Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 79(1): 18, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905116

RESUMO

Two novel bacteria species designated Marseille-Q1000T and Marseille-Q0999T were isolated from urine samples of patients in Sokoto, Northwest-Nigeria. They were Gram-positive bacteria and belong to two different genera, Bhargavaea and Dietzia. The genome size and G + C content of Marseille-Q1000T and Marseille-Q0999T were 3.07 and 3.51 Mbp with 53.8 and 71.0 mol% G + C content, respectively. The strains exhibited unique phenotypic and genomic features that are substantially different from previously known bacterial species with standing in nomenclature. On the basis of the phenotypic, phylogenetic and genomic characteristics, strains Marseille-Q0999T (= CSURQ0999 = DSM 112394) and Marseille-Q1000T (= CSURQ1000 = DSM 112384) were proposed as the type strains of Bhargavaea massiliensis sp. nov., and Dietzia massiliensis sp. nov., respectively.


Assuntos
Planococáceas , DNA Bacteriano/genética , Humanos , Nigéria , Filogenia , RNA Ribossômico 16S/genética
2.
Bioresour Technol ; 340: 125635, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34339998

RESUMO

This study aims to construct a high-temperature-resistant microbial consortium to effectively degrade oily food waste by Fed-in-situ biological reduction treatment (FBRT). Oil degrading bacteria were screened under thermophilic conditions of mineral salt medium with increased oil content. The oil degradation and emulsification ability of each stain was evaluated and their synergetic improvement was further confirmed. Consortium of Bacillus tequilensis, Bacillus licheniformis, Bacillus sonorensis and Ureibacillus thermosphaericus was selected and applicated as bacterial agents in FBRT under 55 °C. Changes in pH, moisture, bacterial community and key components of food waste were monitored for 5 days during processing. Facilitated by the bacterial consortium, FBRT gave superior total mass reduction (86.61 ± 0.58% vs. 67.25 ± 1.63%) and non-volatile solids reduction (65.91 ± 1.53% vs. 28.53 ± 2.29%) compared with negative control, the feasibility and efficiency of present FBRT providing a promising in-situ disposal strategy for rapid reduction of oily food waste.


Assuntos
Consórcios Microbianos , Eliminação de Resíduos , Bacillus , Biodegradação Ambiental , Alimentos , Planococáceas , Temperatura
3.
Antonie Van Leeuwenhoek ; 114(7): 1107-1115, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33973094

RESUMO

A novel bacterial strain, designated C23T, was isolated from a soil sample obtained from King George Island, Antarctica. Phenotypic, phylogenetic, chemotaxonomic and molecular analyses were performed on the new isolate. Strain C23T formed orange colonies on agar plates and was Gram-stain-positive. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain C23T was a member of the genus Planococcus and was closely related to Planococcus salinarum DSM 23802T (98.5% sequence similarity), Planococcus halotolerans SCU63T (98.3%), Planomicrobium okeanokoites IFO 12526T (98.3%), Planococcus donghaensis DSM 22276T (98.3%) and Planococcus maitriensisi S1T (98.2%). This organism grew at 2-38 °C (optimum, 25-30 °C), pH 6.0-12.0 (optimum, pH 7.5) and 0-14% (w/v) NaCl (optimum, 2%). The predominant menaquinone was MK-8. The major cellular fatty acids were anteiso-C15:0, iso-C14:0 and C16:1 ω7c alcohol. The whole genome DNA of C23T was deposited in the GenBank database under accession number WXYN00000000. According to the whole genome, the DNA G + C content of strain C23T was determined to be 46.8 mol%; the average nucleotide identity (ANI) of strain C23T and P. salinarum DSM 23802T, P. halotolerans SCU63T, P. okeanokoites IFO 12526T, P. donghaensis DSM 22276T and P. maitriensis S1T were 74.1%, 74.3%, 74.1%, 78.8 and 73.6%; the digital DNA-DNA hybridization (dDDH) values between strain C23T and the five closely related species were 19.7%, 19.6%, 19.5%, 22.4 and 18.6%; the average amino acid identity (AAI) values between strain C23T and the five closely related species were 73.9%, 74.5%, 74.4%, 84.6 and 74.5%. All data were below the threshold range for species determination. Based on the polyphasic taxonomic study, we considered that strain C23T represented a novel species of the genus Planococcus for which the name Planococcus soli sp. nov. is proposed. The type strain is C23T (= KCTC 33644T = CGMCC 1.15115T).


Assuntos
Microbiologia do Solo , Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Filogenia , Planococáceas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Mar Drugs ; 19(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809116

RESUMO

With the widespread occurrence of aquaculture diseases and the broad application of antibiotics, drug-resistant pathogens have increasingly affected aquatic animals' health. Marine probiotics, which live under high pressure in a saltwater environment, show high potential as a substitute for antibiotics in the field of aquatic disease control. In this study, twenty strains of non-hemolytic bacteria were isolated from the intestine of wild oysters and perch, and a model of Caenorhabditis elegans infected by Vibrio anguillarum was established. Based on the model, ML1206, which showed a 99% similarity of 16S rRNA sequence to Planococcus maritimus, was selected as a potential marine probiotic, with strong antibacterial capabilities and great acid and bile salt tolerance, to protect Caenorhabditis elegans from being damaged by Vibrio anguillarum. Combined with plate counting and transmission electron microscopy, it was found that strain ML1206 could significantly inhibit Vibrio anguillarum colonization in the intestinal tract of Caenorhabditis elegans. Acute oral toxicity tests in mice showed that ML1206 was safe and non-toxic. The real-time qPCR results showed a higher expression level of genes related to the antibacterial peptide (ilys-3) and detoxification (ugt-22, cyp-35A3, and cyp-14A3) in the group of Caenorhabditis elegans protected by ML1206 compared to the control group. It is speculated that ML1206, as a potential probiotic, may inhibit the infection caused by Vibrio anguillarum through stimulating Caenorhabditis elegans to secrete antibacterial effectors and detoxification proteins. This paper provides a new direction for screening marine probiotics and an experimental basis to support the potential application of ML1206 as a marine probiotic in aquaculture.


Assuntos
Caenorhabditis elegans/microbiologia , Planococáceas , Probióticos/administração & dosagem , Vibrioses/prevenção & controle , Animais , Aquicultura , Feminino , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ostreidae/microbiologia , Planococáceas/genética , Planococáceas/isolamento & purificação , Probióticos/toxicidade , RNA Ribossômico 16S , Sobrevida , Vibrio/isolamento & purificação
5.
Anal Methods ; 13(15): 1810-1815, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885673

RESUMO

Microbial biomass, as an environmentally friendly resource, has attracted considerable attention as a green biomaterial for the production of unique and functionalised CDs; however, further exploration is required to characterise CDs derived from bacteria. In this study, a green biomaterial (fluorescence CDs-HS18) was successfully synthesised via a hydrothermal method from Ureibacillus thermosphaericus HS-18 specimens isolated from a hot spring. The prepared CDs-HS18 possess excellent photo-physical properties, outstanding fluorescence capabilities, and high biocompatibility, which make them desirable candidates for multi-mode imaging applications. Our results demonstrate that the prepared CDs can selectively stain the membrane of the biological cells tested and can be rapidly distributed to all parts of the leaf via the veins and intercellular interstitium through transpiration. Additionally, CDs-HS18 are likely to enter the digestive tract of Microworms through ingestion and spread rapidly through the entire body and may finally be excreted through the anus. Furthermore, the rapid and highly selective detection platform based on CDs-HS18 exhibited an excellent linear response for Cr6+ between 0 and 9 µM, with a detection limit of 36 nM. This research will expand the understanding of the characteristics of green biomaterials derived from bacteria and widen the application scope of hot spring resources.


Assuntos
Fontes Termais , Metais Pesados , Pontos Quânticos , Carbono , Corantes Fluorescentes , Limite de Detecção , Planococáceas
6.
Nat Commun ; 12(1): 2267, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859184

RESUMO

Studies in humans and laboratory animals link stable gut microbiome "enterotypes" with long-term diet and host health. Understanding how this paradigm manifests in wild herbivores could provide a mechanistic explanation of the relationships between microbiome dynamics, changes in dietary resources, and outcomes for host health. We identify two putative enterotypes in the African buffalo gut microbiome. The enterotype prevalent under resource-abundant dietary regimes, regardless of environmental conditions, has high richness, low between- and within-host beta diversity, and enrichment of genus Ruminococcaceae-UCG-005. The second enterotype, prevalent under restricted dietary conditions, has reduced richness, elevated beta diversity, and enrichment of genus Solibacillus. Population-level gamma diversity is maintained during resource restriction by increased beta diversity between individuals, suggesting a mechanism for population-level microbiome resilience. We identify three pathogens associated with microbiome variation depending on host diet, indicating that nutritional background may impact microbiome-pathogen dynamics. Overall, this study reveals diet-driven enterotype plasticity, illustrates ecological processes that maintain microbiome diversity, and identifies potential associations between diet, enterotype, and disease.


Assuntos
Búfalos/microbiologia , Doenças Transmissíveis/veterinária , Comportamento Alimentar/fisiologia , Microbioma Gastrointestinal/imunologia , Animais , Búfalos/fisiologia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/microbiologia , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Firmicutes/genética , Firmicutes/isolamento & purificação , Incidência , Metagenômica , Filogenia , Planococáceas/genética , Planococáceas/isolamento & purificação , Prevalência , RNA Ribossômico 16S/genética , África do Sul/epidemiologia , Simbiose/imunologia
7.
Nucleic Acids Res ; 49(7): 4054-4065, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744962

RESUMO

Argonaute proteins are programmable nucleases that are found in both eukaryotes and prokaryotes and provide defense against invading genetic elements. Although some prokaryotic argonautes (pAgos) were shown to recognize RNA targets in vitro, the majority of studied pAgos have strict specificity toward DNA, which limits their practical use in RNA-centric applications. Here, we describe a unique pAgo nuclease, KmAgo, from the mesophilic bacterium Kurthia massiliensis that can be programmed with either DNA or RNA guides and can precisely cleave both DNA and RNA targets. KmAgo binds 16-20 nt long 5'-phosphorylated guide molecules with no strict specificity for their sequence and is active in a wide range of temperatures. In bacterial cells, KmAgo is loaded with small DNAs with no obvious sequence preferences suggesting that it can uniformly target genomic sequences. Mismatches between the guide and target sequences greatly affect the efficiency and precision of target cleavage, depending on the mismatch position and the nature of the reacting nucleic acids. Target RNA cleavage by KmAgo depends on the formation of secondary structure indicating that KmAgo can be used for structural probing of RNA. These properties of KmAgo open the way for its use for highly specific nucleic acid detection and cleavage.


Assuntos
Proteínas Argonauta/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Planococáceas/enzimologia , RNA Bacteriano/metabolismo , Ligação Proteica , Especificidade por Substrato
8.
Int Microbiol ; 24(3): 373-384, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33755814

RESUMO

Sabkhas in Kuwait are unique hypersaline marine environments under-explored for bacterial community composition and bioprospecting. The 16S rRNA sequence analysis of 46 isolates with distinct morphology from two Kuwait sabkhas recovered 11 genera. Phylum Firmicutes dominated these isolates, and Bacillus (32.6%) was recovered as the dominant genera, followed by Halococcus (17.4%). These isolates were moderately halophilic, and some of them showed tolerance and growth at extreme levels of salt (20%), pH (5 and/or 11), and temperature (55 °C). A higher percentage of isolates harbored protease (63.0), followed by DNase (41.3), amylase (41.3), and lipase (32.6). Selected isolates showed antimicrobial activity against E. faecalis and isolated Halomonas shengliensis, and Idiomarina piscisalsi harbored gene coding for dNDP-glucose 4,6-dehydratase (Glu 1), indicating their potential to produce biomolecules with deoxysugar moieties. Palmitic acid or oleic acid was the dominant fatty acid, and seven isolates had some polyunsaturated fatty acids (linolenic or γ-linolenic acid). Interestingly, six isolates belonging to Planococcus and Oceanobacillus genus produced squalene, a bioactive isoprenoid molecule. Their content increased 30-50% in the presence of Terbinafine. The potential bioactivities and extreme growth conditions make this untapped bacterial diversity a promising candidate for future bioprospecting studies.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Bioprospecção , Esqualeno/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/metabolismo , Bacillus/classificação , Bacillus/genética , Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , DNA Bacteriano , Enzimas/metabolismo , Ácidos Graxos/metabolismo , Firmicutes/classificação , Firmicutes/genética , Sedimentos Geológicos/microbiologia , Halococcus/classificação , Halococcus/genética , Kuweit , Filogenia , Planococáceas/classificação , Planococáceas/genética , Planococáceas/metabolismo , RNA Ribossômico 16S , Salinidade , Microbiologia da Água
9.
Antonie Van Leeuwenhoek ; 114(6): 687-696, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715106

RESUMO

Two Gram-stain positive, endospore forming, non-motile, rod shaped bacterial strains SN6T and SN6b were isolated from scats of a mildly venomous vine snake (Ahaetulla nasuta). Strains were phenotypically resistant to multiple antibiotics of four different classes i.e. aminoglycosides, ß-lactams, fluoroquinolones and sulphonamides. Cells of both the strains were catalase positive and oxidase negative. Phylogenetic analysis based on 16S rRNA gene sequence analysis of these two strains showed closest similarity (99.2% and 99.3%) with Savagea faecisuis Con12T, the only species of the genus Savagea and ≤ 94.9% with the species of other closest genera of the family Planococcaceae. The 16S rRNA gene sequence similarity (99%), DNA-DNA relatedness (95%) and similar phenotypic characteristics between the strains SN6T and SN6b revealed their phylogenetic affiliation to the same species. Hence, strain SN6b is an additional strain of the type strain SN6T. DNA-DNA relatedness of strain SN6T with S. faecisuis Con12T was 32.8%. Predominant fatty acids were iso-C15:0 (32.0%), iso-C16:1 ω11c (19.2%) and iso-C17:1 ω10c (12.1%). MK-6 (100%) was the only respiratory quinone of strain SN6T. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids. Cell wall peptidoglycan was A4α; L-Lys-Gly-D-Glu type. The DNA G + C content (mol%) of SN6T was 40.8. Whole genome sequence of SN6T consisted of 26,37,389 base pairs in length with 2667 annotated genes, out of which 1021 corresponds to hypothetical proteins and 1646 with functional assignments including antibiotic resistance, multidrug resistance efflux pumps, invasion and virulence factors. Comparative polyphasic study of the strains SN6T, SN6b and S. faecisuis Con12T elucidated the differentiating characteristics which led to describing strain SN6T and SN6b as a novel species of the genus Savagea for which the name Savagea serpentis sp. nov is proposed. The type strain of Savagea serpentis is SN6T (= KCTC 33546T = CCUG 6786T).


Assuntos
Fosfolipídeos , Planococáceas , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genômica , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , Planococáceas/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Serpentes
10.
Adv Exp Med Biol ; 1261: 209-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33783743

RESUMO

The intestines of insects are assumed to be the niche of various microbial groups, and a unique microflora could be formed under environmental conditions different from mammalian intestinal tracts. This chapter describes the bacterial flora formed in the intestines of two dragonfly species, "akatombo" (the red dragonfly; Sympetrum frequens) and "usubaki-tombo" (Pantala flavescens), which fly over a long distance, and carotenoid-producing microorganisms isolated from this flora. C30 carotenoids, which were produced by a bacterium Kurthia gibsonii isolated from S. frequens, were structurally determined.


Assuntos
Odonatos , Planococáceas , Animais , Carotenoides , Insetos , Intestinos
11.
J Dairy Sci ; 104(4): 4002-4011, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589263

RESUMO

The growth of psychrotolerant aerobic spore-forming bacteria during refrigerated storage often results in the spoilage of fluid milk, leading to off-flavors and curdling. Because of their low toxicity, biodegradability, selectivity, and antimicrobial activity over a range of conditions, glycolipids are a novel and promising intervention to control undesirable microbes. The objective of this study was to determine the efficacy of a commercial glycolipid product to inhibit spore germination, spore outgrowth, and the growth of vegetative cells of Paenibacillus odorifer, Bacillus weihenstephanensis, and Viridibacillus arenosi, which are the predominant spore-forming spoilage bacteria in milk. For spore germination and outgrowth assays, varying concentrations (25-400 mg/L) of the glycolipid product were added to commercial UHT whole and skim milk inoculated with ∼4 log10 spores/mL of each bacteria and incubated at 30°C for 5 d. Inhibition of spore germination in inoculated UHT whole milk was only observed for V. arenosi, and only when glycolipid was added at 400 mg/L. However, concentrations of 400 and 200 mg/L markedly inhibited the outgrowth of vegetative cells from spores of P. odorifer and B. weihenstephanensis, respectively. No inhibition of spore germination or outgrowth was observed in inoculated UHT skim milk for any strain at the concentrations tested (25 and 50 mg/L). The effect of glycolipid addition on vegetative cell growth in UHT whole and skim milk when inoculated with ∼4 log10 cfu/mL of each bacteria was also determined over 21 d of storage at 7°C. Glycolipid addition at 50 mg/L was bactericidal against P. odorifer and B. weihenstephanensis in inoculated UHT skim milk through 21 d of storage, whereas 100 mg/L was needed for similar control of V. arenosi. Concentrations of 100 and 200 mg/L inhibited the growth of vegetative cells of B. weihenstephanensis and P. odorifer, respectively, in inoculated UHT whole milk, whereas 200 mg/L was also bactericidal to B. weihenstephanensis. Additional studies are necessary to identify effective concentrations for the inhibition of Viridibacillus spp. growth in whole milk beyond 7 d. Findings from this study demonstrate that natural glycolipids have the potential to inhibit the growth of dairy-spoilage bacteria and extend the shelf life of milk.


Assuntos
Anti-Infecciosos , Leite , Animais , Anti-Infecciosos/farmacologia , Glicolipídeos/farmacologia , Paenibacillus , Planococáceas , Esporos , Esporos Bacterianos
12.
Nucleic Acids Res ; 49(3): 1597-1608, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33444443

RESUMO

Argonaute (Ago) proteins are conserved nucleic acid-guided proteins present in all domains of life. Eukaryotic Argonaute proteins (eAgos) are key players in RNA interference pathways and function as RNA-guided RNA endonucleases at physiological temperatures. Although eAgos are considered to evolve from prokaryotic Argonaute proteins (pAgos), previously studied pAgos were unable to catalyze RNA-guided RNA cleavage at physiological temperatures. Here, we describe a distinctive pAgo from mesophilic bacteria Kurthia massiliensis (KmAgo). KmAgo utilizes DNA guides to cleave single-stranded DNA (ssDNA) and RNA targets with high activity. KmAgo also utilizes RNA guides to cleave ssDNA and RNA targets at moderate temperatures. We show that KmAgo can use 5' phosphorylated DNA guides as small as 9-mers to cut ssDNA and RNA, like Clostridium butyricum Ago. Small DNA binding confers remarkable thermostability on KmAgo, and we can suppress the guide-independent plasmid processing activity of empty KmAgo by elevating the DNA guide loaded temperature. Moreover, KmAgo performs programmable cleavage of double-stranded DNA and highly structured RNA at 37°C. Therefore, KmAgo can be regarded as a DNA-guided programmable omnipotent nuclease for cleaving most types of nucleic acids efficiently. This study broadens our understanding of Ago proteins and could expand the pAgo-based DNA and RNA manipulation toolbox.


Assuntos
Proteínas Argonauta/metabolismo , Proteínas de Bactérias/metabolismo , DNA de Cadeia Simples/metabolismo , Planococáceas/enzimologia , RNA/metabolismo , Cátions Bivalentes , Quebras de DNA de Cadeia Dupla , Temperatura
13.
J Sci Food Agric ; 101(8): 3225-3236, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33222174

RESUMO

BACKGROUND: Psychrophiles have evolved to adapt to freezing environments, and cold-adapted enzymes from these organisms can maintain high catalytic activity at low temperature. The use of cold-adapted enzymes has great potential for the revolution of food and molecular biology industries. RESULTS: In this study, four different strains producing protease were isolated from traditional fermented shrimp paste, one of which, named Planococcus maritimus XJ11 by 16S rRNA nucleotide sequence analysis, exhibited the largest protein hydrolysis clear zone surrounding the colonies. Meanwhile, the strain P. maritimus XJ11 was selected for further investigation because of its great adaptation to low temperature, low salinity and alkaline environment. The enzyme activity assay of P. maritimus XJ11 indicated that the optimum conditions for catalytic activity were pH 10.0 and 40 °C. Moreover, the enzyme also showed an increasing activity with temperatures from 10 to 40 °C and retained more than 67% activity of the maximum over a broad range of salinity (50-150 g L-1 ). Genome sequencing analysis revealed that strain XJ11 possessed one circular chromosome of 3 282 604 bp and one circular plasmid of 67 339 bp, with a total number of 3293 open reading frames (ORFs). Besides, 21 genes encoding protease, including three serine proteases, were identified through the NR database. CONCLUSION: Cold-adapted bacterium P. maritimus XJ11 was capable of producing alkaline proteases with high catalytic efficiency at low or moderate temperatures. Furthermore, the favorable psychrophilic and enzymatic characters of strain P. maritimus XJ11 seem to have a promising potential for industrial application. © 2020 Society of Chemical Industry.


Assuntos
Proteínas de Bactérias/genética , Produtos Pesqueiros/microbiologia , Genoma Bacteriano , Palaemonidae/microbiologia , Peptídeo Hidrolases/genética , Planococáceas/enzimologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , DNA Bacteriano/genética , Estabilidade Enzimática , Produtos Pesqueiros/análise , Hidrólise , Fases de Leitura Aberta , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Planococáceas/química , Planococáceas/genética , Planococáceas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
ISME J ; 15(1): 330-347, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028974

RESUMO

Enrichment of protective microbiota in the rhizosphere facilitates disease suppression. However, how the disruption of protective rhizobacteria affects disease suppression is largely unknown. Here, we analyzed the rhizosphere microbial community of a healthy and diseased tomato plant grown <30-cm apart in a greenhouse at three different locations in South Korea. The abundance of Gram-positive Actinobacteria and Firmicutes phyla was lower in diseased rhizosphere soil (DRS) than in healthy rhizosphere soil (HRS) without changes in the causative Ralstonia solanacearum population. Artificial disruption of Gram-positive bacteria in HRS using 500-µg/mL vancomycin increased bacterial wilt occurrence in tomato. To identify HRS-specific and plant-protective Gram-positive bacteria species, Brevibacterium frigoritolerans HRS1, Bacillus niacini HRS2, Solibacillus silvestris HRS3, and Bacillus luciferensis HRS4 were selected from among 326 heat-stable culturable bacteria isolates. These four strains did not directly antagonize R. solanacearum but activated plant immunity. A synthetic community comprising these four strains displayed greater immune activation against R. solanacearum and extended plant protection by 4 more days in comparison with each individual strain. Overall, our results demonstrate for the first time that dysbiosis of the protective Gram-positive bacterial community in DRS promotes the incidence of disease.


Assuntos
Actinobacteria , Lycopersicon esculentum , Ralstonia solanacearum , Actinobacteria/genética , Bacillus , Bactérias/genética , Firmicutes/genética , Incidência , Planococáceas , Doenças das Plantas , Ralstonia solanacearum/genética , Rizosfera , Microbiologia do Solo
15.
Eur J Clin Invest ; 51(4): e13417, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32991745

RESUMO

BACKGROUND: Limited available animal and human data suggest an association between dysbiosis of gut microbiota and PCOS. We aimed to determine whether gut microbiota in lean women with PCOS shows any alterations compared to healthy women. MATERIALS AND METHODS: Twenty-four lean patients with PCOS phenotype A according to the Rotterdam 2003 diagnostic criteria and 22 BMI-matched healthy women were included in this study. Anthropometric, hormonal and biochemical measurements were carried out in all participants. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Preprocessing of the raw data was performed using QIIME, and both QIIME and R packages were used for microbiome analysis. RESULTS: Bacterial richness and diversity did not show a significant difference between patients and controls. Beta diversity was similar between the groups. However, Erysipelotrichaceae, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Planococcaceae, Gemmules and Bacillales were significantly abundant in PCOS group according to LEfSe analysis. Clostridium cluster XVII showed increased abundance in patient group, while Clostridium sensustricto and Roseburia were decreased compared to controls. Random forest prediction analysis revealed Clostridium cluster XIVb as the most discriminative feature of patient group and Roseburia for healthy controls. Testosterone and androstenedione were negatively correlated with alpha and phylogenetic diversity. CONCLUSIONS: Our results suggest that gut microbiome of lean PCOS patients with full phenotype shows compositional alterations with similar bacterial richness and diversity compared to controls and that hyperandrogenism is associated with dysbiosis.


Assuntos
Microbioma Gastrointestinal/genética , Síndrome do Ovário Policístico/microbiologia , Androstenodiona/sangue , Bacillales , Índice de Massa Corporal , Estudos de Casos e Controles , Clostridium , Enterobacteriaceae , Feminino , Firmicutes , Gammaproteobacteria , Humanos , Planococáceas , Síndrome do Ovário Policístico/sangue , Proteobactérias , RNA Ribossômico 16S/genética , Testosterona/sangue , Adulto Jovem
16.
Molecules ; 25(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322786

RESUMO

Planococcus faecalis AJ003T produces glycosyl-4,4'-diaponeurosporen-4'-ol-4-oic acid as its main carotenoid. Five carotenoid pathway genes were presumed to be present in the genome of P. faecalis AJ003T; however, 4,4-diaponeurosporene oxidase (CrtP) was non-functional, and a gene encoding aldehyde dehydrogenase (AldH) was not identified. In the present study, a genome mining approach identified two missing enzymes, CrtP2 and AldH2454, in the glycosyl-4,4'-diaponeurosporen-4'-ol-4-oic acid biosynthetic pathway. Moreover, CrtP2 and AldH enzymes were functional in heterologous Escherichia coli and generated two carotenoid aldehydes (4,4'-diapolycopene-dial and 4,4'-diaponeurosporene-4-al) and two carotenoid carboxylic acids (4,4'-diaponeurosporenoic acid and 4,4'-diapolycopenoic acid). Furthermore, the genes encoding CrtP2 and AldH2454 were located at a distance the carotenoid gene cluster of P. faecalis.


Assuntos
Aldeído Desidrogenase/genética , Carotenoides/metabolismo , Genoma Bacteriano , Oxirredutases/genética , Planococáceas/enzimologia , Planococáceas/genética , Aldeído Desidrogenase/metabolismo , Bases de Dados de Proteínas , Redes e Vias Metabólicas , Oxirredutases/metabolismo
17.
J Microbiol ; 58(9): 772-779, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32870483

RESUMO

In spore forming microbes, germination protease (GPR) plays a key role in the initiation of the germination process. A critical step during germination is the degradation of small acid-soluble proteins (SASPs), which protect spore DNA from external stresses (UV, heat, low temperature, etc.). Inactive zymogen GPR can be activated by autoprocessing of the N-terminal pro-sequence domain. Activated GPR initiates the degradation of SASPs; however, the detailed mechanisms underlying the activation, catalysis, regulation, and substrate recognition of GPR remain elusive. In this study, we determined the crystal structure of GPR from Paenisporosarcina sp. TG-20 (PaGPR) in its inactive form at a resolution of 2.5 A. Structural analysis showed that the active site of PaGPR is sterically occluded by an inhibitory loop region (residues 202-216). The N-terminal region interacts directly with the self-inhibitory loop region, suggesting that the removal of the N-terminal pro-sequence induces conformational changes, which lead to the release of the self-inhibitory loop region from the active site. In addition, comparative sequence and structural analyses revealed that PaGPR contains two highly conserved Asp residues (D123 and D182) in the active site, similar to the putative aspartic acid protease GPR from Bacillus megaterium. The catalytic domain structure of PaGPR also shares similarities with the sequentially non-homologous proteins HycI and HybD. HycI and HybD are metal-loproteases that also contain two Asp (or Glu) residues in their active site, playing a role in metal binding. In summary, our results provide useful insights into the activation process of PaGPR and its active conformation.


Assuntos
Endopeptidases/metabolismo , Planococáceas/crescimento & desenvolvimento , Estrutura Terciária de Proteína/fisiologia , Esporos Bacterianos/crescimento & desenvolvimento , Sequência de Aminoácidos , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Domínio Catalítico/fisiologia , Cristalografia por Raios X , DNA Bacteriano/genética , Endopeptidases/genética , Precursores Enzimáticos/metabolismo , Planococáceas/genética , Alinhamento de Sequência
18.
Arch Microbiol ; 202(10): 2841-2847, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32681430

RESUMO

Planococcus halotolerans, recently described as a novel species with SCU63T as the type strain, is capable of thriving in up to 15% NaCl and temperatures as low as 0 °C. To better understand its adaptation strategies at the genomic level, strain SCU63T was subjected to whole-genome sequencing and data mining. The high-quality assembly yielded 17 scaffolds with a genome size of 3,622,698 bp. Its genome harbors 3683 protein-coding sequences and 127 RNA genes, as well as three biosynthetic gene clusters and 25 genomic islands. The phylogenomic tree provided compelling insights into the evolutionary relationships of Planococcus. Comparative genomic analysis revealed key similarities and differences in the functional gene categories among Planococcus species. Strain SCU63T was shown to have diverse stress response systems for high salt and cold habitats. Further comparison with three related species showed the presence of numerous unique gene clusters in the SCU63T genome. The strain might serve as a good model for using extremozymes in various biotechnological processes.


Assuntos
Aclimatação/genética , Planococáceas/genética , Planococcus (Bactéria)/genética , Tolerância ao Sal/genética , Temperatura Baixa , Genômica , Família Multigênica/genética , Filogenia , Planococáceas/metabolismo , Planococcus (Bactéria)/metabolismo , Tolerância ao Sal/fisiologia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
19.
Int J Biol Macromol ; 162: 445-453, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32562728

RESUMO

Artificial multienzyme biocatalysts have played a crucial role in biosynthesis because they allow for conducting complex reactions. Here, we reorted a facile approach to fabricate multienzyme nanodevices with high catalytic activity and stability based on protein assembly and chemical crosslinking. The self-assembled partner SpyCatcher and SpyTag were genetically fused with 2,3-butanediol hydrogenase and formate hydrogenase to produce KgBDH-SC (SpyCatcher-fused 2,3-butanediol hydrogenase) and FDH-ST (SpyTag-fused formate hydrogenase), respectively. After assembling the two fusion proteins, the complexes were then immobilized on the functionalized silicon dioxide nanoparticles by glutaraldehyde, forming KgBDH-SC-ST-FDH-SiO2 with the capability of reducing 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol with cofactor regeneration. Under the optimal conditions, the created co-immobilized enzymes performed 49% activity recovery compared with the mixture of free enzymes as well as showed 2.9-fold higher catalytic activity than the traditional random co-immobilized enzymes. Moreover, KgBDH-SC-ST-FDH-SiO2 showed better pH stability and organic solvents stability than the free enzymes, and remained 52.5% overall catalytic activity after 8 cycles. Finally, the co-immobilized enzymes can reduce 60 mM HAP for fabrication of (R)-PED with cofactor regeneration in the phosphate buffer reaction system, affording 83.9% yield and above 99% optical purity.


Assuntos
Proteínas de Bactérias/química , Biocatálise , Enzimas Imobilizadas/química , Hidrogenase/química , Planococáceas/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas de Bactérias/genética , Reagentes para Ligações Cruzadas/química , Enzimas Imobilizadas/genética , Hidrogenase/genética , Planococáceas/genética , Proteínas Recombinantes de Fusão/genética
20.
Molecules ; 25(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560208

RESUMO

The use of bacteria as nanofactories for the green synthesis of nanoparticles is considered a sustainable approach, owing to the stability, biocompatibility, high yields and facile synthesis of nanoparticles. The green synthesis provides the coating or capping of biomolecules on nanoparticles surface, which confer their biological activity. In this study, we report green synthesis of silver nanoparticles (AgNPs) by an environmental isolate; named as AgNPs1, which showed 100% 16S rRNA sequence similarity with Solibacillus isronensis. UV/visible analysis (UV/Vis), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the synthesized nanoparticles. The stable nature of nanoparticles was studied by thermogravimetric analysis (TGA) and inductively coupled plasma mass spectrometry (ICP-MS). Further, these nanoparticles were tested for biofilm inhibition against Escherichia coli and Pseudomonas aeruginosa. The AgNPs showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.12 µg/mL and 6.25 µg/mL for E. coli, and 1.56 µg/mL and 3.12 µg/mL for P. aeruginosa, respectively.


Assuntos
Biofilmes/efeitos dos fármacos , Escherichia coli/fisiologia , Química Verde , Nanopartículas Metálicas/química , Planococáceas/química , Pseudomonas aeruginosa/fisiologia , Prata , Biofilmes/crescimento & desenvolvimento , Prata/química , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...