Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 959
Filtrar
1.
Gen Comp Endocrinol ; 333: 114186, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521516

RESUMO

Exposure to long photoperiods stimulates, whereas exposure to short photoperiods transiently inhibit testicular function in Siberian hamsters via well-described neuroendocrine mechanisms. However, less is known about the intra-testicular regulation of these photoperiod-mediated changes. N6-methyladenosine (m6A) is one of the most common mRNA modifications in eukaryotes, with alterations in m6A mRNA methylation affecting testis function and fertility. We hypothesized that genes controlling m6A methylation such as methyltransferase-like-3 (Mettl3) and -14 (Mettl14) and Wilms' tumor-1 associated protein (Wtap), part of an mRNA methylating methyl-transferase complex, or the fat-mass-and-obesity-associated (Fto) and the α-ketoglutarate-dependent dioxygenase alkB homolog-5 (Alkbh5) genes responsible for m6A demethylation, may be differentially regulated by photoperiod in the testis. Male hamsters were exposed to long (LD, control) photoperiod for 14-weeks, short (SD) photoperiod for 2, 5, 8, 11 and 14-weeks to induce regression, or SD for 14-weeks followed by transfer to LD for 1, 2, 4 or 8-weeks to induce recrudescence (post-transfer, PT). SD exposure significantly reduced body, testis, and epididymal masses compared to all other groups. Spermatogenic index, seminiferous tubule diameters and testosterone concentrations significantly decreased in SD as compared to LD, returning to levels no different than LD in post-transfer groups. SD exposure significantly decreased Wtap, Fto, Alkbh5, but increased Mettl14 mRNA expression as compared to LD, with values in PT groups restored to LD levels. Mettl3 mRNA expression did not change. These results suggest that testicular recovery induced by stimulatory photoperiod is relatively rapid, and that the methyltransferase complex may play a role during photostimulated testicular recrudescence.


Assuntos
Metiltransferases , Phodopus , Fotoperíodo , Testículo , Animais , Cricetinae , Masculino , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Metiltransferases/genética , Metiltransferases/metabolismo , Phodopus/fisiologia , Recidiva , RNA Mensageiro/genética , Testículo/metabolismo , Testículo/fisiologia
2.
J Therm Biol ; 109: 103321, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195397

RESUMO

Energy conservation is a clear function of torpor. Although many studies imply that torpor is also a water-saving strategy, the experimental evidence linking water availability with torpor is inconclusive. We tested the relative roles of water and energy shortages in driving torpor, using the Siberian hamster Phodopus sungorus as a model species. To account for the seasonal development of spontaneous heterothermy, we used male hamsters acclimated to short (8L:16D, SP; n = 40) and long (16L:8D, LP; n = 36) photoperiods. We continuously measured body temperature (Tb) during consecutive 32 h of complete removal of water, food, or both, separated by 7.5 d recovery periods. We predicted that all deprivation types would increase the frequency of spontaneous torpor in SP, and induce torpor in LP-acclimated hamsters. Individuals underwent each deprivation type twice in random orders. Food and water deprivation did not induce torpor in LP-acclimated P. sungorus. Patterns of torpor expression varied among deprivation types in SP individuals. Torpor frequency was significantly lower, but bouts were ∼2 h longer and 2.5 °C deeper, during water deprivation compared to food and food-and-water deprivation. Heterothermic responses to all deprivation types were repeatable among individuals. Different torpor patterns during water and food deprivation suggest that water and energy shortages are distinct physiological challenges. Deeper and longer bouts during water deprivation likely led to higher energy and water savings, while shorter and shallower bouts during fasting may reflect a trade-off between energy conservation and food-seeking activity. The lack of a difference between food- and food-and-water-deprived hamsters suggests a higher sensitivity to food than water shortage. This supports the traditional view that energy conservation is the major function of torpor, but suggests that water shortages may also modulate torpor use. The high repeatability of thermoregulatory responses to resource deprivation suggests that these may be heritable traits subject to natural selection.


Assuntos
Conservação dos Recursos Hídricos , Torpor , Animais , Cricetinae , Privação de Alimentos , Masculino , Phodopus/fisiologia , Fotoperíodo , Água
3.
PLoS One ; 17(10): e0275263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36190976

RESUMO

Quantitative PCR (qPCR) is a common molecular tool to analyse the expression of transcripts in non-traditional animal models. Most animals experience tissue-specific seasonal changes in cell structure, growth, and cellular function. As a consequence, the choice of reference or 'house-keeping' genes is essential to standardize expression levels of target transcripts of interest for qPCR analyses. This study aimed to determine the abundance, efficiency and stability of several reference genes commonly used for normalisation of qPCR analyses in a model of seasonal biology: the Siberian hamster (Phodopus sungorus). Liver, brown-adipose tissue (BAT), white adipose tissue (WAT), testes, spleen, kidney, the hypothalamic arcuate nucleus, and the pituitary gland from either long or short photoperiod Siberian hamsters were dissected to test tissue-specific and photoperiod effects on reference transcripts. qPCR was conducted for common reference genes including 18s ribosomal RNA (18s), glyceraldehyde 3-phosphate dehydrogenase (Gapdh), hypoxanthine-guanine phosphoribosyltransferase (Hprt), and actin-ß (Act). Cycling time (Ct), efficiency (E) and replicate variation of Ct and E measured by percent coefficient of variance (CV%) was determined using PCR miner. Measures of stability were assessed using a combined approach of NormFinder and BestKeeper. 18s and Act did not vary in Ct across photoperiod conditions. Splenic, WAT and BAT Gapdh Ct was higher in long compared to short photoperiod. Splenic Hprt Ct was higher in long photoperiods. There was no significant effect of photoperiod, tissue or interaction on measures of efficiency, Ct CV%, or efficiency CV%. NormFinder and BestKeeper confirmed that 18s, Gapdh and Hprt were highly stable, while Act showed low stability. These findings suggest that 18s and Hprt show the most reliable stability, efficiency, and abundance across the tissues. Overall, the study provides a comprehensive and standardised approach to assess multiple reference genes in the Siberian hamster and help to inform molecular assays used in studies of photoperiodism.


Assuntos
Hipoxantina Fosforribosiltransferase , Phodopus , Actinas , Animais , Cricetinae , Phodopus/genética , Fotoperíodo , RNA Ribossômico 18S , Roedores , Estações do Ano
4.
Proc Biol Sci ; 289(1982): 20220668, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100021

RESUMO

Coordinating physiological and behavioural processes across the annual cycle is essential in enabling individuals to maximize fitness. While the mechanisms underlying seasonal reproduction and its associated behaviours are well characterized, fewer studies have examined the hormonal basis of non-reproductive social behaviours (e.g. aggression) on a seasonal time scale. Our previous work suggests that the pineal hormone melatonin facilitates a 'seasonal switch' in neuroendocrine regulation of aggression in male and female Siberian hamsters (Phodopus sungorus), specifically by acting on the adrenal glands to increase the production of the androgen dehydroepiandrosterone (DHEA) during the short-day (SD) photoperiods of the non-breeding season. Here, we provide evidence that the activity of 3ß-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3ß-HSD), a key enzyme within the steroidogenic pathway that mediates DHEA synthesis and metabolism, varies in a sex-specific and melatonin-dependent manner. Although both male and female hamsters displayed increased aggression in response to SDs and SD-like melatonin, only males showed an increase in adrenal 3ß-HSD activity. Conversely, SD and melatonin-treated females exhibited reductions in both adrenal and neural 3ß-HSD activity. Collectively, these results suggest a potential role for 3ß-HSD in modulating non-breeding aggression and, more broadly, demonstrate how distinct neuroendocrine mechanisms may underlie the same behavioural phenotype in males and females.


Assuntos
Melatonina , Phodopus , Agressão/fisiologia , Animais , Cricetinae , Desidroepiandrosterona/metabolismo , Feminino , Masculino , Melatonina/metabolismo , Phodopus/metabolismo , Estações do Ano
5.
Sci Rep ; 12(1): 13552, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941167

RESUMO

Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Central to this problem is the lack of information on the nucleic acid structure, and distribution of transcripts across tissues in seasonal model organisms. Here we report the transcriptome profile of nine endocrine tissues from Siberian hamsters. Luteinizing hormone receptor expression was localized to gonadal tissues and confirmed previous distribution analyses. Assessment of the prolactin receptor reveal relatively high abundance across tissues involved in reproduction, energy, and water homeostasis. Neither melatonin receptor-1a, nor -1b, were found to be expressed in most tissues. Instead, the closely related G-protein coupled receptor Gpr50 was widely expressed in peripheral tissues. Epigenetic enzymes such as DNA methyltransferase 3a, was widely expressed and the predominant DNA methylation enzyme. Quantitative PCR analyses revealed some sex- and tissue-specific differences for prolactin receptor and DNA methyltransferase 3a expression. These data provide significant information on the distribution of transcripts, relative expression levels and nucleic acid sequences that will facilitate molecular studies into the seasonal programs in mammalian physiology.


Assuntos
Ácidos Nucleicos , Phodopus , Animais , Cricetinae , Perfilação da Expressão Gênica , Gônadas , Phodopus/genética , Fotoperíodo , Receptores da Prolactina/genética , Estações do Ano
6.
Artigo em Inglês | MEDLINE | ID: mdl-36041709

RESUMO

Ovarian cyclicity is variable in adult Siberian hamsters (Phodopus sungorus), who respond to long breeding season photoperiods with follicle development and ovulation, while short photoperiods typical of the non-breeding season induce gonadal atrophy. Recent RNAseq results identified ovarian matrix components and regulators of metabolism as differentially regulated by photoperiod; however, the impact of photoperiod across a full cycle of ovarian regression and recrudescence had not been explored for additional regulators of ovarian metabolism and extracellular matrix components. We hypothesized that matrix and metabolism-related genes would be expressed differentially across photoperiods that mimic breeding and non-breeding season daylengths. Hamsters were housed in one of four photoperiod groups: long day (16 h of light per day: 8 h of dark; LD, controls), short day regressed (8 L:16D; SD, regressed), and females exposed to SD then transferred to LD to stimulate return of ovarian function for 2 (early recrudescence), or 8 (late recrudescence) weeks. Plasma leptin concentrations along with expression of ovarian versican and liver-receptor homolog-1/Nr582 mRNA decreased in SD compared to LD and late recrudescence, while vimentin mRNA expression peaked in early and late recrudescence. Ovarian expression of fibronectin and extracellular matrix protein-1 was low in LD ovaries and increased in regressed and recrudescing groups. Expression of hyaluronidase-2, nectin-2, liver-X receptors-α and-ß, and adiponectin mRNA peaked in late recrudescence, with no changes noted for adiponectin receptor-1 and -2. The results offer a first look at the parallels between expression of these genes and the dynamic remodeling that occurs during ovarian regression and recrudescence.


Assuntos
Ovário , Phodopus , Adiponectina/genética , Adiponectina/metabolismo , Animais , Cricetinae , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Expressão Gênica , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Leptina/metabolismo , Nectinas/genética , Nectinas/metabolismo , Ovário/metabolismo , Phodopus/fisiologia , Fotoperíodo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Recidiva , Estações do Ano , Versicanas/genética , Versicanas/metabolismo , Vimentina/genética , Vimentina/metabolismo
7.
Genome Biol Evol ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35778793

RESUMO

The Roborovski dwarf hamster Phodopus roborovskii belongs to the Phodopus genus, one of the seven within Cricetinae subfamily. Like other rodents such as mice, rats, or ferrets, hamsters can be important animal models for a range of diseases. Whereas the Syrian hamster from the genus Mesocricetus is now widely used as a model for mild-to-moderate coronavirus disease 2019, Roborovski dwarf hamster shows a severe-to-lethal course of disease upon infection with the novel human coronavirus severe acute respiratory syndrome coronavirus 2.


Assuntos
COVID-19 , Phodopus , Animais , COVID-19/genética , Cricetinae , Furões , Humanos , Camundongos , Modelos Animais , Ratos
8.
J Small Anim Pract ; 63(10): 747-755, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732354

RESUMO

BACKGROUND: Hamsters are popular pets worldwide but there is limited evidence on the overall health issues of pet hamsters. This study aimed to characterise the demography, disorder prevalence and mortality of pet hamsters in the United Kingdom. METHOD: The VetCompass study included anonymised clinical records of 16,605 hamsters. RESULTS: The most common hamster species were Syrian (golden) (Mesocricetus auratus) (n=12,197, 73.45%), Djungarian (winter white dwarf) (Phodopus sungorus) (2286, 13.77%) and Roborovski hamsters (Phodopus roborovskii) (1054, 6.35%). The most prevalent precise-level disorders recorded across all hamsters were a presentation categorised as 'wet tail' (n=293, 7.33%), disorder undiagnosed (292, 7.30%), bite injuries from other hamsters (235, 5.88%), overgrown nail(s) (165, 4.13%), overgrown incisor(s) (159, 3.98%) and traumatic injury (152, 3.80%). The most prevalent disorders groups across all species of hamster were traumatic injury (n=616, 15.41%), enteropathy (450, 11.26%), ophthalmological disorder (445, 11.13%), skin disorder (362, 9.05%) and mass (361, 9.03%). The median age at death across all hamsters was 1.75 years (interquartile range: 0.83 to 2.20, range: 0.01 to 3.65). The most common causes of death at a precise level were wet tail (7.88%, 95% confidence interval: 6.35 to 9.66), abdominal mass (6.40%, 95% confidence interval: 5.01 to 8.03), neoplasia (5.38%, 95% confidence interval: 4.11 to 6.90) and dyspnoea (3.99%, 95% confidence interval: 2.9 to 5.34). CONCLUSION: This study provides veterinary professionals, educators, welfare scientists and owners with an evidence base on pet hamster health. A greater understanding of the common disorders of pet hamsters can support veterinary professionals to communicate more effectively with owners on key issues and outcomes to expect from hamster ownership.


Assuntos
Phodopus , Animais , Cricetinae , Prevalência , Reino Unido/epidemiologia
9.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642315

RESUMO

The X chromosome of therian mammals shows strong conservation among distantly related species, limiting insights into the distinct selective processes that have shaped sex chromosome evolution. We constructed a chromosome-scale de novo genome assembly for the Siberian dwarf hamster (Phodopus sungorus), a species reported to show extensive recombination suppression across an entire arm of the X chromosome. Combining a physical genome assembly based on shotgun and long-range proximity ligation sequencing with a dense genetic map, we detected widespread suppression of female recombination across ∼65% of the Phodopus X chromosome. This region of suppressed recombination likely corresponds to the Xp arm, which has previously been shown to be highly heterochromatic. Using additional sequencing data from two closely related species (P. campbelli and P. roborovskii), we show that recombination suppression on Xp appears to be independent of major structural rearrangements. The suppressed Xp arm was enriched for several transposable element families and de-enriched for genes primarily expressed in placenta, but otherwise showed similar gene densities, expression patterns, and rates of molecular evolution when compared to the recombinant Xq arm. Phodopus Xp gene content and order was also broadly conserved relative to the more distantly related rat X chromosome. These data suggest that widespread suppression of recombination has likely evolved through the transient induction of facultative heterochromatin on the Phodopus Xp arm without major changes in chromosome structure or genetic content. Thus, substantial changes in the recombination landscape have so far had relatively subtle influences on patterns of X-linked molecular evolution in these species.


Assuntos
Phodopus , Cromossomo X , Animais , Cricetinae , Evolução Molecular , Feminino , Phodopus/genética , Gravidez , Ratos , Recombinação Genética , Cromossomo X/genética
10.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35615921

RESUMO

Nonresponding Siberian hamsters (Phodopus sungorus) do not develop the winter phenotype of white fur, low body mass (Mb) and spontaneous torpor in response to short photoperiod. However, their thermoregulatory response to fasting remains unknown. We measured body temperature and Mb of 12 nonresponders acclimated to short photoperiod and then to cold and fasted four times for 24 h. Four individuals used torpor, and in total, we recorded 19 torpor bouts, which were shallow, short and occurred at night. Moreover, fasting increased the heterothermy index in all hamsters. Low Mb was not a prerequisite for torpor use and Mb loss did not correlate with either heterothermy index or torpor use. This is the first evidence that individuals which do not develop the winter phenotype can use torpor or increase body temperature variability to face unpredictable, adverse environmental conditions. Despite the lack of seasonal changes, thermoregulatory adjustments may increase the probability of winter survival in nonresponders.


Assuntos
Phodopus , Torpor , Animais , Regulação da Temperatura Corporal/fisiologia , Cricetinae , Jejum , Phodopus/fisiologia , Fotoperíodo , Estações do Ano
11.
J Biol Rhythms ; 37(3): 296-309, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502701

RESUMO

The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.


Assuntos
Microbioma Gastrointestinal , Phodopus , Agressão/fisiologia , Animais , Bactérias , Ritmo Circadiano , Cricetinae , Masculino , Phodopus/fisiologia , Fotoperíodo , Estações do Ano
12.
J Exp Zool A Ecol Integr Physiol ; 337(9-10): 873-889, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35451566

RESUMO

Individuals of virtually all vertebrate species are exposed to annual fluctuations in the deterioration and renewal of their environments. As such, organisms have evolved to restrict energetically expensive processes and activities to a specific time of the year. Thus, the precise timing of physiology and behavior is critical for individual reproductive success and subsequent fitness. Although the majority of research on seasonality has focused on seasonal reproduction, pronounced fluctuations in other non-reproductive social behaviors, including agonistic behaviors (e.g., aggression), also occur. To date, most studies that have investigated the neuroendocrine mechanisms underlying seasonal aggression have focused on the role of photoperiod (i.e., day length); prior findings have demonstrated that some seasonally breeding species housed in short "winter-like" photoperiods display increased aggression compared with those housed in long "summer-like" photoperiods, despite inhibited reproduction and low gonadal steroid levels. While fewer studies have examined how the hormonal correlates of environmental cues regulate seasonal aggression, our previous work suggests that the pineal hormone melatonin acts to increase non-breeding aggression in Siberian hamsters (Phodopus sungorus) by altering steroid hormone secretion. This review addresses the physiological and cellular mechanisms underlying seasonal plasticity in aggressive and non-aggressive social behaviors, including a key role for melatonin in facilitating a "neuroendocrine switch" to alternative physiological mechanisms of aggression across the annual cycle. Collectively, these studies highlight novel and important mechanisms by which melatonin regulates aggressive behavior in vertebrates and provide a more comprehensive understanding of the neuroendocrine bases of seasonal social behaviors broadly.


Assuntos
Melatonina , Cricetinae , Animais , Estações do Ano , Phodopus , Agressão/fisiologia , Fotoperíodo
13.
J Comp Physiol B ; 192(3-4): 513-526, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348882

RESUMO

Proper housing conditions are important aspects of animal welfare. Animals housed in enriched environments show less stereotypic behaviours than animals kept in barren cages. However, different types of cage enrichment may affect the results of experimental studies and hinder comparative analyses of animal physiology and behaviour. We investigated whether access to a running wheel, availability of nesting material, and pair housing affect basal metabolic rate (BMR) of Siberian hamsters (Phodopus sungorus) under various acclimation conditions. We used 70 adult hamsters (35 males and 35 females) divided into five groups housed under different cage conditions. All individuals experienced the same acclimation procedure: first a winter (L8:D16) then a summer (L16:D8) photoperiod, at air temperatures of first 20 °C then 7 °C under both photoperiods. We found that nesting material and pair housing did not affect hamster BMR, while access to a running wheel increased BMR and body mass regardless of photoperiod and ambient temperature. Thus, we suggest that cage enrichment should be applied with caution, especially in studies on energetics or thermoregulation, particularly in seasonal animals.


Assuntos
Metabolismo Basal , Phodopus , Animais , Metabolismo Basal/fisiologia , Peso Corporal , Cricetinae , Feminino , Qualidade Habitacional , Masculino , Phodopus/fisiologia , Fotoperíodo , Estações do Ano
14.
Parasite ; 29: 15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35315766

RESUMO

Enterocytozoon bieneusi, a common opportunistic pathogen, has been detected in humans and a wide range of animals worldwide. However, no information on the prevalence and molecular characterization of E. bieneusi in hamsters is available worldwide. In this study, fecal specimens were collected from 175 golden hamsters and 175 Siberian hamsters purchased from pet shops in three provinces of China. The average infection rate of E. bieneusi was 12.0% (42/350), with 14.9% (26/175) in pet golden hamsters and 9.1% (16/175) in pet Siberian hamsters. Four genotypes were identified in pet golden hamsters, including three known genotypes (D, Henan-II, and SHW5) and one novel genotype (named Ebph1). Five genotypes were found in pet Siberian hamsters, including one known genotype (D) and four novel genotypes (named Ebph2 to Ebph5). Genotypes D and Ebph2 were the dominant genotype in pet golden hamsters (23/26, 88.5%) and Siberian hamsters (9/16, 56.3%), respectively. Phylogenetic analysis showed that the E. bieneusi isolates clustered into two groups: Group 1 (D, Henan-II, SHW5, and Ebph1) and Group 3 (Ebph2 to Ebph5). To the best of our knowledge, this is the first report of E. bieneusi infection in golden hamsters and Siberian hamsters worldwide. The identification of four genotypes belonging to Group 1 of high zoonotic potential suggests that pet hamsters especially golden hamsters can be potential sources of human microsporidiosis.


Title: Première détection et génotypage d'Enterocytozoon bieneusi chez des hamsters dorés de compagnie (Mesocricetus auratus) et des hamsters sibériens (Phodopus sungorus) en Chine. Abstract: Enterocytozoon bieneusi, un agent pathogène opportuniste commun, a été détecté chez les humains et un large éventail d'animaux dans le monde. Cependant, aucune information sur la prévalence et la caractérisation moléculaire d'E. bieneusi chez les hamsters n'est disponible. Dans cette étude, des échantillons fécaux ont été prélevés sur 175 hamsters dorés et 175 hamsters sibériens achetés dans des animaleries de trois provinces de Chine. Le taux d'infection moyen d'E. bieneusi était de 12,0 % (42/350), avec 14,9 % (26/175) chez les hamsters dorés et 9,1 % (16/175) chez les hamsters sibériens. Quatre génotypes ont été identifiés chez les hamsters dorés, dont trois génotypes connus (D, Henan-II et SHW5) et un nouveau génotype (nommé Ebph1). Cinq génotypes ont été trouvés chez des hamsters sibériens, dont un génotype connu (D) et quatre nouveaux génotypes (nommés Ebph2 à Ebph5). Les génotypes D et Ebph2 étaient les génotypes dominants, respectivement chez les hamsters dorés (23/26, 88,5 %) et les hamsters sibériens (9/16, 56,3 %). L'analyse phylogénétique a montré que les isolats d'E. bieneusi se regroupaient en deux groupes : le groupe 1 (D, Henan-II, SHW5 et Ebph1) et le groupe 3 (Ebph2 à Ebph5). À notre connaissance, il s'agit du premier signalement d'infection par E. bieneusi chez des hamsters dorés et des hamsters de Sibérie dans le monde. L'identification de quatre génotypes appartenant au groupe 1, à fort potentiel zoonotique, suggère que les hamsters de compagnie, en particulier les hamsters dorés, peuvent être des sources potentielles de microsporidiose humaine.


Assuntos
Enterocytozoon , Mesocricetus , Microsporidiose , Animais de Estimação , Phodopus , Animais , China/epidemiologia , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Fezes/microbiologia , Genótipo , Mesocricetus/microbiologia , Microsporidiose/epidemiologia , Microsporidiose/microbiologia , Microsporidiose/veterinária , Animais de Estimação/microbiologia , Phodopus/microbiologia , Filogenia
15.
Horm Behav ; 141: 105146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276524

RESUMO

The gut microbiome, a community of commensal, symbiotic and pathogenic bacteria, fungi, and viruses, interacts with many physiological systems to affect behavior. Prenatal experiences, including exposure to maternal stress and different maternal microbiomes, are important sources of organismal variation that can affect offspring development. These physiological systems do not act in isolation and can have long-term effects on offspring development and behavior. Here we investigated the interactive effects of maternal stress and manipulations of the maternal microbiome on offspring development and social behavior using Siberian hamsters, Phodopus sungorus. We exposed pregnant females to either a social stressor, antibiotics, both the social stressor and antibiotics, or no treatment (i.e., control) over the duration of their pregnancy and quantified male and female offspring growth, gut microbiome composition and diversity, stress-induced cortisol concentrations, and social behavior. Maternal antibiotic exposure altered the gut microbial communities of male and female offspring. Maternal treatment also had sex-specific effects on aspects of offspring development and aggressive behavior. Female offspring produced by stressed mothers were more aggressive than other female offspring. Female, but not male, offspring produced by mothers exposed to the combined treatment displayed low levels of aggression, suggesting that alteration of the maternal microbiome attenuated the effects of prenatal stress in a sex-specific manner. Maternal treatment did not affect non-aggressive behavior in offspring. Collectively, our study offers insight into how maternal systems can interact to affect offspring in sex-specific ways and highlights the important role of the maternal microbiome in mediating offspring development and behavior.


Assuntos
Microbiota , Phodopus , Agressão/fisiologia , Animais , Antibacterianos , Cricetinae , Feminino , Masculino , Phodopus/fisiologia , Gravidez , Comportamento Social
16.
Vet Res Commun ; 46(2): 499-506, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34984572

RESUMO

Hamsters are often chosen as companion animals but are also a group of animals frequently subjected to laboratory tests. As there are no scientific publications providing information on the anatomical architecture of the brachial plexus of the Djungarian hamster, this study analyses the structure of this part of the nervous system of this species. It is important to know the details of this structure not only for cognitive reasons, but also due to the increasing clinical significance of rodents, which are often used in scientific research. The study was conducted on 55 specimens. Like in humans, the brachial plexus of the Djungarian hamster has three trunks. The following individual nerves innervating the thoracic limb of the Djungarian hamster: the radial nerve, median nerve, ulnar nerve, musculocutaneous nerve, axillary nerve, suprascapular nerve, thoracodorsal nerve, cranial pectoral nerves, caudal pectoral nerve, lateral thoracic nerve, long thoracic nerve, and subscapular nerves. Similarly to other mammals of this order, the brachial plexus of the Djungarian hamster ranges widely (C5-T1). However, its nerves are formed from different ventral branches of the spinal nerves than in other mammals.


Assuntos
Plexo Braquial , Nervos Torácicos , Animais , Cricetinae , Membro Anterior/inervação , Phodopus
17.
Horm Behav ; 138: 105099, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34920297

RESUMO

Many animals exhibit pronounced changes in physiology and behavior on a seasonal basis, and these adaptations have evolved to promote survival and reproductive success. While the neuroendocrine pathways mediating seasonal reproduction are well-studied, far less is known about the mechanisms underlying seasonal changes in social behavior, particularly outside of the context of the breeding season. Our previous work suggests that seasonal changes in melatonin secretion are important in regulating aggression in Siberian hamsters (Phodopus sungorus); it is unclear, however, how melatonin acts via its receptors to modulate seasonal variation in social behavior. In this study, we infused a MT1 melatonin receptor-expressing (MT1) or control (CON) lentivirus into the adrenal glands of male Siberian hamsters. We then housed hamsters in long-day (LD) or short-day (SD) photoperiods, administered timed melatonin or control injections, and quantified aggressive and non-aggressive social behaviors (e.g., investigation, self-grooming) following 10 weeks of treatment. LD hamsters infused with the MT1 lentivirus had significantly higher adrenal mt1 expression than LD CON hamsters, as determined via quantitative PCR. While melatonin administration was necessary to induce SD-like reductions in body and relative reproductive mass, only LD hamsters infused with the MT1 lentivirus displayed SD-like changes in social behavior, including increased aggression and decreased investigation and grooming. In addition, SD CON and LD hamsters infused with the MT1 lentivirus exhibited similar relationships between adrenal mt1 expression and aggressive behavior. Together, our findings suggest a role for adrenal MT1 receptor signaling in regulating behavior, but not energetics or reproduction in seasonally breeding species.


Assuntos
Melatonina , Phodopus , Agressão/fisiologia , Animais , Peso Corporal/fisiologia , Cricetinae , Masculino , Melatonina/metabolismo , Phodopus/fisiologia , Fotoperíodo , Receptores de Melatonina , Estações do Ano
18.
FEBS Open Bio ; 12(2): 443-459, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894101

RESUMO

The energy-saving strategy of Djungarian hamsters (Phodopus sungorus, Cricetidae) to overcome harsh environmental conditions comprises of behavioral, morphological, and physiological adjustments, including spontaneous daily torpor, a metabolic downstate. These acclimatizations are triggered by short photoperiod and orchestrated by the hypothalamus. Key mechanisms of long-term photoperiodic acclimatizations have partly been described, but specific mechanisms that acutely control torpor remain incomplete. Here, we performed comparative transcriptome analysis on hypothalamus of normometabolic hamsters in their summer- and winter-like state to enable us to identify changes in gene expression during photoperiodic acclimations. Comparing nontorpid and torpid hamsters may also be able to pin down mechanisms relevant for torpor control. A de novo assembled transcriptome of the hypothalamus was generated from hamsters acclimated to long photoperiod or to short photoperiod. The hamsters were sampled either during long photoperiod normothermia, short photoperiod normothermia, or short photoperiod-induced spontaneous torpor with a body temperature of 24.6 ± 1.0 °C, or. The mRNA-seq analysis revealed that 32 and 759 genes were differentially expressed during photoperiod or torpor, respectively. Biological processes were not enriched during photoperiodic acclimatization but were during torpor, where transcriptional and metabolic processes were reinforced. Most extremely regulated genes (those genes with |log2(FC)| > 2.0 and padj < 0.05 of a pairwise group comparison) underpinned the role of known key players in photoperiodic comparison, but these genes exhibit adaptive and protective adjustments during torpor. Targeted analyses of genes from potentially involved hypothalamic systems identified gene regulation of previously described torpor-relevant systems and a potential involvement of glucose transport.


Assuntos
Phodopus , Torpor , Aclimatação/genética , Animais , Cricetinae , Hipotálamo/metabolismo , Phodopus/genética , Fotoperíodo , Torpor/genética , Transcriptoma/genética
19.
J Parasitol ; 107(5): 770-777, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547101

RESUMO

Cryptosporidium spp. have been identified in a wide range of hosts, such as humans and domestic and wild animals, while less information about the prevalence of Cryptosporidium spp. in pet hamsters is documented. A total of 351 dwarf winter white Russian hamsters' fecal specimens were collected from 6 pet markets from the cities of Luzhou and Ziyang in Sichuan province in the southwestern part of China. The prevalence of Cryptosporidium spp. determined with nested-PCR amplification of the partial small-subunit (SSU) rRNA gene was 39.32% (138/351). The highest prevalence of Cryptosporidium spp. was in pet market 5 (79.49%, 62/78), followed by pet market 6 (38.64%, 17/44). The lowest prevalence of Cryptosporidium spp. was observed in pet market 3 (14.89%, 7/47). Statistically significant differences in the prevalence of Cryptosporidium spp. were observed among different pet markets (χ2 = 76.386, df = 5, P < 0.05), and a further post hoc test revealed that only pet market 5 was significantly different from other pet markets. Molecular analysis showed that 4 different Cryptosporidium species or genotypes were identified: Cryptosporidium parvum (n = 127), Cryptosporidium chipmunk genotype III (n = 6), Cryptosporidium andersoni (n = 4), and Cryptosporidium wrairi (n = 1). The identification of Cryptosporidium spp. was further tested with the 60-kDa glycoprotein (GP60) gene, and the positive rate was 29.7% (41/138). This is the first molecular report on Cryptosporidium spp. infection in dwarf winter white Russian hamsters in China. With C. parvum and C. andersoni being identified in both humans and pet hamsters, these findings suggest that pet hamsters may be potential reservoirs of zoonotic Cryptosporidium species and subtypes.


Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/isolamento & purificação , Phodopus/parasitologia , Doenças dos Roedores/parasitologia , Animais , China/epidemiologia , Criptosporidiose/epidemiologia , Cryptosporidium/classificação , Cryptosporidium/genética , DNA de Protozoário/isolamento & purificação , Fezes/parasitologia , Feminino , Genótipo , Masculino , Animais de Estimação , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Doenças dos Roedores/epidemiologia , Zoonoses/epidemiologia , Zoonoses/parasitologia
20.
J Exp Zool A Ecol Integr Physiol ; 335(8): 691-702, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343418

RESUMO

Seasonally breeding animals respond to environmental cues to determine optimal conditions for reproduction. Siberian hamsters (Phodopus sungorus) primarily rely on photoperiod as a predictive cue of future energy availability. When raised in long-day photoperiods (>14 h light), supplemental cues such as food availability typically do not trigger the seasonal reproductive response of gonadal regression, which curtails reproduction in unsuitable environments. We investigated whether recognition of food availability as a cue could be altered by a nutritional challenge during development. Specifically, we predicted that hamsters receiving restricted food during development would be sensitized to food restriction (FR) as adults and undergo gonadal regression in response. Male and female hamsters were given either ad libitum (AL) food or FR from weaning until d60. The FR treatment predictably limited growth and delayed puberty in both sexes. For 5 weeks after d60, all hamsters received an AL diet to allow FR hamsters to gain mass equal to AL hamsters. Then, adult hamsters of both juvenile groups received either AL or FR for 6 weeks. Juvenile FR had lasting impacts on adult male body mass and food intake. Adult FR females exhibited decreased estrous cycling and uterine horn mass indiscriminately of juvenile food treatment, but there was little effect on male reproductive measurements. Overall, we observed a delay in puberty in response to postweaning FR, but this delay appeared not to affect seasonal reproductive responses in the long term. These findings increase our understanding of seasonal reproductive responses in a relevant environmental context.


Assuntos
Phodopus , Maturidade Sexual , Animais , Cricetinae , Feminino , Masculino , Fotoperíodo , Reprodução , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...