reach adult levels by age 12, suggesting that these skills continue to develop during adolescence. Our results suggest that in the absence of specific music training, full-body rhythmic entrainment skills improve gradually during middle childhood, and provide metrics for examining the continued maturation of these skills during adolescence.
Assuntos
Música , Humanos , Criança , Masculino , Feminino , Desenvolvimento Infantil/fisiologia , Periodicidade , Adulto , Movimento/fisiologia , AdolescenteRESUMO
The phase of signals representing cyclic behavioural patterns provides valuable information for understanding the mechanisms driving the observed behaviours. Methods usually adopted to estimate the phase, which are based on projecting the signal onto the complex plane, have strict requirements on its frequency content, which limits their application. To overcome these limitations, input signals can be processed using band-pass filters or decomposition techniques. In this paper, we briefly review these approaches and propose a new one. Our approach is based on the principles of Empirical Mode Decomposition (EMD), but unlike EMD, it does not aim to decompose the input signal. This avoids the many problems that can occur when extracting a signal's components one by one. The proposed approach estimates the phase of experimental signals that have one main oscillatory component modulated by slower activity and perturbed by weak, sparse, or random activity at faster time scales. We illustrate how our approach works by estimating the phase dynamics of synthetic signals and real-world signals representing knee angles during flexion/extension activity, heel height during gait, and the activity of different organs involved in speech production.
Assuntos
Marcha , Humanos , Marcha/fisiologia , Fenômenos Biomecânicos , Volição , Periodicidade , Fala , Processamento de Sinais Assistido por Computador , Articulação do Joelho/fisiologia , AlgoritmosRESUMO
Objective. Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ('RP', the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established 'shuffling' procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection.Approach. In a novel 'residuals' method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the precedingnrmilliseconds. Finally, we compute the PSD of the model's residuals.Main results. We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey-in which alpha-beta oscillations (8-30 Hz) were anticipated-the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection.Significance. These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Assuntos
Potenciais de Ação , Modelos Neurológicos , Animais , Potenciais de Ação/fisiologia , Macaca mulatta , Neurônios/fisiologia , Periodicidade , MasculinoRESUMO
Synchronization is one of the most striking instances of collective behavior, occurring in many natural phenomena. For example, in some ant species, ants are inactive within the nest most of the time, but their bursts of activity are highly synchronized and involve the entire nest population. Here we revisit a simulation model that generates this synchronized rhythmic activity through autocatalytic behavior, i.e., active ants can activate inactive ants, followed by a period of rest. We derive a set of delay differential equations that provide an accurate description of the simulations for large ant colonies. Analysis of the fixed-point solutions, complemented by numerical integration of the equations, indicates the existence of stable limit-cycle solutions when the rest period is greater than a threshold and the event of spontaneous activation of inactive ants is very unlikely, so that most of the arousal of ants is done by active ants. Furthermore, we argue that the persistent oscillations observed in the simulations for colonies of finite size are due to resonant amplification of demographic noise.
Assuntos
Formigas , Modelos Biológicos , Formigas/fisiologia , Animais , Comportamento Animal/fisiologia , Simulação por Computador , Periodicidade , Comportamento SocialRESUMO
Rhythmic brain activity is critical to many brain functions and is sensitive to neuromodulation, but so far very few studies have investigated this activity on the cellular level in vitro in human brain tissue samples. This study reveals and characterizes a novel rhythmic network activity in the human neocortex. Using intracellular patch-clamp recordings of human cortical neurons, we identify large rhythmic depolarizations (LRDs) driven by glutamate release but not by GABA. These LRDs are intricate events made up of multiple depolarizing phases, occurring at ~0.3 Hz, have large amplitudes and long decay times. Unlike human tissue, rat neocortex layers 2/3 exhibit no such activity under identical conditions. LRDs are mainly observed in a subset of L2/3 interneurons that receive substantial excitatory inputs and are likely large basket cells based on their morphology. LRDs are highly sensitive to norepinephrine (NE) and acetylcholine (ACh), two neuromodulators that affect network dynamics. NE increases LRD frequency through ß-adrenergic receptor activity while ACh decreases it via M4 muscarinic receptor activation. Multi-electrode array recordings show that NE enhances and synchronizes oscillatory network activity, whereas ACh causes desynchronization. Thus, NE and ACh distinctly modulate LRDs, exerting specific control over human neocortical activity.
Assuntos
Acetilcolina , Neocórtex , Norepinefrina , Humanos , Acetilcolina/farmacologia , Norepinefrina/farmacologia , Neocórtex/fisiologia , Neocórtex/metabolismo , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Masculino , Feminino , Animais , Pessoa de Meia-Idade , Ratos , Idoso , Periodicidade , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Interneurônios/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , AdultoRESUMO
Neurological or neurodevelopmental disorders, such as Parkinson's disease and dyslexia, can impair rhythm perception and production. Deficits in rhythm are associated with poor performance in language, attention, and working memory tasks. Research indicates that retraining rhythmic skills may enhance these related cognitive functions. In this context, using tactile aids for rhythm training emerges as a promising approach for children who do not fully benefit from conventional audiovisual rhythm games. This is because tactile aids can compensate for sensory deficiencies and facilitate more extensive brain activation. In our study, we employed functional near-infrared spectroscopy (fNIRS) to assess the impact of tactile aids on brain cortical activation during rhythmic training in children aged 6-12 years (N = 25). We also measured the participants' spontaneous motor rhythms. The findings indicate that tactile stimulation significantly improves performance in synchronized rhythm tasks compared to audiovisual stimulation alone, particularly enhancing activation in brain regions associated with speech training such as the prefrontal cortex, motor cortex, and temporal areas. These results not only support the application of rhythm training in speech rehabilitation, but also highlight the potential of tactile aids as an effective multisensory learning strategy.
Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Jogos de Vídeo , Humanos , Criança , Masculino , Feminino , Tato/fisiologia , Desempenho Psicomotor/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Auxiliares Sensoriais , PeriodicidadeRESUMO
We used a step-wheel system to examine the activity of striatal projection neurons as mice practiced stepping on complexly arranged foothold pegs in this Ferris-wheel-like device to receive reward. Sets of dorsolateral striatal projection neurons were sensitive to specific parameters of repetitive motor coordination during the runs. They responded to combinations of the parameters of continuous movements (interval, phase, and repetition), forming "chunking responses"-some for combinations of these parameters across multiple body parts. Recordings in sensorimotor cortical areas exhibited notably fewer such responses but were documented for smaller neuron sets whose heterogeneity was significant. Striatal movement encoding via chunking responsivity could provide insight into neural strategies governing effective motor control by the striatum. It is possible that the striking need for external rhythmic cuing to allow movement sequences by Parkinson's patients could, at least in part, reflect dysfunction in such striatal coding.
Assuntos
Corpo Estriado , Movimento , Animais , Corpo Estriado/fisiologia , Camundongos , Movimento/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Periodicidade , Atividade Motora/fisiologiaRESUMO
Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, â¼0.1â Hz]; pyloric [filtering food, â¼1â Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.
Assuntos
Braquiúros , Gânglios dos Invertebrados , Neurônios , Neuropeptídeos , Animais , Braquiúros/fisiologia , Neuropeptídeos/farmacologia , Neuropeptídeos/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Gânglios dos Invertebrados/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos dos fármacos , Masculino , Comportamento Alimentar/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Piloro/fisiologia , Piloro/efeitos dos fármacos , PeriodicidadeRESUMO
Observers can selectively deploy attention to regions of space, moments in time, specific visual features, individual objects, and even specific high-level categories-for example, when keeping an eye out for dogs while jogging. Here, we exploited visual periodicity to examine how category-based attention differentially modulates selective neural processing of face and non-face categories. We combined electroencephalography with a novel frequency-tagging paradigm capable of capturing selective neural responses for multiple visual categories contained within the same rapid image stream (faces/birds in Exp 1; houses/birds in Exp 2). We found that the pattern of attentional enhancement and suppression for face-selective processing is unique compared to other object categories: Where attending to non-face objects strongly enhances their selective neural signals during a later stage of processing (300-500 ms), attentional enhancement of face-selective processing is both earlier and comparatively more modest. Moreover, only the selective neural response for faces appears to be actively suppressed by attending towards an alternate visual category. These results underscore the special status that faces hold within the human visual system, and highlight the utility of visual periodicity as a powerful tool for indexing selective neural processing of multiple visual categories contained within the same image sequence.
Assuntos
Atenção , Eletroencefalografia , Atenção/fisiologia , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Periodicidade , Reconhecimento Facial/fisiologia , Estimulação Luminosa/métodos , Reconhecimento Visual de Modelos/fisiologia , Encéfalo/fisiologia , Percepção Visual/fisiologiaRESUMO
In this chapter, we present recent findings from our group showing that elapsed time, interval timing, and rhythm maintenance might be achieved by the well-known ability of the brain to predict the future states of the world. The difference between predictions and actual sensory evidence is used to generate perceptual and behavioral adjustments that help subjects achieve desired behavioral goals. Concretely, we show that (1) accumulating prediction errors is a plausible strategy humans could use to determine whether a train of consecutive stimuli arrives at regular or irregular intervals. By analyzing the behavior of human and non-human primate subjects performing rhythm perception tasks, we demonstrate that (2) the ability to estimate elapsed time and internally maintain rhythms is shared across primates and humans. Neurophysiological recordings show that (3) the medial premotor cortex engages in rhythm entrainment and maintains oscillatory activity that reveals an internal metronome's spatial and temporal characteristics. Finally, we demonstrate that (4) the amplitude of gamma oscillations within this cortex increases proportionally to the total elapsed time. In conjunction with our most recent experiments, our results suggest that timing might be achieved by an internal simulation of the sensory stimuli and the motor commands that define the timing task that needs to be performed.
Assuntos
Percepção do Tempo , Humanos , Percepção do Tempo/fisiologia , Animais , Córtex Motor/fisiologia , PeriodicidadeRESUMO
Speech can be defined as the human ability to communicate through a sequence of vocal sounds. Consequently, speech requires an emitter (the speaker) capable of generating the acoustic signal and a receiver (the listener) able to successfully decode the sounds produced by the emitter (i.e., the acoustic signal). Time plays a central role at both ends of this interaction. On the one hand, speech production requires precise and rapid coordination, typically within the order of milliseconds, of the upper vocal tract articulators (i.e., tongue, jaw, lips, and velum), their composite movements, and the activation of the vocal folds. On the other hand, the generated acoustic signal unfolds in time, carrying information at different timescales. This information must be parsed and integrated by the receiver for the correct transmission of meaning. This chapter describes the temporal patterns that characterize the speech signal and reviews research that explores the neural mechanisms underlying the generation of these patterns and the role they play in speech comprehension.
Assuntos
Fala , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia , Acústica da Fala , PeriodicidadeRESUMO
Musical compositions are distinguished by their unique rhythmic patterns, determined by subtle differences in how regular beats are subdivided. Precise perception of these subdivisions is essential for discerning nuances in rhythmic patterns. While musical rhythm typically comprises sound elements with a variety of timbres or spectral cues, the impact of such spectral variations on the perception of rhythmic patterns remains unclear. Here, we show that consistency in spectral cues affects perceptual accuracy in discriminating subdivided rhythmic patterns. We conducted online experiments using rhythmic sound sequences consisting of band-passed noise bursts to measure discrimination accuracy. Participants were asked to discriminate between a swing-like rhythm sequence, characterized by a 2:1 interval ratio, and its more or less exaggerated version. This task was also performed under two additional rhythm conditions: inversed-swing rhythm (1:2 ratio) and regular subdivision (1:1 ratio). The center frequency of the band noises was either held constant or alternated between two values. Our results revealed a significant decrease in discrimination accuracy when the center frequency was alternated, irrespective of the rhythm ratio condition. This suggests that rhythm perception is shaped by temporal structure and affected by spectral properties.
Assuntos
Estimulação Acústica , Percepção Auditiva , Música , Humanos , Masculino , Feminino , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Periodicidade , Som , Discriminação Psicológica/fisiologiaRESUMO
Synchronization is widespread in animals, and studies have often emphasized how this seemingly complex phenomenon can emerge from very simple rules. However, the amount of flexibility and control that animals might have over synchronization properties, such as the strength of coupling, remains underexplored. Here, we studied how pairs of marmoset monkeys coordinated vigilance while feeding. By modeling them as coupled oscillators, we noted that (1) individual marmosets do not show perfect periodicity in vigilance behaviors, (2) nevertheless, marmoset pairs started to take turns being vigilant over time, a case of anti-phase synchrony, (3) marmosets could couple flexibly; the coupling strength varied with every new joint feeding bout, and (4) marmosets could control the coupling strength; dyads showed increased coupling if they began in a more desynchronized state. Such flexibility and control over synchronization require more than simple interaction rules. Minimally, animals must estimate the current degree of asynchrony and adjust their behavior accordingly. Moreover, the fact that each marmoset is inherently non-periodic adds to the cognitive demand. Overall, our study provides a mathematical framework to investigate the cognitive demands involved in coordinating behaviors in animals, regardless of whether individual behaviors are rhythmic or not.
Assuntos
Callithrix , Animais , Callithrix/fisiologia , Nível de Alerta/fisiologia , Comportamento Animal/fisiologia , Masculino , Comportamento Alimentar/fisiologia , Biologia Computacional , Feminino , Modelos Biológicos , PeriodicidadeRESUMO
While rhythm can facilitate and enhance many aspects of behavior, its evolutionary trajectory in vocal communication systems remains enigmatic. We can trace evolutionary processes by investigating rhythmic abilities in different species, but research to date has largely focused on songbirds and primates. We present evidence that cetaceans-whales, dolphins, and porpoises-are a missing piece of the puzzle for understanding why rhythm evolved in vocal communication systems. Cetaceans not only produce rhythmic vocalizations but also exhibit behaviors known or thought to play a role in the evolution of different features of rhythm. These behaviors include vocal learning abilities, advanced breathing control, sexually selected vocal displays, prolonged mother-infant bonds, and behavioral synchronization. The untapped comparative potential of cetaceans is further enhanced by high interspecific diversity, which generates natural ranges of vocal and social complexity for investigating various evolutionary hypotheses. We show that rhythm (particularly isochronous rhythm, when sounds are equally spaced in time) is prevalent in cetacean vocalizations but is used in different contexts by baleen and toothed whales. We also highlight key questions and research areas that will enhance understanding of vocal rhythms across taxa. By coupling an infraorder-level taxonomic assessment of vocal rhythm production with comparisons to other species, we illustrate how broadly comparative research can contribute to a more nuanced understanding of the prevalence, evolution, and possible functions of rhythm in animal communication.
Assuntos
Cetáceos , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Cetáceos/fisiologia , Evolução Biológica , PeriodicidadeRESUMO
Inhibitory neurons embedded within mammalian neural circuits shape breathing, walking, and other rhythmic motor behaviors. At the core of the neural circuit controlling breathing is the preBötzinger Complex (preBötC), where GABAergic (GAD1/2+) and glycinergic (GlyT2+) neurons are functionally and anatomically intercalated among glutamatergic Dbx1-derived (Dbx1+) neurons that generate rhythmic inspiratory drive. The roles of these preBötC inhibitory neurons in breathing remain unclear. We first characterized the spatial distribution of molecularly defined preBötC inhibitory subpopulations in male and female neonatal double reporter mice expressing either tdTomato or EGFP in GlyT2+, GAD1+, or GAD2+ neurons. We found that the majority of preBötC inhibitory neurons expressed both GlyT2 and GAD2 while a much smaller subpopulation also expressed GAD1. To determine the functional role of these subpopulations, we used holographic photostimulation, a patterned illumination technique, in rhythmically active medullary slices from neonatal Dbx1tdTomato;GlyT2EGFP and Dbx1tdTomato;GAD1EGFP double reporter mice of either sex. Stimulation of 4 or 8 preBötC GlyT2+ neurons during endogenous rhythm prolonged the interburst interval in a phase-dependent manner and increased the latency to burst initiation when bursts were evoked by stimulation of Dbx1+ neurons. In contrast, stimulation of 4 or 8 preBötC GAD1+ neurons did not affect interburst interval or latency to burst initiation. Instead, photoactivation of GAD1+ neurons during the inspiratory burst prolonged endogenous and evoked burst duration and decreased evoked burst amplitude. We conclude that GlyT2+/GAD2+ neurons modulate breathing rhythm by delaying burst initiation while a smaller GAD1+ subpopulation shapes inspiratory patterning by altering burst duration and amplitude.
Assuntos
Inalação , Animais , Camundongos , Feminino , Masculino , Inalação/fisiologia , Inibição Neural/fisiologia , Bulbo/fisiologia , Bulbo/citologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Camundongos Transgênicos , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Centro Respiratório/fisiologia , Centro Respiratório/citologia , Neurônios/fisiologia , Periodicidade , Animais Recém-NascidosRESUMO
BACKGROUND: Dengue fever stands as one of the most extensively disseminated mosquito-borne infectious diseases worldwide. While numerous studies have investigated its influencing factors, a gap remains in long-term analysis, impeding the identification of temporal patterns, periodicity in transmission, and the development of effective prevention and control strategies. Thus, we aim to analyze the periodicity of dengue fever incidence and explore the association between various climate factors and the disease over an extended time series. METHODS: By utilizing monthly dengue fever cases and climate data spanning four decades (1978-2018) in Guangdong province, China, we employed wavelet analysis to detect dengue fever periodicity and analyze the time-lag relationship with climate factors. Additionally, Geodetector q statistic was employed to quantify the explanatory power of each climate factor and assess interaction effects. RESULTS: Our findings revealed a prolonged transmission period of dengue fever over the 40-year period, transitioning from August to November in the 1970s to nearly year-round in the 2010s. Moreover, we observed lags of 1.5, 3.5, and 3 months between dengue fever and temperature, relative humidity, and precipitation, respectively. The explanatory power of precipitation, temperature, relative humidity, and the Oceanic Niño Index (ONI) on dengue fever was determined to be 18.19%, 12.04%, 11.37%, and 5.17%, respectively. Dengue fever exhibited susceptibility to various climate factors, with notable nonlinear enhancement arising from the interaction of any two variables. Notably, the interaction between precipitation and humidity yielded the most significant effect, accounting for an explanatory power of 75.32%. CONCLUSIONS: Consequently, future prevention and control strategies for dengue fever should take into account these climate changes and formulate corresponding measures accordingly. In regions experiencing the onset of high temperatures, humidity, and precipitation, it is imperative to initiate mosquito prevention and control measures within a specific window period of 1.5 months.
Assuntos
Clima , Dengue , Dengue/epidemiologia , Humanos , China/epidemiologia , Incidência , Fatores de Tempo , Análise de Ondaletas , Temperatura , PeriodicidadeRESUMO
Jacoby and colleagues used an iterative rhythm reproduction paradigm with listeners from around the world to provide evidence for both rhythm universals (simple-integer ratios 1:1 and 2:1) and cross-cultural variation for specific rhythmic categories that can be linked to local music traditions in different regions of the world.
Assuntos
Música , Periodicidade , Humanos , Cultura , Comparação Transcultural , Percepção Auditiva/fisiologiaRESUMO
Rhythmic movement is the fundamental motion dynamics characterized by repetitive patterns. Precisely defining onsets in rhythmic movement is essential for a comprehensive analysis of motor functions. Our study introduces an automated method for detecting rat's forelimb foot-strike onsets using deep learning tools. This method demonstrates high accuracy of onset detection by combining two techniques using joint coordinates and behavioral confidence scale. The analysis extends to neural oscillatory responses in the rat's somatosensory cortex, validating the effectiveness of our combined approach. Our technique streamlines experimentation, demanding only a camera and GPU-accelerated computer. This approach is applicable across various contexts and promotes our understanding of brain functions during rhythmic movements.
Assuntos
Pé , Membro Anterior , Movimento , Córtex Somatossensorial , Animais , Membro Anterior/fisiologia , Movimento/fisiologia , Ratos , Córtex Somatossensorial/fisiologia , Pé/fisiologia , Masculino , Periodicidade , Aprendizado ProfundoRESUMO
Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.