RESUMO
Ogura cytoplasmic male sterility (CMS) lines are widely used breeding materials in cruciferous crops and play important roles in heterosis utilization; however, the sterility mechanism remains unclear. To investigate the microspore development process and gene expression changes after the introduction of orf138 and Rfo, cytological observation and transcriptome analysis were performed using a maintainer line, an Ogura CMS line, and a restorer line. Semithin sections of microspores at different developmental stages showed that the degradation of tapetal cells began at the tetrad stage in the Ogura CMS line, while it occurred at the bicellular microspore stage to the tricellular microspore stage in the maintainer and restorer lines. Therefore, early degradation of tapetal cells may be the cause of pollen abortion. Transcriptome analysis results showed that a total of 1287 DEGs had consistent expression trends in the maintainer line and restorer line, but were significantly up- or down-regulated in the Ogura CMS line, indicating that they may be closely related to pollen abortion. Functional annotation showed that the 1287 core DEGs included a large number of genes related to pollen development, oxidative phosphorylation, carbohydrate, lipid, and protein metabolism. In addition, further verification elucidated that down-regulated expression of genes related to energy metabolism led to decreased ATP content and excessive ROS accumulation in the anthers of Ogura CMS. Based on these results, we propose a transcriptome-mediated induction and regulatory network for cabbage Ogura CMS. Our research provides new insights into the mechanism of pollen abortion and fertility restoration in Ogura CMS.
Assuntos
Brassica , Transcriptoma , Brassica/genética , Infertilidade das Plantas/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Citoplasma/genética , Citoplasma/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: The utilization of heterosis based on three-line system is an effective strategy in crop breeding. However, cloning and mechanism elucidation of restorer genes for cytoplasmic male sterility (CMS) in upland cotton have yet been realized. RESULTS: This research is based on CMS line 2074A with the cytoplasm from Gossypium harknessii (D2-2) and restorer line R186. The offspring of 2074A × R186 were used to conduct genetic analysis. The fertility mechanism of 2074A can be speculated to be governed by multiple genes, since neither the single gene model nor the double genes model could be used. The bulked segregant analysis (BSA) for (2074A × R186) F2 determined the genetic interval of restorer genes on a region of 4.30 Mb on chromosome D05 that contains 77 annotated genes. Four genes were identified as candidates for fertility restoration using the RNA-seq data of 2074A, 2074B, and R186. There are a number of large effect variants in the four genes between 2074A and R186 that could cause amino acid changes. Evolutionary analysis and identity analysis revealed that GH_D05G3183, GH_D05G3384, and GH_D05G3490 have high identity with their homologs in D2-2, respectively. Tissue differential expression analysis revealed that the genes GH_D05G3183, GH_D05G3384, and GH_D05G3490 were highly expressed in the buds of the line R186. The predicted results demonstrated that GH_D05G3183, GH_D05G3384 and GH_D05G3490 might interact with GH_A02G1295 to regulate orf610a in mitochondria. CONCLUSION: Our study uncovered candidate genes for fertility restoration in the restorer line R186 and predicted the possible mechanism for restoring the male fertility in 2074A. This research provided valuable insight into the nucleoplasmic interactions.
Assuntos
Gossypium , Melhoramento Vegetal , Gossypium/fisiologia , Fertilidade/genética , Citoplasma/metabolismo , Citosol , Infertilidade das Plantas/genéticaRESUMO
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes ß-D-glucopyranosyl abscisate ß-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.
Assuntos
Brassica napus , RNA Longo não Codificante , Brassica napus/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas , Pólen/genética , Flores/genética , Perfilação da Expressão GênicaRESUMO
Pectin widely exists in higher plants' cell walls and intercellular space of higher plants and plays an indispensable role in plant growth and development. We identified 55 differentially expressed genes related to pectin degradation by transcriptomic analysis in the male sterile mutant, ms1. A gene encoding pectin methylesterase (GhPME21) was found to be predominantly expressed in the developing stamens of cotton but was significantly down-regulated in ms1 stamens. The tapetal layer of GhPME21 interfered lines (GhPME21i) was significantly thickened compared to that of WT at the early stage; anther compartment morphology of GhPME21i lines was abnormal, and the microspore wall was broken at the middle stage; Alexander staining showed that the pollen grains of GhPME21i lines differed greatly in volume at the late stage. The mature pollen surfaces of GhPME21i lines were deposited with discontinuous and broken sheets and prickles viewed under SEM. Fewer pollen tubes were observed to germinate in vitro in GhPME21i lines, while tiny of those in vivo were found to elongate to the ovary. The seeds harvested from GhPME21i lines as pollination donors were dry and hollow. The changes of phenotypes in GhPME21i lines at various stages illustrated that the GhPME21 gene played a vital role in the development of cotton stamens and controlled plant fertility by affecting stamen development, pollen germination, and pollen tube elongation. The findings of this study laid the groundwork for further research into the molecular mechanisms of PMEs involved in microspore formation and the creation of cotton male sterility materials.
Assuntos
Gossypium , Proteínas de Plantas , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Pectinas , Regulação da Expressão Gênica de Plantas , Flores , Infertilidade das Plantas/genéticaRESUMO
BACKGROUND: Chinese cabbage is one of the most widely grown leafy vegetables in China. Cytoplasmic male sterility (CMS) is a maternally inherited trait that produces abnormal pollen during anther development, which is commonly seen in cruciferous vegetables. However, the molecular mechanism of Chinese cabbage CMS is not clear. In this study, the metabolome and hormone profiles of Chinese cabbage male sterile line (CCR20000) and sterile maintainer line (CCR20001) were analyzed in flower buds during normal stamen development and abnormal stamen development, respectively. RESULTS: A total of 556 metabolites were detected based on UPLC-MS/MS detection platform and database search, and the changes of hormones such as auxin, cytokinins, abscisic acid, jasmonates, salicylic acid, gibberellin acid and ethylene were analyzed. The results showed that compared with the male fertile line (MF), the male sterile line (MS) significantly decreased the content of flavonoids and phenolamides metabolites in the stamen dysplasia stage, accompanied by a large accumulation of glucosinolate metabolites. Meanwhile, the contents of GA9, GA20, IBA, tZ and other hormones in MS were significantly lower than those in MF strains. Further, by comparing the metabolome changes of MF and MS during stamen dysplasia, it was found that flavonoid metabolites and amino acid metabolites were distinctly different. CONCLUSIONS: These results suggest that flavonoids, phenolamides and glucosinolate metabolites may be closely related to the sterility of MS strains. This study provides an effective basis for further research on the molecular mechanism of CMS in Chinese cabbage.
Assuntos
Brassica , Glucosinolatos , Cromatografia Líquida , Infertilidade das Plantas , Espectrometria de Massas em Tandem , Flavonoides , Brassica/genéticaRESUMO
The cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration system is a favorable tool for the utilization of heterosis in plant hybrid breeding. Many restorer-of-fertility (Rf) genes have been characterized in various species over the decades, but more detailed work is needed to investigate the fertility restoration mechanism. Here, we identified an alpha subunit of mitochondrial processing peptidase (MPPA) that is involved in the fertility restoration process in Honglian-CMS rice. MPPA is a mitochondrial localized protein and interacted with the RF6 protein encoded by the Rf6. MPPA indirectly interacted with hexokinase 6, namely another partner of RF6, to form a protein complex with the same molecular weight as the mitochondrial F1F0-ATP synthase in processing the CMS transcript. Loss-of-function of MPPA resulted in a defect in pollen fertility, the mppa+/- heterozygotes showed semi-sterility phenotype and the accumulation of CMS-associated protein ORFH79, showing restrained processing of the CMS-associated atp6-OrfH79 in the mutant plant. Taken together, these results threw new light on the process of fertility restoration by investigating the RF6 fertility restoration complex. They also reveal the connections between signal peptide cleavage and the fertility restoration process in Honglian-CMS rice.
Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Fertilidade/genética , Citoplasma , Infertilidade das Plantas/genéticaRESUMO
Male sterility is a common phenomenon in the plant kingdom and based on the organelles harboring the male-sterility genes, it can be classified into the genic male sterility (GMS) and the cytoplasmic male sterility (CMS). In every generation, CMS can generate 100% male-sterile population, which is very important for the breeders to take advantage of the heterosis and for the seed producers to guarantee the seed purity. Celery is a cross-pollinated plant with the compound umbel type of inflorescence which carries hundreds of small flowers. These characteristics make CMS the only option to produce the commercial hybrid celery seeds. In this study, transcriptomic and proteomic analyses were performed to identify genes and proteins that are associated with celery CMS. A total of 1255 differentially expressed genes (DEGs) and 89 differentially expressed proteins (DEPs) were identified between the CMS and its maintainer line, then 25 genes were found to differentially expressed at both the transcript and protein levels. Ten DEGs involved in the fleece layer and outer pollen wall development were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of which were down-regulated in the sterile line W99A. These DEGs and DEPs were mainly enriched in the pathways of "phenylpropanoid/sporopollenin synthesis/metabolism", "energy metabolism", "redox enzyme activity" and "redox processes". Results obtained in this study laid a foundation for the future investigation of mechanisms of pollen development as well as the reasons for the CMS in celery.
Assuntos
Apium , Infertilidade Masculina , Masculino , Humanos , Feminino , Transcriptoma , Apium/genética , Proteômica , Perfilação da Expressão Gênica , Verduras/genética , Flores/genética , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genéticaRESUMO
Cytoplasmic male sterility (CMS) is critical in maximizing crop yield and quality by utilizing tobacco heterosis. However, the mechanism of tobacco CMS formation remains unknown. Using paraffin section observation, transcriptome sequencing, and TMT proteomic analysis, this study describes the differences in expression profiles in morphology, transcription, and translation between the sua-CMS tobacco line (MSYY87) and its corresponding maintainer line (YY87). According to the microspore morphology, MSYY87 began to exhibit abnormal microspore development during the early stages of germination and differentiation (androgynous primordium differentiation stage). According to transcriptomic and proteomic analyses, 17 genes/proteins involved in lipid transport/binding and phenylpropane metabolism were significantly down-regulated at both the mRNA and protein levels. Through further analysis, we identified some key genes that may be involved in tobacco male sterility, including ß-GLU related to energy metabolism, 4CL and bHLHs related to anther wall formation, nsLTPs related to pollen germination and anther cuticle, and bHLHs related to pollen tapetum degradation. We speculate that the down-regulation of these genes affects the normal physiological metabolism, making tobacco plants show male sterility. SIGNIFICANCE: Cytoplasmic male sterility (CMS) plays a vital role in utilizing tobacco heterosis and enhancing crop yield and quality. We observed paraffin sections and conducted transcriptome sequencing and mitochondrial proteomics to examine the tobacco CMS line Yunyan 87 (MSYY87) and its maintainer line Yunyan 87 (YY87). The down-regulation expression of ß-GLU resulted in insufficient ATP supply, which resulted in disordered energy metabolism. The down-regulation expression of 4CL, nsLTPs and bHLHs may affect the formation of anther wall and anther cuticle, pollen germination, as well as the degradation of pollen tapetum. These various abnormal physiological processes, the male sterility of tobacco is finally caused. The findings shed light on the molecular mechanisms of tobacco CMS and serve as a model for fertility research in other flowering plants.
Assuntos
Infertilidade Masculina , Transcriptoma , Masculino , Humanos , Tabaco/genética , Proteoma/genética , Infertilidade das Plantas/genética , Proteômica , Parafina , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , FloresRESUMO
KEY MESSAGE: The duplicated male sterile genes ms5m6 in cotton were map-based cloned and validated by the virus-induced gene silencing assays. Duplicate mutations of the GhCYP450 gene encoding a cytochrome P450 protein are responsible for the male sterility in cotton. The utilization of male sterility in cotton plays a vital role in improving yield and fiber quality. A complete male sterile line (ms5ms6) has been extensively used to develop hybrid cotton worldwide. Using Zhongkang-A (ZK-A) developed by transferring Bt and ms5ms6 genes into the commercial cultivar Zhongmiansuo 12, the duplicate genes were map-based cloned and confirmed via the virus-induced gene silencing (VIGS) assays. The duplicate mutations of GhCYP450 genes encoding a cytochrome P450 protein were responsible for producing male sterility in ms5ms6 in cotton. Sequence alignment showed that GhCYP450-Dt in ZK-A differed in two critical aspects from the fertile wild-type TM-1: GhCYP450-Dt has three amino acid (D98E, E168K, G198R) changes in the coding region and a 7-bp (GGAAAAA) insertion in the promoter domain; GhCYP450-At appears to be premature termination of GhCYP450 translation. Further morphological observation and cytological examination of GhCYP450-silenced plants induced by VIGS exhibited shorter filaments and no mature pollen grains. These results indicate that GhCYP450 is essential for pollen exine formation and pollen development for male fertility. Investigating the mechanisms of ms5ms6 male sterility will deepen our understanding of the development and utilization of heterosis.
Assuntos
Gossypium , Mutação , Infertilidade das Plantas , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Infertilidade das Plantas/genéticaRESUMO
KEY MESSAGE: BrACOS5 mutations led to male sterility of Chinese cabbage verified in three allelic male-sterile mutants. Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the major vegetable crops in East Asia, and the utilization of male-sterile line is an important measure for its hybrid seed production. Herein, we isolated three allelic male-sterile mutants, msm1-1, msm1-2 and msm1-3, from an ethyl methane sulfonate (EMS) mutagenized population of Chinese cabbage double-haploid (DH) line 'FT', whose microspores were completely aborted with severely absent exine, and tapetums were abnormally developed. Genetic analyses indicated that the three male-sterile mutants belonged to allelic mutation and were triggered by the same recessive nuclear gene. MutMap-based gene mapping and kompetitive allele-specific PCR (KASP) analysis demonstrated that three different single-nucleotide polymorphisms (SNPs) of BraA09g012710.3C were responsible for the male sterility of msm1-1/2/3, respectively. BraA09g012710.3C is orthologous of Arabidopsis thaliana ACOS5 (AT1G62940), encoding an acyl-CoA synthetase in sporopollenin biosynthesis, and specifically expressed in anther, so we named BraA09g012710.3C as BrACOS5. BrACOS5 localizes to the endoplasmic reticulum (ER). Mutations of BrACOS5 resulted in decreased enzyme activities and altered fatty acid contents in msm1 anthers. As well as the transcript accumulations of putative orthologs involved in sporopollenin biosynthesis were significantly down-regulated excluding BrPKSA. These results provide strong evidence for the integral role of BrACOS5 in conserved sporopollenin biosynthesis pathway and also contribute to uncovering exine development pattern and underlying male sterility mechanism in Chinese cabbage.
Assuntos
Arabidopsis , Brassica rapa , Brassica , Mutação , Infertilidade das Plantas , Proteínas de Plantas , Arabidopsis/genética , Brassica/genética , Brassica rapa/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Pólen/genéticaRESUMO
Cytoplasmic male sterility (CMS) is a crucial means for the utilization of heterosis, which is of great significance for improving the yield and quality of hybrids. Currently, fertility restoration has been extensively investigated in crops, but fertility restoration of CMS wheat with Aegilops juvenalis cytoplasm is poorly understood. Here, a backcross population BC1F1 derived from a cross between the male-sterile line Ju706A, its maintainer line 706B, and restorer line LK783 was used to map the Rfd1 locus by bulked segregant analysis and wheat 660K single nucleotide polymorphism genotyping. Ju706A displayed complete male sterility, and its fertility can be restored by LK783 with a pair of dominant genes Rfd1Rfd1. The locus was located to a 2.4 Mb region on chromosome 1BS by markers AX-174254104 and AX-111201011. Combined with transcriptomic analysis and quantitative real-time PCR assay, TraesCS1B02G197400LC, the most likely candidate gene for Rfd1, was found to encode a pectinesterase that was localized in the cell wall, and was highly expressed in fertile anthers. The silencing of Rfd1 resulted in decreased fertility, and heterogeneous expression of Rfd1 promoted pollen germination and affected vegetative growth. This implies that Rfd1 is required for anther or pollen development and male fertility in CMS wheat with Ae. juvenalis cytoplasm. Furthermore, a 7 bp deletion in Ju706A was employed to develop a specific marker, Xnwafu1, for molecular marker-assisted selection of restorers. This study provides a new understanding for exploring the fertility restoration mechanism of CMS.
Assuntos
Aegilops , Infertilidade Masculina , Masculino , Humanos , Triticum/genética , Aegilops/genética , Infertilidade das Plantas/genética , Citoplasma/genética , Citoplasma/metabolismo , Fertilidade/genética , Infertilidade Masculina/metabolismoRESUMO
Male sterility provides an efficient approach for commercial exploitation of heterosis. Despite more than 20 genic male sterile (GMS) mutants documented in pepper (Capsicum annuum L.), only two causal genes have been successfully identified. Here, a novel spontaneous recessive GMS mutant, designated msc-3, is identified and characterized at both phenotypic and histological levels. Pollen abortion of msc-3 mutant may be due to the delayed tapetum degradation, leading to the non-degeneration of tetrads callosic wall. Then, a modified MutMap method and molecular marker linkage analysis were employed to fine mapping the msc-3 locus, which was delimited to the ~139.91-kb region harboring 10 annotated genes. Gene expression and structure variation analyses indicate the Capana10g000198, encoding a R2R3-MYB transcription factor, is the best candidate gene for the msc-3 locus. Expression profiling analysis shows the Capana10g000198 is an anther-specific gene, and a 163-bp insertion in the Capana10g000198 is highly correlated with the male sterile (MS) phenotype. Additionally, downregulation of Capana10g000198 in male fertile plants through virus-induced gene silencing resulted in male sterility. Finally, possible regulatory relationships of the msc-3 gene with the other two reported pepper GMS genes, msc-1 and msc-2, have been studied, and comparative transcriptome analysis reveals the expression of 16 GMS homologs are significantly downregulated in the MS anthers. Overall, our results reveal that Capana10g000198 is the causal gene underlying the msc-3 locus, providing important theoretical clues and basis for further in-depth study on the regulatory mechanisms of pollen development in pepper.
Assuntos
Capsicum , Infertilidade das Plantas , Masculino , Capsicum/genética , Capsicum/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Infertilidade das Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Deleterious effects on anther development and main economy traits caused by sterile genes or cytoplasms are one of the important genetic characteristics of cytoplasmic male sterility (CMS) systems in cotton, which severely hinder the large-scale application of "three-line" hybrids in production. Therefore, distinct characterization of each cytoplasmic type is mandatory to improve the breeding efficiency of cotton hybrids. In this study, four isonuclear-alloplasmic cotton male sterile lines with G. hirsutum (CMS-(AD)1), G. barbadense (CMS-(AD)2), G. harknessii (CMS-D2), and G. trilobum (CMS-D8) cytoplasms were first created by multiple backcrosses with common genotype Shikang126. Then, 64 pairs of mitochondrial simple sequence repeat (mtSSR) markers were designed to explore the mitochondrial DNA diversities among four isonuclear-alloplasmic cotton male sterile lines, and a total of nine pairs of polymorphic mtSSR molecular markers were successfully developed. Polymorphism analysis indicated that mtSSR59 marker correlated to the atp1 gene could effectively divide the CMS-D2, CMS-(AD)1, and CMS-(AD)2 in one category while the CMS-D8 in another category. Further cytological observation and determination of ATP contents also confirmed the accurate classification of CMS-D2 and CMS-D8 lines. Moreover, the mtSSR59 marker was successfully applied in the marker-assisted selection (MAS) for breeding new male sterile lines and precise differentiation or purity identification of different CMS-based "three-line" and conventional cotton hybrids. This study provides new technical measures for classifying various cytoplasmic sterile lines, and our results will significantly improve the efficiency of there-line hybrid breeding in cotton.
Assuntos
DNA Mitocondrial , Infertilidade das Plantas , Citoplasma/genética , DNA Mitocondrial/genética , Infertilidade das Plantas/genética , Gossypium/genéticaRESUMO
The thermo-sensitive genic male sterility (TGMS) system plays a key role in the production of two-line hybrids in rapeseed (Brassica napus). To uncover key cellular events and genetic regulation associated with TGMS, a combined study using cytological methods and RNA-sequencing analysis was conducted for the rapeseed TGMS line 373S. Cytological studies showed that microspore cytoplasm of 373S plants was condensed, the microspore nucleus was degraded at an early stage, the exine was irregular, and the tapetum developed abnormally, eventually leading to male sterility. RNA-sequencing analysis identified 430 differentially expressed genes (298 upregulated and 132 downregulated) between the fertile and sterile samples. Gene ontology analysis demonstrated that the most highly represented biological processes included sporopollenin biosynthetic process, pollen exine formation, and extracellular matrix assembly. Kyoto encyclopedia of genes and genomes analysis indicated that the enriched pathways included amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Moreover, 26 transcript factors were identified, which may be associated with abnormal tapetum degeneration and exine formation. Subsequently, 19 key genes were selected, which are considered to regulate pollen development and even participate in pollen exine formation. Our results will provide important insight into the molecular mechanisms underlying TGMS in rapeseed.
Assuntos
Brassica napus , Infertilidade Masculina , Masculino , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Genes de Plantas , Perfilação da Expressão Gênica/métodos , Pólen/genética , Infertilidade Masculina/genética , RNA/metabolismo , Infertilidade das Plantas/genética , Regulação da Expressão Gênica de PlantasRESUMO
Hybrids between different subspecies of rice Oryza sativa L. commonly show hybrid sterility. Here we show that a widely planted commercial japonica/GJ variety, DHX2, exhibited hybrid sterility when crossing with other GJ varieties. Using the high-quality genome assembly, we identified three copies of the Sc gene in DHX2, whereas Nipponbare (Nip) had only one copy of Sc. Knocking out the extra copies of Sc in DHX2 significantly improved the pollen fertility of the F1 plant of DHX2/Nip cross. The population structure analysis revealed that a slight introgression from Basmati1 might occur in the genome of DHX2. We demonstrated that both DHX2 and Basmati1 harbored three copies of Sc. Moreover, the introgression of GS3 and BADH2/fgr from Basmati1 confers the slender and fragrance grain of DHX2. These results add to our understanding of the hybrid sterility of inter-subspecies and intra-subspecies and may provide a novel strategy for hybrid breeding.
Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Oryza/genética , Infertilidade das Plantas/genética , Melhoramento Vegetal , Variação Estrutural do GenomaRESUMO
BACKGROUND: Cytoplasmic male sterility (CMS) is a maternally inherited failure to produce functional pollen that most commonly results from expression of novel, chimeric mitochondrial genes. In Zea mays, cytoplasmic male sterility type S (CMS-S) is characterized by the collapse of immature, bi-cellular pollen. Molecular and cellular features of developing CMS-S and normal (N) cytoplasm pollen were compared to determine the role of mitochondria in these differing developmental fates. RESULTS: Terminal deoxynucleotidyl transferase dUTP nick end labeling revealed both chromatin and nuclear fragmentation in the collapsed CMS-S pollen, demonstrating a programmed cell death (PCD) event sharing morphological features with mitochondria-signaled apoptosis in animals. Maize plants expressing mitochondria-targeted green fluorescent protein (GFP) demonstrated dynamic changes in mitochondrial morphology and association with actin filaments through the course of N-cytoplasm pollen development, whereas mitochondrial targeting of GFP was lost and actin filaments were disorganized in developing CMS-S pollen. Immunoblotting revealed significant developmental regulation of mitochondrial biogenesis in both CMS-S and N mito-types. Nuclear and mitochondrial genome encoded components of the cytochrome respiratory pathway and ATP synthase were of low abundance at the microspore stage, but microspores accumulated abundant nuclear-encoded alternative oxidase (AOX). Cytochrome pathway and ATP synthase components accumulated whereas AOX levels declined during the maturation of N bi-cellular pollen. Increased abundance of cytochrome pathway components and declining AOX also characterized collapsed CMS-S pollen. The accumulation and robust RNA editing of mitochondrial transcripts implicated translational or post-translational control for the developmentally regulated accumulation of mitochondria-encoded proteins in both mito-types. CONCLUSIONS: CMS-S pollen collapse is a PCD event coincident with developmentally programmed mitochondrial events including the accumulation of mitochondrial respiratory proteins and declining protection against mitochondrial generation of reactive oxygen species.
Assuntos
Biogênese de Organelas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Pólen/metabolismo , Apoptose/genética , Citocromos/metabolismo , Trifosfato de Adenosina , Infertilidade das Plantas/genéticaRESUMO
Cytoplasmic male sterility (CMS) lays a foundation for the utilization of heterosis in soybean. The soybean CMS line SXCMS5A is an excellent CMS line exhibiting 100% male sterility. Cytological analysis revealed that in SXCMS5A compared to its maintainer SXCMS5B, its tapetum was vacuolated and abnormally developed. To identify the genes and metabolic pathways involving in pollen abortion of SXCMS5A, a comparative transcriptome analysis was conducted between SXCMS5A and SXCMS5B using flower buds. A total of 372,973,796 high quality clean reads were obtained from 6 samples (3 replicates for each material), and 840 differentially expressed genes (DEGs) were identified, including 658 downregulated and 182 upregulated ones in SXCMS5A compared to SXCMS5B. Among them, 13 DEGs, i.e., 12 open reading frames (ORFs) and 1 COX2, were mitochondrial genome genes in which ORF178 and ORF103c were upregulated in CMS lines and had transmembrane domain(s), therefore, identified as CMS candidate mitochondrial genes of SXCMS5A. Furthermore, numerous DEGs were associated with pollen wall development, carbohydrate metabolism, sugar transport, reactive oxygen species (ROS) metabolism and transcription factor. Some of them were further confirmed by quantitative real time PCR analysis between CMS lines with the same cytoplasmic source as SXCMS5A and their respective maintainer lines. The amount of soluble sugar and adenosine triphosphate and the activity of catalase and ascorbic acid oxidase showed that energy supply and ROS scavenging decreased in SXCMS5A compared to SXCMS5B. These findings provide valuable information for further understanding the molecular mechanism regulating the pollen abortion of soybean CMS.
Assuntos
Infertilidade das Plantas , Soja , Soja/metabolismo , Infertilidade das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclo-Oxigenase 2/metabolismo , Perfilação da Expressão Gênica , Pólen/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Transcriptoma , Açúcares/metabolismo , Fatores de Transcrição/metabolismo , Ácido Ascórbico/metabolismo , Trifosfato de Adenosina/metabolismo , Flores/genética , Flores/metabolismoRESUMO
BACKGROUND: Cytoplasmic male sterility (CMS) is a trait of economic importance in the production of hybrid seeds. In CMS-S maize, exerted anthers appear frequently in florets of field-grown female populations where only complete male-sterile plants were expected. It has been reported that these reversions are associated with the loss of sterility-conferring regions or other rearrangements in the mitochondrial genome. However, the relationship between mitochondrial function and sterility stability is largely unknown. RESULTS: In this study, we determined the ratio of plants carrying exerted anthers in the population of two CMS-S subtypes. The subtype with a high ratio of exerted anthers was designated as CMS-Sa, and the other with low ratio was designated as CMS-Sb. Through next-generation sequencing, we assembled and compared mitochondrial genomes of two CMS-S subtypes. Phylogenetic analyses revealed strong similarities between the two mitochondrial genomes. The sterility-associated regions, S plasmids, and terminal inverted repeats (TIRs) were intact in both genomes. The two subtypes maintained high transcript levels of the sterility gene orf355 in anther tissue. Most of the functional genes/proteins were identical at the nucleotide sequence and amino acid sequence levels in the two subtypes, except for NADH dehydrogenase subunit 1 (nad1). In the mitochondrial genome of CMS-Sb, a 3.3-kilobase sequence containing nad1-exon1 was absent from the second copy of the 17-kb repeat region. Consequently, we detected two copies of nad1-exon1 in CMS-Sa, but only one copy in CMS-Sb. During pollen development, nad1 transcription and mitochondrial biogenesis were induced in anthers of CMS-Sa, but not in those of CMS-Sb. We suggest that the impaired mitochondrial function in the anthers of CMS-Sb is associated with its more stable sterility. CONCLUSIONS: Comprehensive analyses revealed diversity in terms of the copy number of the mitochondrial gene nad1-exon1 between two subtypes of CMS-S maize. This difference in copy number affected the transcript levels of nad1 and mitochondrial biogenesis in anther tissue, and affected the reversion rate of CMS-S maize. The results of this study suggest the involvement of mitochondrial robustness in modulation of sterility stability in CMS-S maize.
Assuntos
Genoma Mitocondrial , Infertilidade Masculina , Genoma Mitocondrial/genética , Humanos , Infertilidade Masculina/genética , Masculino , NADH Desidrogenase/genética , Filogenia , Infertilidade das Plantas/genética , Zea mays/genéticaRESUMO
Flowering plant male germlines develop within anthers and undergo epigenetic reprogramming with dynamic changes in DNA methylation, chromatin modifications, and small RNAs. Profiling the epigenetic status using different technologies has substantially accumulated information on specific types of cells at different stages of male reproduction. Many epigenetically related genes involved in plant gametophyte development have been identified, and the mutation of these genes often leads to male sterility. Here, we review the recent progress on dynamic epigenetic changes during pollen mother cell differentiation, microsporogenesis, microgametogenesis, and tapetal cell development. The reported epigenetic variations between male fertile and sterile lines are summarized. We also summarize the epigenetic regulation-associated male sterility genes and discuss how epigenetic mechanisms in plant male reproduction can be further revealed.
Assuntos
Epigênese Genética , Infertilidade Masculina , Cromatina/genética , Regulação da Expressão Gênica de Plantas , Humanos , Infertilidade Masculina/genética , Masculino , Infertilidade das Plantas/genética , Plantas/genética , Reprodução/genéticaRESUMO
Phased secondary siRNAs (phasiRNAs) are broadly present in the reproductive tissues of flowering plants, with spatial-temporal specificity. However, the ARGONAUTE (AGO) proteins associated with phasiRNAs and their miRNA triggers remain elusive. Here, through histological and high-throughput sequencing analyses, we show that rice AGO1d, which is specifically expressed in anther wall cells before and during meiosis, associates with both miR2118 and miR2275 to mediate phasiRNA biogenesis. AGO1d preferentially binds to miR2118-triggered 21-nucleotide (nt) phasiRNAs with a 5'-terminal uridine, suggesting a dual role in phasiRNA biogenesis and function. Depletion of AGO1d causes a reduction of 21- and 24-nt phasiRNAs and temperature-sensitive male sterility. At lower temperatures, anthers of the ago1d mutant predominantly show excessive tapetal cells with little starch accumulation during pollen formation, possibly caused by the dysregulation of cell metabolism. These results uncover an essential role of AGO1d in rice anther development at lower temperatures and demonstrate coordinative roles of AGO proteins during reproductive phasiRNA biogenesis and function.