RESUMO
Previously, we reported the development of novel small molecules that are potent inhibitors of the glycolytic enzyme phosphofructokinase (PFK) of Trypanosoma brucei and related protists responsible for serious diseases in humans and domestic animals. Cultured bloodstream-form trypanosomes, which are fully reliant on glycolysis for their ATP production, are rapidly killed at submicromolar concentrations of these compounds, which have no effect on the activity of human PFKs and human cells. Single-day oral dosing cures stage 1 human trypanosomiasis in an animal model. Here we analyze changes in the metabolome of cultured trypanosomes during the first hour after addition of a selected PFK inhibitor, CTCB405. The ATP level of T. brucei drops quickly followed by a partial increase. Already within the first five minutes after dosing, an increase is observed in the amount of fructose 6-phosphate, the metabolite just upstream of the PFK reaction, while intracellular levels of the downstream glycolytic metabolites phosphoenolpyruvate and pyruvate show an increase and decrease, respectively. Intriguingly, a decrease in the level of O-acetylcarnitine and an increase in the amount of L-carnitine were observed. Likely explanations for these metabolomic changes are provided based on existing knowledge of the trypanosome's compartmentalized metabolic network and kinetic properties of its enzymes. Other major changes in the metabolome concerned glycerophospholipids, however, there was no consistent pattern of increase or decrease upon treatment. CTCB405 treatment caused less prominent changes in the metabolome of bloodstream-form Trypanosoma congolense, a ruminant parasite. This agrees with the fact that it has a more elaborate glucose catabolic network with a considerably lower glucose consumption rate than bloodstream-form T. brucei.
Assuntos
Fosfofrutoquinases , Trypanosoma , Animais , Humanos , Metaboloma , Metabolômica , Trifosfato de AdenosinaRESUMO
The main hallmark of myocardial substrate metabolism in cardiac hypertrophy or heart failure is a shift from fatty acid oxidation to greater reliance on glycolysis. However, the close correlation between glycolysis and fatty acid oxidation and underlying mechanism by which causes cardiac pathological remodelling remain unclear. We confirm that KLF7 simultaneously targets the rate-limiting enzyme of glycolysis, phosphofructokinase-1, liver, and long-chain acyl-CoA dehydrogenase, a key enzyme for fatty acid oxidation. Cardiac-specific knockout and overexpression KLF7 induce adult concentric hypertrophy and infant eccentric hypertrophy by regulating glycolysis and fatty acid oxidation fluxes in male mice, respectively. Furthermore, cardiac-specific knockdown phosphofructokinase-1, liver or overexpression long-chain acyl-CoA dehydrogenase partially rescues the cardiac hypertrophy in adult male KLF7 deficient mice. Here we show that the KLF7/PFKL/ACADL axis is a critical regulatory mechanism and may provide insight into viable therapeutic concepts aimed at the modulation of cardiac metabolic balance in hypertrophied and failing heart.
Assuntos
Acil-CoA Desidrogenase de Cadeia Longa , Miocárdio , Animais , Masculino , Camundongos , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Cardiomegalia/patologia , Ácidos Graxos/metabolismo , Coração , Fatores de Transcrição Kruppel-Like/metabolismo , Miocárdio/metabolismo , Oxirredução , Acil-CoA Desidrogenase/metabolismo , Fosfofrutoquinases/metabolismoRESUMO
Unveiling the principles governing embryonic stem cell (ESC) differentiation into specific lineages is critical for understanding embryonic development and for stem cell applications in regenerative medicine. Here, we establish an intersection between LIF-Stat3 signaling that is essential for maintaining murine (m) ESCs pluripotency, and the glycolytic enzyme, the platelet isoform of phosphofructokinase (Pfkp). In the pluripotent state, Stat3 transcriptionally suppresses Pfkp in mESCs while manipulating the cells to lift this repression results in differentiation towards the ectodermal lineage. Pfkp exhibits substrate specificity changes to act as a protein kinase, catalyzing serine phosphorylation of the developmental regulator Lin41. Such phosphorylation stabilizes Lin41 by impeding its autoubiquitination and proteasomal degradation, permitting Lin41-mediated binding and destabilization of mRNAs encoding ectodermal specification markers to favor the expression of endodermal specification genes. This provides new insights into the wiring of pluripotency-differentiation circuitry where Pfkp plays a role in germ layer specification during mESC differentiation.
Assuntos
Fosfofrutoquinases , Proteínas Quinases , Gravidez , Feminino , Camundongos , Animais , Proteínas Quinases/metabolismo , Fosfofrutoquinases/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular/genética , Transdução de Sinais , Células-Tronco Embrionárias Murinas/metabolismoRESUMO
Granulosa cells (GCs) of ovarian follicles prefer glucose as a metabolic substrate for growth and maturation. Disruption of glucose utilization via the hexosamine biosynthesis pathway (HBP) impairs O-linked N-acetylglucosaminylation (O-GlcNAcylation) and inhibits proliferation of bovine GCs of both small (3-5 mm) and large (>8.5 mm) antral follicles. Knowing that 2-5% of all glucose in cells is utilized via the HBP, the aim of this study was to characterize glucose metabolism in bovine GCs and determine the impact of the HBP and O-GlcNAcylation on metabolic activity. The GCs were initially cultured in serum-containing medium to confluency and then sub-cultured in serum-free medium in 96 well plates (n = 10 ovary pairs). The cells were exposed to vehicle and inhibitors of the HBP and O-GlcNAcylation for 24 h. Extracellular acidification rate (ECAR; an indicator of glycolysis) and oxygen consumption rate (OCR; an indicator of oxidative phosphorylation) of the GCs were measured using a Seahorse xFe96 Analyzer, including the implementation of glycolytic and mitochondrial stress tests. GCs from small antral follicles exhibited overall greater metabolic activity than GCs from large antral follicles as evidenced by increased ECAR and OCR. Inhibition of the HBP and O-GlcNAcylation had no effect on the metabolic activity of GCs from either type of follicle. The glycolytic stress test indicated that GCs from both types of follicles possessed additional glycolytic capacity; but again, inhibition of the HBP and O-GlcNAcylation did not affect this. Interestingly, inhibition of cellular respiration by 2-Deoxy-D-glucose impaired OCR only in GCs from small antral follicles, but exposure to the mitochondrial stress test had no effect. Conversely, in GCs from large antral follicles, oxidative metabolism was impaired by the mitochondrial stress test and was accompanied by a concomitant increase in glycolytic metabolism. Immunodetection of glycolytic enzymes revealed that phosphofructokinase expression is increased in GCs of small antral follicles compared to large follicles. Inhibition of O-GlcNAcylation impaired the expression of hexokinase only in GCs of small antral follicles. Inhibition of O-GlcNAcylation also impaired the expression of phosphofructokinase, pyruvate kinase and pyruvate dehydrogenase in GCs of both types of follicles, but had no effect on the expression of lactate dehydrogenase. The results indicate that GCs of small antral follicles possess greater aerobic glycolytic capacity than GCs from large antral follicles; but disruption of the HBP and O-GlcNAcylation has little to no impact on metabolic activity.
Assuntos
Células da Granulosa , Hexosaminas , Feminino , Animais , Bovinos , Hexosaminas/farmacologia , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Glucose/metabolismo , Fosfofrutoquinases/metabolismoRESUMO
PURPOSE: We hypothesized that immature oocytes are associated with impaired energy production in surrounding granulosa cells (GCs) in polycystic ovary syndrome (PCOS). Thus, this study investigated mitochondrial function, determined expression of glycolytic regulatory enzymes, and measured ATP levels in GCs of PCOS patients. METHODS: GCs were isolated from forty-five PCOS patients and 45 control women. Intracellular concentration of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), the rate of glycolysis, total antioxidant capacity (TAC), activities of catalase (CAT) and superoxide dismutase (SOD), and ATP level were measured in GCs. The gene expression and protein levels of glycolytic enzymes (hexokinase, muscular phosphofructokinase, platelet derived phosphofructokinase, and muscular pyruvate kinase) were determined. Association of GC energy level with oocyte maturation was further validated by measuring glycolysis rate and ATP level in GCs isolated from mature and immature follicles from new set of fifteen PCOS patients and 15 controls. RESULTS: PCOS patients showed higher ROS level, decreased TAC, reduced CAT and SOD activities, and lower Δψm together with reduced expression of key glycolytic enzymes. ATP concentration and biochemical pregnancy were lower in PCOS compared with control group. ATP levels were found to be significantly correlated with ROS and Δψm (r = - 0.624 and r = 0.487, respectively). GCs isolated from immature follicles had significantly lower ATP levels and rate of glycolysis compared with the GCs separated from mature follicles in both PCOS patients and control. CONCLUSION: Declined energy due to the mitochondrial dysfunction and restrained glycolysis in GCs is associated with the immature oocytes and lower biochemical pregnancy in PCOS.
Assuntos
Síndrome do Ovário Policístico , Gravidez , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células da Granulosa/metabolismo , Antioxidantes/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Trifosfato de Adenosina/metabolismoRESUMO
The objective of this study was to analyze the differences in the proteins in non-capacitated and capacitated boar sperm and to identify the functions of the differential proteins and key capacitation proteins of boar sperm before and after capacitation. Transwell chambers were used to separate capacitated sperm proteins using a unique polycarbonate membrane. Meanwhile, isotopic tags for relative and absolute quantification combined with LCâMS/MS analysis were used for quantitative determination of differential proteins. Through the comparative analysis of different databases, 475 different proteins were identified in non-capacitated sperm and capacitated sperm, of which 303 were significantly upregulated and 172 were significantly downregulated. These differentially-expressed proteins are mainly involved in redox processes, cell biosynthesis processes and cell aromatic compound metabolism biological processes. They also participate in the signaling pathways of phosphorylation, ketone synthesis and degradation, most of which interact to varying degrees. Among these differentially-expressed proteins, phosphofructokinase attracted our attention as a potential capacitated protein. We further verified that phosphofructokinase can promote boar sperm capacitation by immunoblotting.
Assuntos
Fosfofrutoquinases , Sêmen , Suínos , Masculino , Animais , Fosfofrutoquinases/metabolismo , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Espermatozoides , Capacitação EspermáticaRESUMO
BACKGROUND & AIMS: N6-methyladenosine (m6A) modification plays a critical role in progression of hepatocellular carcinoma (HCC), and aerobic glycolysis is a hallmark of cancer including HCC. However, the role of YTHDF3, one member of the core readers of the m6A pathway, in aerobic glycolysis and progression of HCC is still unclear. METHODS: Expression levels of YTHDF3 in carcinoma and surrounding tissues of HCC patients were evaluated by immunohistochemistry. Loss and gain-of-function experiments in vitro and in vivo were used to assess the effects of YTHDF3 on HCC cell proliferation, migration and invasion. The role of YTHDF3 in hepatocarcinogenesis was observed in a chemically induced HCC model with Ythdf3-/- mice. Untargeted metabolomics and glucose metabolism phenotype assays were performed to evaluate relationship between YTHDF3 and glucose metabolism. The effect of YTHDF3 on PFKL was assessed by methylated RNA immunoprecipitation assays (MeRIP). Co-immunoprecipitation and immunofluorescence assays were performed to investigate the connection between YTHDF3 and PFKL. RESULTS: We found YTHDF3 expression was greatly upregulated in carcinoma tissues and it was correlated with poor prognosis of HCC patients. Gain-of-function and loss-of-function assays demonstrated YTHDF3 promoted proliferation, migration and invasion of HCC cells in vitro, and YTHDF3 knockdown inhibited xenograft tumor growth and lung metastasis of HCC cells in vivo. YTHDF3 knockout significantly suppressed hepatocarcinogenesis in chemically induced mice model. Mechanistically, YTHDF3 promoted aerobic glycolysis by promoting phosphofructokinase PFKL expression at both mRNA and protein levels. MeRIP assays showed YTHDF3 suppressed PFKL mRNA degradation via m6A modification. Surprisingly, PFKL positively regulated YTHDF3 protein expression, not as a glycolysis rate-limited enzyme, and PFKL knockdown effectively rescued the effects of YTHDF3 overexpression on proliferation, migration and invasion ability of Sk-Hep-1 and HepG2 cells. Notably, co-immunoprecipitation assays demonstrated PFKL interacted with YTHDF3 via EFTUD2, a core subunit of spliceosome involved in pre-mRNA splicing process, and ubiquitination assays showed PFKL could positively regulate YTHDF3 protein expression via inhibiting ubiquitination of YTHDF3 protein by EFTUD2. CONCLUSIONS: our study uncovers the key role of YTHDF3 in HCC, characterizes a positive functional loop between YTHDF3 and phosphofructokinase PFKL in glucose metabolism of HCC, and suggests the connection between pre-mRNA splicing process and m6A modification.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Precursores de RNA , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , Glucose , Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismoRESUMO
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by defective regulatory T (Treg) cells. Here, we demonstrate that a T cell-specific deletion of calcium/calmodulin-dependent protein kinase 4 (CaMK4) improves disease in B6.lpr lupus-prone mice and expands Treg cells. Mechanistically, CaMK4 phosphorylates the glycolysis rate-limiting enzyme 6-phosphofructokinase, platelet type (PFKP) and promotes aerobic glycolysis, while its end product fructose-1,6-biphosphate suppresses oxidative metabolism. In Treg cells, a CRISPR-Cas9-enabled Pfkp deletion recapitulated the metabolism of Camk4-/- Treg cells and improved their function and stability in vitro and in vivo. In SLE CD4+ T cells, PFKP enzymatic activity correlated with SLE disease activity and pharmacologic inhibition of CaMK4-normalized PFKP activity, leading to enhanced Treg cell function. In conclusion, we provide molecular insights in the defective metabolism and function of Treg cells in SLE and identify PFKP as a target to fine-tune Treg cell metabolism and thereby restore their function.
Assuntos
Lúpus Eritematoso Sistêmico , Fosfofrutoquinases , Animais , Camundongos , Autoimunidade , Linfócitos T Reguladores , Imunoterapia , Lúpus Eritematoso Sistêmico/genéticaRESUMO
Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.
Assuntos
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Glicólise , Termodinâmica , Trifosfato de Adenosina/metabolismoRESUMO
BACKGROUNDS: In the testis, spermatocytes and spermatids rely on lactate produced by Sertoli cells (SCs) as energy source. Transforming growth factor-beta 3 (TGF-ß3) is one of the generally accepted paracrine regulatory factors of SC-created blood-testis barrier (BTB), yet its role in SC glycolysis and lactate production still remains unclear. OBJECTIVES: To investigate the effect of TGF-ß3 on glycolysis and lactate production in SCs and determine the role of lethal giant larvae 2 (Lgl2) and Notch signaling activity during this process. MATERIALS AND METHODS: Primary cultured rat SCs and TM4 cells were treated with different concentrations of TGF-ß3. In some experiments, cells were transfected with siRNA specifically targeting Lgl2 and then treated with TGF-ß3 or N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Lactate concentration, glucose and glutamine (Gln) consumption in the culture medium, activity of phosphofructokinase (PFK), lactate dehydrogenase (LDH), and glutaminase (Gls), ATP level, oxygen consumption, extracellular acidification, and mitochondrial respiration complex activity were detected using commercial kits. The protein level of Lgl2, LDH, monocarboxylate transporter 4 (MCT4), and activity of Akt, ERK, p38 MAPK, and Notch pathway were detected by Western blot. The stage-specific expression of Jagged1 was examined by immunohistochemistry (IHC) and qPCR after laser capture microdissection. Spermatogenesis in rat testis injected with recombinant Jagged1 (re-Jagged1) was observed by HE staining, and lactate concentration in testis lysate was measured at a different day point after re-Jagged1 treatment. RESULTS: Significant enhancement of lactate concentration was detected in a culture medium of both primary SCs and TM4 cells treated with TGF-ß3 at 3 or 5 ng/ml. Besides, other parameters of glycolysis, that is, glucose and Gln consumption, enzyme activity of PFK, LDH, and Gls displayed different levels of increment in primary SCs and TM4 cells after TGF-ß3 treatment. Mitochondria respiration of SCs was shown to decrease in response to TGF-ß3. Lgl2, MCT4, activity of ERK, and p38 MAPK were up-regulated, whereas Akt and Notch pathway activity were inhibited by TGF-ß3. Silencing of Lgl2 in SCs affected lactate production and attenuated the previous effects of TGF-ß3 on SC glycolysis except for Gln consumption, Gls activity, and activity of Akt, ERK, and p38. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment in SCs antagonized glycolysis suppression caused by Lgl2-silencing. In vivo analysis revealed a stage-specific expression of Jagged1 in contrary with TGF-ß3. Activating Notch signaling by re-Jagged1 resulted in restorable hypospermatogenesis and lowered lactate level in rat testis. CONCLUSION: TGF-ß3 induces lactate production in SC through up-regulating Lgl2, which weakened the Notch signaling activity and intensified glycolysis in SCs. Thus, besides the known function of TGF-ß3 as the BTB regulator, TGF-ß3-Lgl2-Notch may be considered an important pathway controlling SC glycolysis and spermatogenesis.
Assuntos
Células de Sertoli , Fator de Crescimento Transformador beta3 , Trifosfato de Adenosina/metabolismo , Animais , Ésteres/metabolismo , Ésteres/farmacologia , Glucose/metabolismo , Glutaminase/metabolismo , Glutaminase/farmacologia , Glutamina/metabolismo , Glutamina/farmacologia , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Masculino , Fosfofrutoquinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Ratos , Células de Sertoli/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Fator de Crescimento Transformador beta3/farmacologia , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
This study examined cooperative regulation of phosphorylation and acetylation of glycolytic enzymes on their activity and lamb meat quality. Muscle samples were divided into two groups (fast and slow) according to their glycolysis rate as defined by pH decline rate from 1 h to 1 d postmortem. In slow glycolysis rate group, the activity of hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) was lower and meat sample showed lower a*, higher shear force and cooking loss. The acetylation and phosphorylation of HK were positively correlated with HK activity. The acetylation and phosphorylation of PFK were correlated with shear force and negatively associated with PFK activity. The acetylation and phosphorylation of PK were significantly correlated with each other but showed insignificant correlations with PK activity. Briefly, the phosphorylation and acetylation of HK, PFK and PK coregulate glycolysis through different crosstalk patterns on their activity and this might affect meat quality.
Assuntos
Fosfofrutoquinase-1 , Carne Vermelha , Acetilação , Animais , Glicólise , Hexoquinase/genética , Hexoquinase/metabolismo , Fosfofrutoquinase-1/metabolismo , Fosfofrutoquinases , Fosforilação , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , OvinosRESUMO
It is well recognized that the neighbor location between cartilage layer and subchondral bone facilitates the intercellular communication and material exchange. However, the evidence that demonstrates the influence of direct communication between cartilage and subchondral bone on their cell behaviors are still partially unknown. In the current study, we established a co-culture system of chondrocytes and osteoblasts aiming to explore the changes of intracellular metabolism of chondrocytes induced by osteoblasts. By using lactate assay kit, RNA sequencing, qRT-PCR and western blot, we found that osteoblasts enhanced the glycolysis in chondrocytes by characterizing the changes of lactate secretion and cytoplasmic expression, and gene expressions including glucose-6-phosphate isomerase 1 (Gpi1), phosphofructokinase, liver type (Pfkl), lactate dehydrogenase A (Ldha), aldolase, fructose-bisphosphate C (Aldoc), phosphoglycerate kinase 1 (Pgk1), glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and triosephosphate isomerase 1 (Tpi1). The enhanced glycolysis might be due to the activation of HIF-1 signaling and its downstream target, pyruvate dehydrogenase kinase1 (PDK1), by qRT-PCR, western blot and immunofluorescence. We also detected the up-regulation of ERK and p38/MAPK upstream signaling in chondrocytes induced by osteoblasts by western blot and immunofluorescence. The enhanced glycolysis in chondrocytes induced by osteoblasts could help us to better understand the intracellular metabolic mechanism of chondrocytes and cartilage disease occurrence.
Assuntos
Condrócitos , Glucose-6-Fosfato Isomerase , Condrócitos/metabolismo , Técnicas de Cocultura , Frutose-Bifosfato Aldolase/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicólise , Lactato Desidrogenase 5 , Lactatos/metabolismo , Osteoblastos/metabolismo , Fosfofrutoquinases/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Piruvatos/metabolismo , Triose-Fosfato Isomerase/metabolismoRESUMO
Lyophyllum decastes is a common mushroom that is prone to browning during prolonged storage. In this study, the effects of ultrasonic treatment on metabolic gene expression, enzyme activity, and metabolic compounds related to L. decastes browning were investigated. Treatment of the fruiting body at 35 kHz and 300 W for 10 min reduced the browning index of L. decastes by 21.0 % and increased the L* value by 11.1 %. Ultrasonic treatment of the fruiting body resulted in higher levels of total phenols, flavonoids, and 9 kinds of amino acid with catalase (CAT) and peroxidase (POD) activities maintained at high levels. Higher cytochrome c oxidase (CCO), succinate dehydrogenase (SDH), phosphofructokinase (PFK), and pyruvate kinase (PK) activities may be ascribed to increased antioxidant capacity. Moreover, ultrasonication retained higher adenosine triphosphate (ATP) concentrations with an increased energy charge, while there were lower levels of adenosine diphosphate (ADP) and reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+), respectively. Meanwhile, lower lignin contents were observed, along with retarded polyphenol oxidase (PPO) and lipoxygenase (LOX) activities. Lower PPO activity reduced the fruiting body enzymatic browning rate through decreased expression of LdPpo1, LdPpo2, and LdPpo3 during storage at 4 °C for 16 days. This activity may be used to determine the effectiveness of ultrasonication.
Assuntos
NAD , Succinato Desidrogenase , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Agaricales , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Catecol Oxidase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Flavonoides , Lignina/metabolismo , Lipoxigenases/metabolismo , NAD/metabolismo , Fenóis/química , Fosfofrutoquinases/metabolismo , Piruvato Quinase/metabolismo , Succinato Desidrogenase/metabolismo , UltrassomRESUMO
Detection of pyrophosphate is important in quantifying enzyme activity, particularly adenylation domain activity during non-ribosomal peptide synthesis. The previous development of an enzyme coupled PPi /NADH assay allowed the measurement of such activity in an online fashion using commercially available components. Now, with a key enzyme - 6-phosphofructokinase - no longer available, we have screened and identified viable replacement enzymes that can be expressed in high yield and that are far superior in activity to the now discontinued commercial product. This will support the ability of groups to continue to use this established online assay for pyrophosphate detection.
Assuntos
Difosfatos , Fosfofrutoquinases , NAD , Peptídeos , Fosfofrutoquinase-1RESUMO
In this issue, Harris et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202203095) show that phosphofructokinase is a substrate for ubiquitination by Fbxo7, a key protein in the ubiquitination pathway. Their findings point to a new interplay between metabolic enzyme degradation in the regulation of T cells.
Assuntos
Proteínas F-Box , Fosfofrutoquinases , Linfócitos T , Ubiquitinação , Proteínas F-Box/metabolismo , Humanos , Fosfofrutoquinases/metabolismo , Linfócitos T/metabolismoRESUMO
Hypertension is an important risk factor in the pathogenesis of diastolic dysfunction. Growing evidence indicates that glucose metabolism plays an essential role in diastolic dysfunction. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism and heart failure (HF). In the present study, we investigated the role of TIGAR in diastolic function and cardiac fibrosis during pressure overload (PO)-induced HF. WT mice subjected to transverse aortic constriction (TAC), a commonly used method to induce diastolic dysfunction, exhibited diastolic dysfunction as evidenced by increased E/A ratio and E/E' ratio when compared to its sham controls. This was accompanied by increased cardiac interstitial fibrosis. In contrast, the knockout of TIGAR attenuated PO-induced diastolic dysfunction and interstitial fibrosis. Mechanistically, the levels of glucose transporter Glut-1, Glut-4, and key glycolytic enzyme phosphofructokinase 1 (PFK-1) were significantly elevated in TIGAR KO subjected to TAC as compared to that of WT mice. Knockout of TIGAR significantly increased fructose 2,6-bisphosphate levels and phosphofructokinase activity in mouse hearts. In addition, PO resulted in a significant increase in perivascular fibrosis and endothelial activation in the WT mice, but not in the TIGAR KO mice. Our present study suggests a necessary role of TIGAR-mediated glucose metabolism in PO-induced cardiac fibrosis and diastolic dysfunction.
Assuntos
Proteínas Reguladoras de Apoptose , Insuficiência Cardíaca , Fosfofrutoquinases , Monoéster Fosfórico Hidrolases , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Diástole , Modelos Animais de Doenças , Fibrose , Glucose/metabolismo , Glicólise , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/enzimologia , Fosfofrutoquinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismoRESUMO
The effect of perturbation at the allosteric site was investigated through several replicas of molecular dynamics (MD) simulations conducted on bacterial phosphofructokinase (SaPFK). In our previous work, an alternative binding site was estimated to be allosteric in addition to the experimentally reported one. To highlight the effect of both allosteric sites on receptor's dynamics, MD runs were carried out on apo forms with and without perturbation. Perturbation was achieved via incorporating multiple bond restraints for residue pairs located at the allosteric site. Restraints applied to the predicted site caused one dimer to stiffen, whereas an increase in mobility was detected in the same dimer when the experimentally resolved site was restrained. Fluctuations in Cα-Cα distances which is used to disclose residues with high potential of communication indicated a marked increase in signal transmission within each dimer as the receptor switched to a restrained state. Cross-correlation of positional fluctuations indicated an overall decrease in the magnitude of both positive and negative correlations when restraints were employed on the predicted allosteric site whereas an exact opposite effect was observed for the reported site. Finally, mutual correspondence between positional fluctuations noticeably increased with restraints on predicted allosteric site, whereas an opposite effect was observed for restraints applied on experimentally reported one. In view of these findings, it is clear that the perturbation of either one of two allosteric sites effected the dynamics of the receptor with a distinct and contrasting character.
Assuntos
Fosfofrutoquinases , Staphylococcus aureus , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Simulação de Dinâmica Molecular , Fosfofrutoquinases/química , Staphylococcus aureus/enzimologiaRESUMO
T lymphoma invasion and metastasis 1 (Tiam1) as a tumor-associated gene specifically activates Rho-like GTPases Rac1 and implicates in the invasive phenotype of many cancers. Altering the glycolytic pathway is foreseen as a sound approach to trigger cancer regression. However, the mechanism of Tiam1 in breast cancer (BC) glycolysis reprogramming remains to be clarified. Here, we reported the Tiam1 high expression and prognostic significance in BC. In vitro and in vivo experimental assays identified the functional role of Tiam1 in promoting BC cell proliferation, metastasis and glycolysis reprogramming. Mechanistically, we showed for the first time that Tiam1 could interact with the crucial glycolytic enzyme phosphofructokinase, liver type (PFKL) and promote the evolution of BC in a PFKL-dependent manner. Moreover, miR-21-5p was found to exacerbate the BC proliferation and aggression by targeting Tiam1. Altogether, our study highlights the critical role of Tiam1 in BC development and that the miR-21-5p/Tiam1/PFKL signaling pathway may serve as a target for new anti-BC therapeutic strategies.
Assuntos
Neoplasias da Mama , Glicólise , MicroRNAs , Fosfofrutoquinase-1 Hepática , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Fígado/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Fosfofrutoquinase-1 Hepática/metabolismo , Fosfofrutoquinases/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismoRESUMO
Phosphofructokinase (PFK), the key enzyme of glycolysis, can catalyze the irreversible transphosphorylation of fructose-6-phosphate forming fructose-1, 6-biphosphate. In the present study, a PFK gene from the mud crab Scylla paramamosain, named SpPFK, was cloned and characterized. The full length of SpPFK contained a 5'untranslated region (UTR) of 249 bp, an open reading frame of 2,859 bp, and a 3'UTR of 1,248 bp. The mRNA of SpPFK was highly expressed in the gill, followed by the hemocytes and muscle. The expression of SpPFK was significantly up-regulated after mud crab dicistrovirus-1 (MCDV-1) infection. Knocking down SpPFK in vivo by RNA interference significantly reduced the expression of lactate dehydrogenase after MCDV-1 infection. Furthermore, silencing of SpPFK in vivo increased the survival rate of mud crabs and decreased the MCDV-1 copies in the gill and hepatopancreas after MCDV-1 infection. All these results suggested that SpPFK could play an important role in the process of MCDV-1 proliferation in mud crab.
Assuntos
Braquiúros , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Proliferação de Células , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , FilogeniaRESUMO
Streptococcus thermophilus is widely used in the dairy industry for the manufacturing of fermented milk and cheeses and probiotic formulations. S. thermophilus evolved from closely phylogenetically related pathogenic streptococci through loss-of-function events counterbalanced by the acquisition of relevant traits, such as lactose and urea utilization for the adaptation to the milk environment. In the context of regressive evolution, the urease gene cluster accounts for 0.9% of the total coding sequence belonging to known functional categories. The fate of ammonia and carbon dioxide derived by urea hydrolysis in several biosynthetic pathways have been depicted, and the positive effect of urease activity on S. thermophilus growth fitness and lactic acid fermentation in milk has been already addressed by several authors. However, the mechanistic effect of urea hydrolysis on the energetic metabolisms of S. thermophilus is still unclear. This study aimed to assess the effect of urease activity on the growth and energy metabolism of Streptococcus thermophilus in milk. In milk, 13C-urea was completely hydrolyzed in the first 150 min of S. thermophilus growth, and urea hydrolysis was accompanied by an increase in cell density and a reduction in the generation time. By using energetically discharged cells with gene transcription and translation blocked, we showed that in the presence of fermentable carbon sources, urease activity, specifically the production of ammonia, could dramatically boost glycolysis and, in cascade, homolactic fermentation. Furthermore, we showed that ammonia, specifically ammonium ions, were potent effectors of phosphofructokinase, a key glycolytic enzyme. IMPORTANCE Finding that ammonia-generating enzymes, such as urease, and exogenous ammonia act on phosphofructokinase activity shed new light on the regulatory mechanisms that govern glycolysis. Phosphofructokinase is the key enzyme known to exert a regulatory role on glycolytic flux and, therefore, ammonia as an effector of phosphofructokinase acts, in cascade, modulating the glycolytic pathway. Apart from S. thermophilus, due to the high conservation of glycolytic enzymes in all branches of the tree of life and being aware of the role of ammonia as an effector of phosphofructokinase, we propose to reevaluate the physiological role of the ammonia production pathways in all organisms whose energy metabolism is supported by glycolysis.