RESUMO
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Assuntos
Biofilmes , Indóis , Proteínas de Membrana , Polímeros , Biofilmes/efeitos dos fármacos , Polímeros/química , Animais , Indóis/química , Indóis/farmacologia , Camundongos , Proteínas de Membrana/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Porosidade , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Transdução de Sinais/efeitos dos fármacos , Terapia Fototérmica , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.
Assuntos
Neoplasias Ósseas , Regeneração Óssea , Cálcio , Ácido Gálico , Células-Tronco Mesenquimais , Ácido Gálico/química , Regeneração Óssea/efeitos dos fármacos , Animais , Cálcio/metabolismo , Neoplasias Ósseas/terapia , Neoplasias Ósseas/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Terapia Fototérmica/métodos , Osteogênese/efeitos dos fármacos , Camundongos , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular TumoralRESUMO
Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.
Assuntos
Imunoterapia , Nanomedicina , Animais , Imunoterapia/métodos , Nanomedicina/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Terapia Fototérmica/métodos , Camundongos , Humanos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Adesivos/química , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologiaRESUMO
Breast cancer is a malignant tumor that poses a significant threat to women's health and single therapy fails to play a good oncological therapeutic effect. Synergistic treatment with multiple strategies may make up for the deficiencies and has gained widespread attention. In this study, sulfhydryl-modified hyaluronic acid (HA-SH) was covalently crosslinked with polydopamine (PDA) via a Michael addition reaction to develop an injectable hydrogel, in which PDA can be used not only as a matrix but also as a photothermal agent. After HSA and paclitaxel were spontaneously organized into nanoparticles via hydrophobic interaction, hyaluronic acid with low molecular weight was covalently linked to HSA, thus conferring effectively delivery. This photothermal injectable hydrogel incorporates PTX@HSA-HA nanoparticles, thereby initiating a thermochemotherapeutic response to target malignancy. Our results demonstrated that this injectable hydrogel possesses consistent drug delivery capability in a murine breast cancer model, collaborating with photothermal therapy to effectively suppress tumor growth, represented by low expression of Ki-67 and increasing apoptosis. Photothermal therapy (PTT) can effectively stimulate immune response by increasing IL-6 and TNF-α. Notably, the treatment did not elicit any indications of toxicity. This injectable hydrogel holds significant promise as a multifaceted therapeutic agent that integrates photothermal and chemotherapeutic modalities.
Assuntos
Neoplasias da Mama , Ácido Hialurônico , Hidrogéis , Paclitaxel , Terapia Fototérmica , Animais , Ácido Hialurônico/química , Hidrogéis/química , Hidrogéis/farmacologia , Feminino , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos , Terapia Fototérmica/métodos , Paclitaxel/farmacologia , Paclitaxel/química , Paclitaxel/administração & dosagem , Humanos , Indóis/química , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Polímeros/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Nanopartículas/química , Portadores de Fármacos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fototerapia/métodosRESUMO
Bleeding and bacterial infection are common problems associated with wound treatment, while effective blood clotting and vessel regeneration promotion are the primary considerations to design the wound dressing materials. This research presents a chitosan-based hydrogel with grafted quaternary ammonium and polyphosphate (QCSP hydrogel) as the antibacterial hemostatic dressing to achieve burn wound treatment. The tissue adhesion of the hydrogel sealed the blood flow and the polyphosphate grafted to the chitosan promoted the activation of coagulation factor V to enhance the hemostasis. At the same time, the grafted quaternary ammonium enhanced the antibacterial ability of the biodegradable hydrogel wound dressing. In addition, the polydopamine as a photothermal agent was composited into the hydrogel to enhance the antibacterial and reactive oxygen scavenging performance. The in vivo hemostasis experiment proved the polyphosphate enhanced the coagulation property. Moreover, this photothermal property of the composite hydrogel enhanced the burn wound repairing rate combined with the NIR stimulus. As a result, this hydrogel could have potential application in clinic as dressing material for hemostasis and infection prone would repairing.
Assuntos
Antibacterianos , Queimaduras , Quitosana , Hemostasia , Hidrogéis , Indóis , Polímeros , Cicatrização , Quitosana/química , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Queimaduras/tratamento farmacológico , Queimaduras/terapia , Polímeros/química , Polímeros/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Indóis/química , Indóis/farmacologia , Cicatrização/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Camundongos , Hemostáticos/química , Hemostáticos/farmacologia , Bandagens , Masculino , Ratos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ratos Sprague-Dawley , Testes de Sensibilidade Microbiana , Terapia Fototérmica/métodosRESUMO
The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors. Analysis of publications and FDA databases showed that despite numerous clinical studies of graphene-based materials conducted worldwide, there is a lack of information on the clinical trials on the use of graphene-based conjugates for the targeted drug delivery and diagnostics. The review will be helpful for researchers working in development of carbon nanostructures, material science, medicinal chemistry, and nanobiomedicine.
Assuntos
Grafite , Neoplasias , Nanomedicina Teranóstica , Grafite/química , Grafite/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Fotoquimioterapia , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Terapia Fototérmica/métodosRESUMO
Introduction: Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods: Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results: The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion: Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.
Assuntos
Antibacterianos , Grafite , Hidrogéis , Prata , Cicatrização , Grafite/química , Grafite/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Humanos , Camundongos , Terapia Fototérmica/métodos , Nanopartículas/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Movimento Celular/efeitos dos fármacosRESUMO
Background: Photothermal therapy (PTT) guided by photoacoustic imaging (PAI) using nanoplatforms has emerged as a promising strategy for cancer treatment due to its efficiency and accuracy. This study aimed to develop and synthesize novel second near-infrared region (NIR-II) absorption-conjugated polymer acceptor acrylate-substituted thiadiazoloquinoxaline-diketopyrrolopyrrole polymers (PATQ-DPP) designed specifically as photothermal and imaging contrast agents for nasopharyngeal carcinoma (NPC). Methods: The PATQ-DPP nanoparticles were synthesized and characterized for their optical properties, including low optical band gaps. Their potential as PTT agents and imaging contrast agents for NPC was evaluated both in vitro and in vivo. The accumulation of nanoparticles at tumor sites was assessed post-injection, and the efficacy of PTT under near-infrared laser irradiation was investigated in a mouse model of NPC. Results: Experimental results indicated that the PATQ-DPP nanoparticles exhibited significant photoacoustic contrast enhancement and favorable PTT performance. Safety and non-toxicity evaluations confirmed the biocompatibility of these nanoparticles. In vivo studies showed that PATQ-DPP nanoparticles effectively accumulated at NPC tumor sites and demonstrated excellent tumor growth inhibition upon exposure to near-infrared laser irradiation. Notably, complete elimination of nasopharyngeal tumors was observed within 18 days following PTT. Discussion: The findings suggest that PATQ-DPP nanoparticles are a promising theranostic agent for NIR-II PAI and PTT of tumors. This innovative approach utilizing PATQ-DPP nanoparticles provides a powerful tool for the early diagnosis and precise treatment of NPC, offering a new avenue in the management of this challenging malignancy.
Assuntos
Nanopartículas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Técnicas Fotoacústicas , Terapia Fototérmica , Animais , Técnicas Fotoacústicas/métodos , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/diagnóstico por imagem , Terapia Fototérmica/métodos , Camundongos , Linhagem Celular Tumoral , Humanos , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/diagnóstico por imagem , Nanopartículas/química , Raios Infravermelhos , Camundongos Nus , Meios de Contraste/química , Camundongos Endogâmicos BALB C , Polímeros/química , FemininoRESUMO
Background: At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism. To uphold the required drug concentration, patients must undergo frequent chemotherapy sessions. Purpose: To address these challenges above, we need to develop a secure and effective drug delivery system (FA-PEG-PDA-DOX) for the fundus. Methods: We offered superior therapeutic efficacy with minimal or no side effects and successfully established orthotopic mouse models. We evaluated cellular uptake performance and targeting efficiency of FA-PEG-PDA-DOX nanosystem and assessed its synergistic antitumor effects in vitro and vivo. Biodistribution assessments were performed to determine the retention time and targeting efficiency of the NPs in vivo. Additionally, safety assessments were conducted. Results: Cell endocytosis rates of the FA-PEG-PDA-DOX+Laser group became 5.23 times that of the DOX group and 2.28 times that of FA-PEG-PDA-DOX group without irradiation. The fluorescence signal of FA-PEG-PDA-DOX persisted for more than 120 hours at the tumor site. The number of tumor cells (17.2%) in the proliferative cycle decreased by 61.6% in the photothermal-chemotherapy group, in contrast to that of the saline control group (78.8%). FA-PEG-PDA-DOX nanoparticles(NPs) exhibited favorable biosafety and high biocompatibility. Conclusion: The dual functional targeted nanosystem, with the effects of DOX and mild-temperature elevation by irradiation, resulted in precise chemo/photothermal therapy in nude mice model.
Assuntos
Doxorrubicina , Indóis , Terapia Fototérmica , Polímeros , Retinoblastoma , Animais , Retinoblastoma/terapia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Camundongos , Terapia Fototérmica/métodos , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Linhagem Celular Tumoral , Polímeros/química , Distribuição Tecidual , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Camundongos Nus , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias da Retina/terapia , Neoplasias da Retina/tratamento farmacológico , Camundongos Endogâmicos BALB C , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administração & dosagem , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinéticaRESUMO
Photoacoustic imaging is a hybrid modality that combines high-contrast and spectroscopy-based optical imaging specificity with the high spatial resolution of ultrasonography. This review highlights the development and progress of photoacoustic imaging technology over the past decade. This imaging technology has evolved to be more user-friendly, cost-effective, and portable, demonstrating its potential for diverse clinical applications. A potential clinical application lies in the use of photoacoustic imaging as a guiding tool for photothermal therapy. This review was conducted by initially filtering through three databases, namely, Google Scholar, PubMed, and Scopus, resulting in 460 articles published between 2019 and May 2023. Of these, 54 articles were deemed suitable for review after identification. The selected articles were research papers focusing on the development of therapeutic agents that enhance contrast in photoacoustic imaging. All reviewed articles tested these agents both in vitro and in vivo. This review focuses on wavelength absorption and radiation sources for photothermal therapy. The developed agents predominantly used NIR-I wavelengths, whereas the NIR-II region has been less explored, indicating significant potential for future research. This review provides comprehensive insights into the advancement of compounds serving as therapeutic agents and contrast agents in photoacoustic imaging-guided photothermal therapy.
Assuntos
Meios de Contraste , Técnicas Fotoacústicas , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Humanos , Meios de Contraste/química , Terapia Fototérmica/métodos , Animais , Neoplasias/terapia , Neoplasias/diagnóstico por imagemRESUMO
The early monitoring and inactivation of bacteria are of crucial importance in preventing the further spread of foodborne pathogens. Staphylococcus aureus (S. aureus), a prototypical foodborne pathogen, is widely present in the natural environment and has the capability to trigger a range of diseases at low concentrations. In this work, we designed Fe3O4@SiO2-Au core-shell-satellite nanocomposites (NCs) modified with aptamer for efficient capture, high-sensitivity surface-enhanced Raman scattering (SERS) detection, and photothermal therapy (PTT) against S. aureus. Fe3O4@SiO2-Au NCs with tunable Au nanocrystal nanogaps were prepared. By combining the finite-difference time-domain (FDTD) method and experimental results, we studied the electric field distribution of Fe3O4@SiO2-Au under different Au nanogaps and ultimately obtained the optimal SERS substrate FSA-60. The modification of aptamer on the surfaces of FSA-60 could be used for the specific capture and selective detection of S. aureus, achieving a detection limit of as low as 50 cfu/mL. Furthermore, Apt-FSA-60 possessed excellent photothermal properties, demonstrating the strong photothermal killing ability against S. aureus. Therefore, Apt-FSA-60 is a promising high-sensitivity SERS substrate and efficient photothermal agent and is expected to be widely applied and promoted in future disease prevention and treatment.
Assuntos
Aptâmeros de Nucleotídeos , Ouro , Nanocompostos , Dióxido de Silício , Análise Espectral Raman , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Dióxido de Silício/química , Nanocompostos/química , Análise Espectral Raman/métodos , Ouro/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Terapia Fototérmica/métodosRESUMO
Microcarrier is a promising drug delivery system demonstrating significant value in treating cancers. One of the main goals is to devise microcarriers with ingenious structures and functions to achieve better therapeutic efficacy in tumors. Here, inspired by the nucleus-cytoplasm structure of cells and the material exchange reaction between them, we develop a type of biorthogonal compartmental microparticles (BCMs) from microfluidics that can separately load and sequentially release cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) for tumor therapy. The Tz-ICG works not only as an activator for TCO-DOX but also as a photothermal agent, allowing for the combination of bioorthogonal chemotherapy and photothermal therapy (PTT). Besides, the modification of DOX with cyclooctene significantly decreases the systemic toxicity of DOX. As a result, the developed BCMs demonstrate efficient in vitro tumor cell eradication and exhibit notable tumor growth inhibition with favorable safety. These findings illustrate that the formulated BCMs establish a platform for bioorthogonal prodrug activation and localized delivery, holding significant potential for cancer therapy and related applications.
Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Verde de Indocianina , Terapia Fototérmica , Pró-Fármacos , Doxorrubicina/farmacologia , Doxorrubicina/química , Terapia Fototérmica/métodos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Animais , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , FemininoRESUMO
Calcium-overload-mediated tumor therapy has received considerable interest in oncology. However, its efficacy has been proven to be inadequate due to insufficient calcium ion concentration at the tumor site coupled with challenges in facilitating efficient calcium uptake by tumors, leading to unsatisfactory therapeutic outcomes. In the present study, calcium carbonate nanoshell mineralized ferric polydopamine nanoparticles (Fe-PDA@CaCO3 NPs) were prepared for achieving Ca2+-overload-mediated tumor therapy. Upon entering the tumor site, the pH-responsive CaCO3 layer, acting as a "Ca2+ storage pool", rapidly degraded and released high quantities of free Ca2+ within the weakly acidic environment. The Fe-PDA core, with its excellent photothermal conversion properties, could significantly increase the temperature upon exposure to near-infrared (NIR) light irradiation, thereby activating the TRPV1 channel and leading to a large influx of released Ca2+ into the cytoplasm. Furthermore, the exposed Fe-PDA core could react with the tumor-overexpressed hydrogen peroxide (H2O2) to efficiently produce hydroxyl radicals (â¢OH), significantly increasing intracellular reactive oxygen species (ROS) levels and thus inhibiting the activity of the Ca2+ efflux pump, resulting in a high intracellular Ca2+ concentration. Ultimately, the increase in calcium/ROS levels could disrupt mitochondrial homeostasis and activate the apoptosis pathway. The current work presents a promising approach for tumor therapy using photothermal-enhanced calcium-overload-mediated ion interference therapy and chemodynamic therapy.
Assuntos
Carbonato de Cálcio , Cálcio , Indóis , Nanopartículas , Polímeros , Espécies Reativas de Oxigênio , Carbonato de Cálcio/química , Indóis/química , Indóis/farmacologia , Animais , Cálcio/química , Cálcio/metabolismo , Camundongos , Polímeros/química , Polímeros/farmacologia , Humanos , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Raios Infravermelhos , Ferro/química , Terapia Fototérmica , Antineoplásicos/química , Antineoplásicos/farmacologia , Peróxido de Hidrogênio/química , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismoRESUMO
Reactive oxygen species (ROS) hold great potential in tumor pyroptosis therapy, yet they are still limited by short species lifespan and limited diffusion distance. Inducing cells into a metastable state and then applying external energy can effectively trigger pyroptosis, but systemic sensitization still faces challenges, such as limited ROS content, rapid decay, and short treatment windows. Herein, a nanohybrid-based redox homeostasis-perturbator system was designed that synergistically induce early lysosomal escape, autophagy inhibition, and redox perturbation functions to effectively sensitize cells to address these challenges. Specifically, weakly alkaline layered double hydroxide nanosheets (LDH NSs) with pH-responsive degradation properties enabled early lysosomal escape within 4 h, releasing poly(L-dopa) nanoparticles for inducing catechol-quinone redox cycling in the cytoplasm. The intracellular ROS levels were systematically rebounded by 3-4 times in tumor cells and lasted for over 4 h. Subsequently induced lysosomal stress and Ca2+ signaling activation resulted in severe mitochondrial dysfunction, as well as a perilous metastable state. Thereby, sequential near-infrared light was applied to trigger amplified stress through a local photothermal conversion. This led to sufficiently high levels of cleaved caspase-1 and GSDMD activation (2.5-2.8-fold increment) and subsequent pyroptosis response. In addition, OH- released by LDH elevated pH to alleviate the limitation of glutathione depletion by quinones at acidic pH and inhibit protective autophagy. Largely secreted inflammatory factors (2.5-5.6-fold increment), efficient maturation of dendritic cells, and further immune stimulation were boosted for tumor inhibition as a consequence. This study offers a new paradigm and insights into the synergy of internal systematic cellular sensitization and sequential external energy treatment to achieve tumor suppression through pyroptosis.
Assuntos
Homeostase , Lisossomos , Oxirredução , Piroptose , Piroptose/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Animais , Camundongos , Homeostase/efeitos dos fármacos , Homeostase/efeitos da radiação , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Terapia Fototérmica , Hidróxidos/química , Hidróxidos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismoRESUMO
Implant-associated infections and delayed osseointegration are major challenges for the clinical success of titanium implants. To enhance antibacterial effects and promote early osseointegration, we developed a synergistic photothermal (PTT)/photodynamic (PDT) therapy strategy based on near-infrared (NIR) responsive biomimetic micro/nano titanate/TiO2-X heterostructure coatings (KMNW and NaMNS) in situ constructed on the surface of titanium implants. Specifically, KMNW and NaMNS significantly enhanced photothermal conversion capabilities, achieving localized high temperatures of 48-51 °C and promoting substantial amounts of reactive oxygen species production under 808 nm irradiation. In vitro antibacterial experiments demonstrated that KMNW achieved the highest antibacterial rates against Staphylococcus aureus and Escherichia coli, at 98.78 and 98.33% respectively. Moreover, by mimicking the three-dimensional fibrous network of the extracellular matrix during bone healing, both KMNW and NaMNS markedly promoted the proliferation and osteogenic differentiation of osteoblasts. In vivo implantation studies further confirmed these findings, with KMNW and NaMNS exhibiting superior antibacterial performance under NIR irradiationâ94.45% for KMNW and 92.66% for NaMNS. Moreover, KMNW and NaMNS also significantly promoted new bone formation and improved osseointegration in vivo. This study presents a promising PTT/PDT therapeutic strategy for dentistry and orthopedics by employing NIR-responsive biomimetic coatings to combat implant-associated infection and accelerate osseointegration.
Assuntos
Antibacterianos , Escherichia coli , Raios Infravermelhos , Osseointegração , Staphylococcus aureus , Titânio , Titânio/química , Titânio/farmacologia , Osseointegração/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Animais , Staphylococcus aureus/efeitos dos fármacos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/efeitos da radiação , Próteses e Implantes , Fotoquimioterapia , Camundongos , Terapia Fototérmica , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacosRESUMO
Purpose: Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods: Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results: Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion: This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.
Assuntos
Bufanolídeos , Neoplasias Colorretais , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Terapia Fototérmica , Animais , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/farmacocinética , Humanos , Glicólise/efeitos dos fármacos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Terapia Fototérmica/métodos , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Indóis/química , Indóis/farmacologia , Polietilenoglicóis/química , Polímeros/química , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Camundongos Nus , Células HCT116 , Nanopartículas de Magnetita/química , Nanopartículas/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The design of multifunctional nanocarriers with enhanced photothermal efficiency is of great significance for the photothermal therapy of cancer. In this study, hollow CuS@gold nanorods/polydopamine (HCuS@AuNRs/PDA) nanohybrids with synergistically enhanced photothermal efficiency were prepared by electrostatic self-assembly method. The high photothermal conversion efficiency of HCuS@AuNRs (55.88%) is attributed to the interfacial electron transfer between CuS and AuNRs, as well as the increase in free charge carrier concentration. The excellent adhesion performance and strong negative charge of PDA ensure a high doxorubicin hydrochloride (DOX) loading efficiency of 96.08% for HCuS@AuNRs/PDA. In addition, HCuS@AuNRs/PDA reveals outstanding NIR/pH dual-responsive drug release properties owing to the weakened interaction between PDA and DOX in acidic media and the distinct NIR responsiveness of HCuS@AuNRs. In vitro cell viability results confirm that HCuS@AuNRs/PDA could efficiently kill tumor cells under the dual effect of acidic media and NIR laser. This study presents a novel nanocarrier with synergistically enhanced NIR photothermal responsiveness and high drug loading capacity, which provides a versatile platform in intelligent drug release and photothermal therapy.
Assuntos
Sobrevivência Celular , Cobre , Doxorrubicina , Ouro , Indóis , Polímeros , Doxorrubicina/farmacologia , Doxorrubicina/química , Ouro/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Polímeros/química , Indóis/química , Indóis/farmacologia , Cobre/química , Cobre/farmacologia , Nanotubos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Terapia Fototérmica , Fototerapia , Linhagem Celular TumoralRESUMO
We present an intelligent photothermal therapy agents by functionalizing gold nanoparticles with specific nucleic acid sequences. Hairpin nucleic acids are modified to the nanoparticles, forming AuNPs-1 and AuNPs-2. Upon infiltrating cancer cells, these nanoparticles undergo catalytic hairpin assembly in the presence of target miRNA, leading to aggregation and subsequent photothermal conversion. Under near-infrared laser irradiation, aggregated gold nanoparticles exhibit efficient photothermal conversion, selectively damaging cancer cells. This approach offers heightened selectivity, as nanoparticles only aggregate in environments with cancer biomarkers present, sparing normal cells. Cytotoxicity assays confirm minimal toxicity to normal cells. In vivo studies on mice bearing solid tumors validate the system's efficacy in tumor regression. Overall, this study highlights the potential of nucleic acid-functionalized gold nanoparticles in intelligent and selective cancer photothermal therapy, offering insights for targeted diagnosis and treatment development.
Assuntos
Ouro , Nanopartículas Metálicas , Terapia Fototérmica , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias/terapia , MicroRNAs/genética , Fototerapia/métodosRESUMO
Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.
Assuntos
Antineoplásicos , Titânio , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Titânio/química , Titânio/farmacologia , Ferroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Platina/química , Platina/farmacologia , Sorafenibe/farmacologia , Sorafenibe/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Fototérmica , Nanopartículas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB CRESUMO
Background: A successful immune response against tumors depends on various cellular processes. Hence, there is an urgent need to construct a proficient nanoplatform for immunotherapy that can concurrently regulate the activities of various cells participating in the immune process. We have developed zeolitic imidazolate framework-8 (ZIF-8) formula, with good pH sensitivity, which is conducive to the release of drugs in the tumor site (acidic environment) and significantly improves immunotherapy. This is achieved through the coordinated action of different therapeutic agents, such as the photothermal agent polydopamine (PDA), the chemodrug camptothecin (CPT), and the immunomodulator 1-methyl-D-tryptophan (1-MT). Materials and Methods: In this study, we evaluated the antitumor effect of PDA/(CPT + 1-MT) @ZIF-8 (PCMZ) nanoparticles (NPs) in vitro and in vivo and investigated the molecular mechanism of PCMZ NPs in tumor suppression via photothermal-chemo-immunotherapy. Results: MTT and Annexin V-FITC/PI double staining apoptosis test showed that PCMZ NPs could induce apoptosis of 4T1 cell, and PCMZ NPs could cause 4T1 cell necrosis under 808 nm laser irradiation. The objective is to establish a unilateral breast cancer model in mice and investigate the effect of PCMZ NPs on tumor growth and tumor suppression in tumor bearing mice. The results showed that PCMZ NPs showed good heating effect in vivo and effectively inhibited tumor growth under 808 nm laser irradiation. In addition, PCMZ NPs could induce the immunogenic death of tumor cells, promote the maturation of DCs, inhibit IDO pathway, and finally differentiate T cells into cytotoxic T cells and helper T cells, so as to effectively activate the anti-tumor immune response. Conclusion: The PCMZ NPs, possessing good photothermal conversion capabilities due to join of PDA, effectively overcome two main challenges in immunotherapy: insufficient stimulation of the immune response and evasion of the immune system. This provides a robust platform against invasive cancer and recurrent tumors.